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S1 Proof of Lemma 2

We first observe that the conditional expectation of Tjq, given the judgment ranks R =
(Ri,-+ ,Ry) and W = (Wh,--- ,Wp,), is

E(Thg|R, W) = NipM, /(1 = Gig(y)dFn) (y) = NoMyTing (F, G).

Using the iterative expectation, we obtain

H Q1 I N,M
ld SO et [(1 - G (y)dfi (y),  (SL1)

B(T) = B(ET|R,W)=E(; N
1 H
E(T) = 453203 mha(F.G) = (R.6) = / (1 - G(y))dF(y) = / F(y)dG(y).

This completes the proof of the expectation. For the proof of the variance, the conditional

variance yields that

var(T) = Var(E(T|R,W)) + E(var(T|R,W)) = Ay . 11,0)(F, G) + By m 11,0 (F, G).

Note that from equation (S1.1) we have
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= Z Z Z Tlhq) (F, G)T[h/q/](F, G)cov(ﬁ, qu)
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This sum can be partitioned into four different parts
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Using the fact that Iz /dn, h=1,--- ,H, and Iy /dm, q=1, -+ ,Q, are identically distributed,

after some simplifications, Ay, ., [#,0](F, G) can be written as

= 2 I3 Iy 1
An,m,[H,Q] (F7 G) = ZZT[hq] (F7 G) {E(T;)E(T;) - HQQQ}
h=1q=1 n m
H H
I3, Iiyls 1
+ {ZT[QHFG ZZT[M]FG}{ (dl2) ( ;;2 y)_H2Q2}
h=1 h=1qg=1 m
Q H Q 2
Iy Lol 1
R D o S
g=1 h=1g=1 m n
+ {T[ZAA](EG)_ZT@]( ZTM FG)’LZZTM (FG}
=1 h=1g=1

{ (IMIQ,C) (IIyIQy)_H;QQ}

which completes the proof of A, ., #,q](F, G).
For the proof By, . 1m,0)(F,G), without loss of generality we assume that T is centered

and write

H Q n m
T=3"% cnThas Tha=p > {I(Xi <Y)) =g } I(Ri = W)I(W; = g),

h=1g=1 i=1 j=1

IThalgy

Ny M To compute By, m, 1m,0](F, G), we first consider

where cpq =

H Q

H Q@ H Q
var(T|W, R) = var{z Zcthhq|W, R} = ZZ Z Z ChqCnq' COV(Thg, Thrg )W, R

h=1q=1 h=1q=1h'=1q'=1
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We again partition this sum into four pieces

H Q
var(T|W, R) = Z Z Chqvar(The| Ry W)

h=1q=1
H Q Q

+ Z Z Z ChqChq' OV(Thq, Thy' )|W, R
h=1q=1q'#q
H Q H

+ ZZ Z ChqCh? qCOU(Thq, Thig)|W, R
h=1q=1h'#£h
H Q H Q

+ ZZ Z Z ChgCn/q'cOV(Thg, Thiq) ) |W, R

= Bl n,m T B2,n,m + B3,n,m + 0.

The last term in the above equation is zero since Thq, Th/4 are conditionally independent given
R and W. Let K;;(h,q) = I(Xn) < Yig;) — Thq- Note that Inz, h = 1,--- , H, and Iy,
qg=1,---,Q, are identically distributed. We then simplify Bi n,m

13,13 18
E(B1,n7m) = E (m) ZZ {T[hq] (F7 G){l — 7'[hq](,F7 G)}}

h=1q=1

1317
- B (d%d?anyMl (£[QH](G> F) _£[HQ](F7 G))

7z, i,
+ E BE N, ¢iom (G, F)+ E B M, &g (F,G)

1,17

- E( Fo ) 7 (F.0) =~ 1ma(F.G) — o (G, F) ~ Gmai(F.0))
I3, I} I3 I}

+ B () Gam(G.F) + B (et ) e (F,6).

With similar argument the expected value of Bs p, n reduces to

H
12,11,
s = 2 (T ) 3257 Batah, i)

h=1q¢=1q'#q
H Q Q

12, 1,1
Bl )y 5y / {1~ Fy(9) = 70 (F. OH1 = Fis(9) = v (. G)}dFi (1)

h=1q=1q’'#q

I, 1yl
= B ( ;2d21/N1y> {Q H/ a- dF(y) — vu)(F,G) — §[QH](G,F)} .
_ IlzllyIQy 2
= E(—n J1QHO(G, F) — v (F,G) = §om (G, F)} .

d2d2, N1

With similar computations, we also obtain
IIleleIZ:E 2
E(Bsnm) = E m {H QO(F, G) _'Y[.Q](F7 G) —f[HQ](F: G)}

The proof is completed by combining the expressions in Bi n,m, B2,n,m and B3, m.
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S2 Proof of Corollary 2

We first show that (n+m)ar(n,m, H,Q), k = 1,--- , 4, in Lemma 2 are asymptotically negligible.

Let ng be the minimum of n and m. Consider

lim (n+m)ai(n,m,H,Q) = lim (n+m) {E(Ilzl2m)E(Ily12y)7 1 }

ng—oo ng— oo d% dgﬂ HQQQ
B h 1 1 g 1
= i (ntm) { - D Z::E }{Q?_Q?(Q—l)qz_‘:(cg) }_Q2H2]
Q-
= HQQZ(Q anlinoo( )" (n+m)
g L G e

H-1

1 = H qd \m-1 . h n—1 .
+H2(H—1)Q2(Q—1);n££“oo<a> > dim ()" m) =0,

In a similar fashion, it can be shown that (n + m)ax(n,m, H,Q), k = 2,--- ,4, also converge
to zero as the minimum of n and m goes to infinity. Hence, we proved that A, ., (x,q)(F,G) is
asymptotically zero.

In expression B, m, 11.0](F; G), we first show that the (n 4+ m)bx(n,m, H,Q), k = 1,2,3,
converge to zero. Note that Ii., Iy, dn, dm, N1 and M, are positive random variables. It is

then justified to interchange the limit with the expectation in the following expression

oJim B 2N, ) = B Jm = lim > N T

Using Lemma 1, we show that

I? 1 = oh
110 _ N\n—1 2
dm B(G) nggnw{m 1+ h_1<H> )} 1/H?,
H—-1
[11121 1 1 h n 2
| E = 1 — =1/H
ng—ro0 { a2 } nolinoo{m H?(H 1) ~ 572 } /
: I, I3, n 1\ _
A BN = E{ngu:ao B oo Sy =0

Similar results can be established for the limits of the expected values of Y-sample sample sizes.
Only difference is that the A and H in the above equations will be replaced with 1 — A and @

in the Y-sample sample sizes. Using these limits, we show that

lim (n+m)be(n,m,H,Q) = 0, k=123,

ng— oo

Jim (04 m)ba(n,m, H,Q) = m

and

. 1
ml)lgloo(n—km)lm(n m, H,Q) = O H
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This completes the proof.

S3 Proof of Lemma 3

Without loss of generality, we consider the centered version of T'

In. 1
T = ZQZ:ddh]\;lhyM ZZ{[X <Y;) _Thq]FF}] (W, = q).

=1 j=1

Let ¢1($7Ri - h) = E(Tlxl = $7Ri = h7d'fl,Nh7]hZ) and ¢2(97WJ = Q) = E(T‘YJ = y7WJ =
q,dm, Mg, Iqy) — 1/2. Then the projection of T, Tp, is given by

T, —m{zzwl(m,& =B+ Y D> (YW —q)},

h=11i=1 q=1 j=1
where
Ina )
(X Ri=h) = - }}V (1 — F(X:) — Ty (F, F))I(R; = h)
niVh
I
05, W =0) = o (FQG) = T (B P)IW; = 9),

and T = Zqul Tihg (F, F)/Q. We finish the proof by observing E(v/n+ m(T — T,)* =
var(v/n + m(T) —var(v/n +mT,) goes to zero as ng approaches to infinity.
Let ’l/_Jl = (’(/_)1,17 c.. ,151,H)T and ’l/_Jz = (1/_)2,17 C.. ,1;2}(,2)—'—, where
" > i Y1(Xi, Ri = h) Z;nzle(Xi:Wj =q)
1L,h = ) .
VN» VM,

Using Theorem 3.2 in Gutts (2005, p. 347), or modifying the proof of Theorem 1 in Ozturk

(2014) to a two sample problem, one can show that 11 and 12 converge to H- and Q-dimensional

and ’IZQ,q =

normal random vectors with mean zero and variances 3, and X3, respectively, where
3 = diag (Uar(l — F(X[h]) — 77—[h.] (F, F)))) and o = diag (var(F(Y[q]) — ?[_q])) .

2V =/ _ I1yv/m Igyvm
Let (N 12) = (R9fE - 2f2) and DM, 1) = GRS Jof). o

large n and m, it is easy to observe that U(N,I,) and U(M,I,) converge in probability to
(1/VH,--- ,1/vH) and (1/v/Q,---,1/+/Q), respectively. As ng goes to infinity we observe

that
VU (N L+

converges to a normal distribution with mean zero and variance U?-I,Q: where

oho= {1/3 Z(/F YdF (y )}Jr(l_l/\){l/i?ué;(/F(y)dF[q](y))2}.

UM, 1,)d2
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S4 Proof of Lemma 4

Let A1 p—1,: be the event that N1 = n1, M1 = m; and there exist exactly kK — 1 matching non-
empty judgment classes in X- and Y-samples (N;, > 0,---, N;, > 0; M;, > 0,---, M;, > 0) and
t non-matching non-empty judgment classes in X-samples (N;, , > 0,--- , N; > 0; M;

U+t
0, , M, =0)

k4t

k+1 —

N1:n1,M1:m1,Ni2>0,---,Nik>0--v Nik+t>07 and
Alk 1,t — 9
M;., >0

M;, >0---, M;, >0,M; =0,---,M; =0,M; >0,

k41 Tt — Tht+41

where i2,--- ,ig is a permutation of integers (2,---,H) and 1 < k < k*, k* = min(n,m, H).
Note that Np,h=1,--- ,H, and My, h =1,--- , H, are identically distributed. The probability
of the event A; ;_1, can be computed by considering all possible combinations yielding the

event in set Ay k—1,

Ni=ni, My =mi,N; >0, =2 htt, M;>0i=2--,k
P(A1,k1,t)=CH,k,tP< ! b b J )7

M,=0,r=k+1,--- k+t;: M, >0,z=k+t+1,--- | H

H-1 H—-k
cw=(12) (")

and 0 < ¢ <t¢* with t* =min(n—1,H — k). Let

where

N[a:b] = {Na>07"'7Nb>0}7 N[Z:b]:{Nazoa"'7Nb:O}7 N{g,b]:{Nazov"'vaZO}'

We also use equivalent definitions for M{s.), M., and M[t p)- Since (Ni,--+,Ng)and (My,---, Mg)

are independent, we have
H-1 H -k *
P(A1g—1,) = (k: _1 ) < . ) P(N1 = n1; Nigkst]; Niete41:17)
X P(My =mi; Mg Ms1 k445 Mf£+t+1;H])'

Since My, h =1,--- , H, are identically distributed, we can rearrange the subscript in sets M

and M™ as follows
P(M, = ml;M[2:k];M[);c+1:k+t]§M[ng+t+1;H]) = P(M1 = ma; Mia.x; M[J];+1;H7t];M[>;{7t+1:H])-

By conditioning on the given value of N1 = n; we write

P(P(N1 = n1; Nt Njrer1:m) = P(Niwtt)s N1 N1 = na) P(N1 = na)
> ( nem )( ) o 1<mi<n—k—t+1
N2, Nkt Hn
N[2:k4t]
k+t—1

S (-1 (k” )/<:+t—g”"1<:)H*",1§n1§n—k—t+1,
1

j=1
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where the notation > - indicates the sum over the index set {nz >0, ,ng4, > 0}.

We now derive a snmlar expression for the probabilities in Y-sample sample size vector.

Again we condition on the given value of M; = m1 to write

= ma; Mg.x; Mﬁ;H;H,t];M[*H—tH:H])
J}Q.H H—t] M[*;‘IftJrl:H]‘Ml = ml)P(Ml = ml)

Hok=t o 1y
= ( )P(M[2:k+u];M[2+u+1:H]|Ml =m)P(Mi=m1), 1<mi<m-k-u+1
H

_k_t> > ( meom )(m)i 1<mi<m-—k—u+l
u m2’... 7mk+u mi Hm

k+u—1 m
H_f_t> (—1)%1(%?1_1) (§;>(k+u T, l<m<m—k—utl,

TgliyJe, J? .
where u* = min(m — 1, H — k —t). The expected value —2-4"12"1 can be computed by using

nm

P(A; x-1,) and appropriate limits in the summation indexes

k* tm
E(M ZZ Z Z an ml Arg—1,t)

k=1t=0ni=1mi=
k*ogr (H-1 (H ") n—k—t+1k+t—1
k-1 i— k+t_1 n—n
B Sl { PO DACEI: ( () ey
—1t=0 ni=1  j=1 J 1
u* m—k—u+1k+u—1
H—k—t i—1 k—|—u—1 m Am—m b
-1 — L .
9 U_O( = DI Y (" () wra- /ml}

S5 Proof of Lemma 5

First we consider the expected value

2 wWnlne Iny N M,
E(T.) = E{E(T, =E M/l— dF;
(T.) = E{E(LIR,W)) {Z s B [ 11— G} ()
H
= 3" Bty [ (1= Gunu)}dFin() = B (ilicl,) Z / {1 = Gin() }dFiny (v).
h=1
The last equality follows form the fact that wplpeIny, h =1, -, H, are identically distributed.
Let a = E(whlizl1y) = -+ = E(walaeIny). We have from the equation below
H
Ha=E {thlhthy} =1
h=1

that a = % This completes the proof of the expectation.

For the proof of the variance we consider the conditional variance formula

V(T,) =V(E(Tu|R,W) + E(V(Tu|R, W)).
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The first term in the above equation is zero since the conditional expectation is constant. In the
second term, the conditional variance is the variance of the Mann-Whitney Wilcoxon rank-sum

test statistic

12NZAL2 :

H
V(T,IR,W) ="
h=1
Since I?, = In. the variance of T,, becomes
V(T )_ E E w%]h:[ly +E w%]lrlly +E W%Il;clly
12 N M, N1 My ’
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