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Abstract: A distribution-free procedure is developed to test a stochastic order rela-

tion between two distributions based on judgment post-stratified (JPS) data. The

proposed inference relies on Mann-Whitney rank sum statistics. A first class of

tests constructs test statistics by comparing all units in both samples, while a sec-

ond class first stratifies the data into judgment classes and then constructs a rank

sum statistic in each stratum, with the final test statistic constructed from a lin-

ear combination of these within-judgment class rank sum statistics. Distributional

properties of the testing procedures are investigated. The null distributions of the

test statistics in the first class depend on the quality of ranking information while

the null distributions of the test statistics in the second class are distribution-free

for any sample sizes, regardless of the quality of ranking information. Both tests

have higher efficiencies than corresponding tests based on a simple random sample

rank sum statistic. For large samples, testing procedures in the first and second

classes are equivalent, respectively, to Bohn-Wolfe and Fligner-MacEachern testing

procures in a ranked set sampling design.

Key words and phrases: Calibration, imperfect ranking, Mann-Whitney, ranked-set

sampling, rank sum test, stochastic order.

1. Introduction

There are many experimental settings where full, precise measurement of

a unit is much more expensive than obtaining an informal rough measurement

through a relative ranking in a small set. This rough measurement can be used

to create a structure among fully measured units to increase the information

content of the data. Ranked-set sampling (RSS) provides a set of rules to use

these informal and rough measurements to create relative ranks of units in a set.

For the construction of a balanced RSS, one first specifies a set size H and

a number of cycles c. One then selects n ≡ Hc independent simple random

samples (sets) of size H from a distribution F . These n sets contain a total of

cH2 experimental units. The H units in each of these n sets are independently

ranked from smallest to largest without making any measurements. Since ranks

are assigned without measurement, they are called judgment ranks here. After

ranking the units in each set, we select the unit with judgment rank 1 from each
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of the first c sets for measurement. We select the unit with judgment rank 2 from

each of the next c sets for measurement, and so on until we select the units with

judgment rank H from the last c sets for measurement. This process yields n =

cH measurements. A general form of RSS allows the number of measured values

to vary from one rank to another. In this case, instead of using the same c in

each rank, we define a sample size vector n = (n1, . . . , nH) such that nh specifies

the number of units with rank h to be selected for measurement. Unbalanced

ranked-set sample then consists of n =
∑H

h=1 nh independent judgment order

statistics. For a general unbalanced RSS design, let X[rj ]j ; 1 ≤ rj ≤ H, be

the measured observation in set j for the unit judged to be the rj-th smallest

in the set. The observations X[rj ]j ; j = 1, . . . , n, with nh =
∑n

j=1 I(rj = h),

constitute a ranked set sample of size n from distribution F , where I() is an

indicator function. If c = nh = n/H; h = 1, . . . ,H, RSS is a balanced design. In

this paper, square brackets are used to denote that the ranking process may be

in error. If the ranking process does not involve any error, the square brackets

are replaced with round parentheses. Let F[rj ]j be the cumulative distribution

function (cdf) of X[rj ]j . If the ranking process is perfect, then F[rj ](x) = F(rj)(x)

is just the cdf of the rj-th order statistic from a random sample of size H. If the

ranking is made totally at random, then F[rj ](x) = F (x).

In a two-sample setting, a second ranked set sample, Y[sj ]j , 1 ≤ sj ≤ Q;

j = 1, . . . ,m, of size m with set size Q can be constructed from a distribution

G(y) = F (y − ∆). In a balanced ranked set sample, the cycle size for the Y -

sample data is denoted by z = m/Q. Further details of RSS sampling designs

in a two sample problem can be found in Fligner and MacEachern (2006) and

Bohn and Wolfe (1992).

In an RSS sample, the ranking information is used prior to measurement

to determine which ranked unit should be selected for measurement in each set.

Hence the judgment rank rj and measured observation X[rj ]j in set j cannot be

separated. This could be a problem in certain settings where the data set is col-

lected for a general purpose analysis and inferential procedures for a ranked set

sample analysis have not been developed yet. To address this concern MacEach-

ern, Stasny, and Wolfe (2004) introduced judgment post-stratified sampling. To

construct a JPS sample from a single population, say F , the experimenter first

selects a simple random sample of size n and measures all of them. For each mea-

sured unit Xi; i = 1, . . . , n, an additional H−1 units are selected to form a set of

sizeH. Units in this set are ranked from smallest to largest without measurement

and the rank (Ri) of the measured unit Xi is recorded. The JPS sample then

contains n fully measured units (Xi; i = 1, . . . , n) and n ranks (Ri; i = 1, . . . , n)

associated with these fully measured units. To avoid possible bias, a ranker is

blinded to the unit on which the measurement is made. Further details in JPS
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sampling design can be found in MacEachern, Stasny, and Wolfe (2004), Wang,

Lim, and Stokes (2008), Stokes, Wang, and Chen (2007), Wang et al. (2006),

Frey and Ozturk (2011), Ozturk (2012), Wang, Wang, and Lim (2012), Frey and

Feeman (2012, 2013), and Ozturk (2013, 2014a,b).

In a similar fashion, a JPS sample (Yj ,Wj); j = 1, . . . ,m, with set size Q, is

obtained from a second population with continuous cdf G(y) = F (y−∆), where

W1, . . . ,Wm are the ranks of the measured observations Yj , j = 1, . . . ,m. The

sample sizes (m and n) and set sizes (H and Q) in the Y - and X-sample data

can be different.

One of the major difference between RSS and JPS samples is the nature

of the sample sizes in the judgment classes. Let N = (N1, . . . , NH) and M =

(M1, . . . ,MQ) be the vectors of sample sizes of judgment classes in the X- and

Y -samples, respectively. In JPS samples, both N and M are random vectors, N

has a multinomial distribution with parameters n and (1/H, . . . , 1/H) andM has

a multinomial distribution with parameters m and (1/Q, . . . , 1/Q). Since N and

M are random vectors, it is highly possible that some Nh and Mq may be zero,

especially for small sample sizes and statistical inference needs to account for

this possibility. In ranked-set sampling, the sample size vectors n = (n1, . . . , nH)

and m = (m1, . . . ,mQ) are non-random, pre-determined constant vectors. Zero

values of nh or mq could, of course, result from design choices to increase the

efficiency of the inference; see, for example, Ozturk and Wolfe (2000a), Chen

(2001), Kaur et al. (2002).

Two-sample distribution-free inference in RSS has been studied extensively

in the literature. Bohn and Wolfe (1992) proposed a rank sum statistic to test the

null hypothesis H0 : ∆ = 0 against the alternative hypothesis HA : ∆ ̸= 0 under

a perfect ranking assumption. The proposed test rejects the null hypothesis for

extreme values of

BW =
H∑

h=1

c∑
i=1

Q∑
k=1

z∑
j=1

ψ(X[h]i − Y[k]j) =
H∑

h=1

Q∑
k=1

BWh,k,

where BWh,k =
∑c

i=1

∑z
j=1 ψ(X[h]i − Y[k]j) and ψ(a) = 1 if a > 0 and ψ(a) = 0

if a ≤ 0. The null distribution of BW is distribution-free under either perfect or

random ranking. Under random ranking, it has the same null distribution as the

Mann-Whitney-Wilcoxon statistic based on simple random samples

MW =
n∑

i=1

m∑
j=1

ψ(Xi − Yj),

where Xi; i = 1, . . . , n and Yj ; j = 1, . . . ,m are simple random samples from X-

and Y -sample distributions F and G, respectively.
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Fligner and MacEachern (2006) proposed a new distribution-free statistic to

test the null hypothesis H0 against the alternative hypothesis HA. With set sizes

in the X- and Y -samples equal (H = Q), their test statistic is

FM =

H∑
h=1

BWh,h.

Under the null hypothesis F[h](x) ≡ G[h](x), the null distribution of BWh,h is

the same as the MW statistic based on simple random samples of sizes c and z.

The null distribution for each BWh,h remains the same regardless the presence

of ranking error as long as the same ranking mechanism is used in both popula-

tions. Since the BWh,h are mutually independent, the null distribution of FM

is the convolution of H independently distributed MW statistics. The articles

by Bohn (1998), Ozturk (2002), Ozturk and Wolfe (2000b,c), and the references

therein provide a review of the other relevant research in rank-based inference in

ranked-set sample. Readers are referred to Hollander, Wolfe, and Chicken (2014,

Chap. 15) and Wolfe (2012) for more recent comprehensive reviews of ranked set

sampling designs.

Two-sample distribution-free inference in JPS samples has not been stud-

ied in the literature. We develop distribution-free inference for the stochastic

ordering between two distributions F and G based on judgement post-stratified

samples. Section 2 introduces a class of rank sum tests for JPS data, devel-

ops their distributional properties, and compares them with the traditional MW

statistic in SRS and the BW statistic in RSS data. Section 3 introduces an-

other class of rank sum statistics. It is shown that statistics in this class are

distribution-free regardless of the quality of the ranking information. Section 4

provides empirical evidence for the performance of the proposed tests. Section

5 applies the proposed methods to an experiment on spray deposits. Section 6

provides a concluding remark. Proofs are in the Supplementary Material.

2. Rank Sum Tests for Judgment Post-Stratified Data

In this section, we introduce a rank sum statistic based on JPS samples

to test the stochastic order relation between two distributions F and G. Let

Ihx = 1 if Nh > 0 and Ihx = 0 if Nh = 0. In similar fashion we use the indicator

function Iqy to denote that judgment class q in the Y -sample data is nonempty.

Let dn =
∑H

h=1 Ihx and dm =
∑Q

q=1 Iqy be the number of non-empty judgement

classes in the X- and Y -sample data, respectively. We set

Ja
hx =

{
0 Nh = 0,
1
Na

h
Nh > 0,

Jb
qy =

{
0 Mq = 0,
1

Mb
q
Mq > 0,
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and for J1
hx and J1

qy, we simply write Jhx and Jqy. Our proposed test rejects the

null hypothesis H0 : F
s
= G against HA : F

s
̸= G for large values of

T =
1

dndm

H∑
h=1

Q∑
q=1

IhxJhxIqyJqyThq, Thq=

n∑
i=1

m∑
j=1

ψ(Yj −Xi)I(Ri=h)I(Wj=q),

where I(Ri = h) = 1 if Ri = h and zero otherwise. We use the notation “
s
=” to

indicate the stochastic equality between the distribution F and G. The proposed
statistic can be interpreted as a weighted version of the BW statistic, where
weights are introduced to minimize the effect of empty judgment classes. We let

τ[hq](F,G)=

∫
F[h]dG[q](y), τ[.q](F,G) =

H∑
h=1

τ[hq](F,G),

τ[h.](F,G)=

Q∑
q=1

τ[hq](F,G), τ[..](F,G) =

H∑
h=1

Q∑
q=1

τ[hq](F,G),

γ[HQ](F,G)=

H∑
h=1

Q∑
q=1

τ2[hq](F,G), γ[.Q](F,G) =

Q∑
q=1

τ2[.q](F,G),

γ[H.](F,G)=
H∑

h=1

τ2[h.](F,G), θ(F,G) =

∫
(1− F (y))2dG(y),

η[H](F,G)=Q

H∑
h=1

∫
F 2
[h](y)dG(y), η[Q](G,F ) = H

Q∑
q=1

∫
G2

[q](y)dF (y),

ξ[HQ](F,G)=

H∑
h=1

Q∑
q=1

∫
{F[h](y)− τ[hq](F,G)}2dG[q](y)=η[H](F,G)−γ[HQ](F,G),

ξ[QH](G,F )=

Q∑
q=1

H∑
h=1

∫
{G[q](y)−τ[qh](G,F )}2dF[h](y)=η[Q](G,F )−γ[QH](G,F ),

where square brackets are used to indicate that the quantities are computed
under the assumption of imperfect ranking. When we use the perfect ranking
assumption, we replace the square brackets with parentheses.

The distributions of the indicator functions Ihx; h = 1, . . . , H, Iqy; q =
1, . . . , Q, and the sample size vectors N and M do not depend on the ranking
mechanism. The following Lemma is from Ozturk (2014b); the proof is omitted
here.

Lemma 1. In a JPS sample (Xj , Rj); j = 1, . . . , n, let Ihx be the indicator
function that the judgment class h is not empty and dn be the number of non-
empty judgment classes, dn =

∑H
h=1 Ihx. For the distribution of Ihx/dn, we have



1696 OMER OZTURK

(i) P ( Ihxdn
= u)=


{
H−1
H

}n
u = 0,

1
Hn

(
H−1
k−1

) k∑
j=1

(−1)j−1
(

k
j−1

)
(k − j + 1)n u= 1

k ; k=1, . . . ,H;

(ii) E( Ihxdn
) = 1

H ;

(iii)E(
I2hx
d2n

) = 1
H2

∑H
k=1

(
k
H

)n−1
;

(iv)E(
IhxIh′x

d2n
) = 1

H(H−1)

(
1− 1

H

∑H
k=1

(
k
H

)n−1
)
, h ̸= h′;

(v) E
(
I2hxJhx

d2n

)
= 1

Hn

{
1
n+

H∑
k=2

k−1∑
j=1

n−k+1∑
nh=1

(−1)j−1

k2nh

(
H−1
k−1

)(
k−1
j−1

)(
n
nh

)
(k−j)n−nh

}
.

Expressions similar to the ones given in Lemma 1 can also be written for

the indicator function Iyq and the judgment class sample sizes Mq; q = 1, . . . , Q.

Using Lemma 1, the following expressions can be evaluated analytically.

a1(n,m,H,Q)=

{
E(
I21y
d2m

)− 1

H2Q2

}
,

a2(n,m,H,Q)=

{
E(
I21x
d2n

)E(
I1yI2y
d2m

)− 1

H2Q2

}
,

a3(n,m,H,Q)=

{
E(
I21y
d2m

)E(
I1xI2x
d2n

)− 1

H2Q2

}
,

a4(n,m,H,Q)=

{
E(
I1xI2x
d2n

)E(
I1yI2y
d2m

)− 1

H2Q2

}
,

b1(n,m,H,Q)=

{
E(
I21xJ1x
d2n

)E(
I21y
d2m

)−E(
I21xJ1x
d2n

)E(
I21yJ1y

d2m
)−E(

I21xJ1x
d2n

)E(
I1yI2y
d2m

)

}
,

b2(n,m,H,Q)=

{
E(
I21yJ1y

d2m
)E(

I21x
d2n

)−E(
I21xJ1x
d2n

)E(
I21yJ1y

d2m
)−E(

I21yJ1y

d2m
)E(

I1xI2x
d2n

)

}
,

b3(n,m,H,Q)=E(
I21xJ1x
d2n

)E(
I21yJ1y

d2m
), b4(n,m,H,Q) = E(

I1xI2x
d2n

)E(
I21yJ1y

d2m
),

b5(n,m,H,Q)=E(
I1yI2y
d2m

)E(
I21xJ1x
d2n

).

We say that ranking scheme is consistent provided

F (x) =
1

H

H∑
h=1

F[h](x) for all x.

Under a consistent ranking scheme, we can find the mean and variance of the

statistic T for any sample sizes n ≥ 1 and m ≥ 1, and set sizes H ≥ 1 and Q ≥ 1.
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Lemma 2. Let (Xi, Ri); i = 1, . . . , n, and (Yj ,Wj); j = 1, . . . ,m, be two JPS

samples with a consistent ranking scheme from the distributions F and G, re-

spectively. Then for any n ≥ 1 and m ≥ 1,

E(T ) =
τ[..](F,G)

HQ
=

∫
{1−G(y)}dF (y)

and the variance of
√
n+mT is

σ2n,m,[H,Q](F,G) = (n+m)An,m,[H,Q](F,G) + (n+m)Bn,m,[H,Q](F,G),

where

An,m,[H,Q](F,G)

= γ[HQ](F,G)a1(n,m,H,Q) +
{
γ[H.](F,G)− γ[HQ](F,G)

}
a2(n,m,H,Q)

+
{
γ[.Q](F,G)− γ[HQ](F,G)

}
a3(n,m,H,Q)

+
{
τ2[..](F,G)− γ[.Q](F,G)− γ[H.](F,G) + γ[HQ](F,G)

}
a4(n,m,H,Q),

Bn,m,[H,Q](F,G)

= ξ[QH](G,F ))b1(n,m,H,Q) + ξ[HQ](F,G)b2(n,m,H,Q)

+
{
τ[..](F,G)− γHQ(F,G)

}
b3(n,m,H,Q)

+
{
H2Qθ(F,G)− γ[.Q](F,G)

}
b4(n,m,H,Q)

+
{
HQ2θ(G,F )− γ[H.](F,G)

}
b5(n,m,H,Q).

In Lemma 2, if G = F , then E(T ) = 1/2, but the variance of T still depends

on F through the ranking process. In addition to the equality of G = F , if the

ranking process is perfect, the variance of T is distribution free.

Corollary 1. If the ranking process is perfect and F = G then for any n ≥ 1,

m ≥ 1, H ≥ 1 and Q ≥ 1,

γ(HQ)(F, F ) =

H∑
h=1

Q∑
q=1


H∑
i=h

Q
(
H
i

)(
Q−1
q−1

)
(H +Q)

(
H+Q−1
q+i−1

)


2

, τ[..](F, F ) =
HQ

2
,

θ(F, F ) =
1

3
, γ(.Q)(F, F ) =

H2Q(2Q+ 1)

6(Q+ 1)
, γ(H.)(F, F ) =

Q2H(2H + 1)

6(H + 1)
,

η(H)(F, F )=
H∑

h=1

H∑
i=h

H∑
j=h

Q
(
H
i

)(
H
j

)
(2H+1)

(
2H
i+j

) , η(Q)(F, F )=

Q∑
q=1

Q∑
i=q

Q∑
j=q

H
(
Q
i

)(
Q
j

)
(2Q+1)

(
2Q
i+j

) ,
σ2n,m,(H,Q)(F, F ) =

√
n+mAn,m,(H,Q)(F, F ) +

√
n+mBn,m,(H,Q)(F, F ),

where the round brackets in subscripts indicate that within-set ranking process is

perfect.
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The result has that, under a perfect ranking assumption, the variance of the

rank sum statistic under H0 in JPS setting is distribution-free as is the Bohn-

Wolfe statistic in RSS setting, but it has additional terms due to the random

nature of the sample size vectors N and M. For large sample sizes, the results

of Lemma 2 can be simplified. Let n0 be the minimum of n and m and λ =

limn0→∞ n/(n+m).

Corollary 2. As n0 goes to infinity, σ2n,m,[H,Q](F,G) reduces to

σ2λ,[H,Q](F,G) =
{
H2Qθ(F,G)− γ[.Q](F,G)

} 1

(1− λ)H2Q

+
{
HQ2θ(G,F )− γ[H.](F,G)

} 1

λQ2H

under any consistent ranking scheme, and to

σ2λ,(H,Q)(F, F ) =

{
1

3
− 2Q+ 1

6(Q+ 1)

}
1

1− λ
+

{
1

3
− 2H + 1

6(H + 1)

}
1

λ

under a perfect ranking scheme.

Here the asymptotic variance of the rank sum statistics in a JPS sample is

the same as the variance of the rank sum statistics in a ranked set sample in Bohn

and Wolfe (1992), but equivalence may require large sample sizes. To inspect the

rate of convergence, we plotted An,m,(H,Q)(F, F ) and Bn,m,(H,Q)(F, F ) against

n+m in Figure 1. The dashed and solid horizontal lines are the limiting values of

Bn,m,(H,Q)(F, F ) and An,m,(H,Q)(F, F ), respectively. In Figure 1, An,m,(H,Q)(F, F )

converges to zero very rapidly, while the convergence of Bn,m,(H,Q)(F, F ) to its

limit is not as fast. Equivalence between JPS and RSS rank sum statistics may

require relatively large sample sizes.

We now look at the limiting distribution of T when, in theX- and Y -samples,

ranks and sample size vectors are random variables. In the construction of the

limiting distribution, we then need to pay attention to random behavior of the

sample sizes.

Lemma 3. Let (Xi, Ri); i = 1, . . . , n, and (Yj ,Wj); j = 1, . . . ,m, be JPS samples

from the X- and Y -sample distributions, respectively. Assume that F = G. As

n and m grow large,

√
n+m(T − 1

2
) =

√
n+m

{ H∑
h=1

n∑
i=1

IhxI(Ri = h)

dnNh
(1− F (Xi)− τ̄[h.](F, F ))

}

+
√
n+m

{ Q∑
q=1

n∑
i=1

IqyI(Wj = q)

dmMq
(F (Yj)− τ̄[.q])

}
+ op(1),
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Figure 1. The plots of An,m = An,m,(H,Q) and Bn,H = Bn,m,(H,Q) with
respect to sum of the sample sizes (n+m).

and
√
n+m(T − 1/2) converges to a normal distribution with mean zero and

variance

σ2λ,[H,Q](F, F ) =

{
1

3
− 1

H

H∑
h=1

(∫
F (y)dF[h](y)

)2} 1

λ

+

{
1

3
− 1

Q

Q∑
q=1

(∫
F (y)dF[q](y)

)2} 1

(1− λ)
,

τ̄[h.](F, F ) =
∑Q

q=1 τ[hq](F, F )/Q and τ̄[.q](F, F ) =
∑H

h=1 τ[hq](F, F )/H.

Here σ2λ,[H,Q](F, F ) is a function of F , so the null distribution of the test

statistic T is not distribution-free, even for large sample sizes, unless ranking

information is perfect or completely random. Since there is no available estimator

for the variance of T under imperfect ranking the test procedure based on T uses

σ2λ,(H,Q)(F, F ) in place of σ2λ,[H,Q](F, F ). This inflates the size of the test when

ρ < 1.

We inspected sensitivity of the test against a departure from the perfect

ranking assumption in a small scale simulation study. In the simulation study,
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Table 1. Simulated Type I error rates of rank sum test under varying degree
of ranking information.

n m H Q ρ = 1 ρ = 0.9 ρ = 0.75 ρ = 0.5
15 15 3 3 0.052 0.074 0.100 0.142
15 15 3 5 0.054 0.086 0.120 0.157
15 15 5 3 0.046 0.077 0.116 0.163
15 15 5 5 0.054 0.082 0.123 0.180
15 30 3 3 0.051 0.075 0.109 0.144
15 30 3 5 0.046 0.072 0.108 0.168
15 30 5 3 0.052 0.080 0.124 0.159
15 30 5 5 0.056 0.084 0.125 0.180
30 15 3 3 0.051 0.076 0.104 0.133
30 15 3 5 0.051 0.078 0.114 0.166
30 15 5 3 0.054 0.076 0.113 0.165
30 15 5 5 0.051 0.088 0.128 0.175
30 30 3 3 0.051 0.078 0.110 0.140
30 30 3 5 0.052 0.086 0.126 0.180
30 30 5 3 0.051 0.078 0.128 0.165
30 30 5 5 0.048 0.093 0.157 0.215

we generated JPS samples with set sizes H = 3, 5, Q = 3, 5, and sample sizes n =

15, 30, m = 15, 30. Judgment ranks were generated using the Dell and Clutter

(1972) model that assumes that each unit has a perceived size variable Ui related

to the variable of interest Xi through a bivariate distribution. The bivariate

distribution can be constructed in different ways. Let X = (X∗
1 , X2, . . . , XH)

be an H-dimensional random vector from the underlying distribution F having

variance σ2X , where X∗
1 is the measured unit and X2, . . . , XH are the unmeasured

units in a set in a JPS sample. We generate another H-dimensional random

vector ϵ = (ϵ1, . . . , ϵH) from a normal distribution with mean zero and variance

σ2ϵ , and add X and ϵ to have

U = X + ϵ, (2.1)

where random vector U is conditionally independent for a given value of X.

This model creates independent pairs of random vectors, (U1, X
∗
1 ), (U2, X2), . . .,

(UH , XH), with correlation coefficient ρ, where ρ = 1/
√

1 + σ2ϵ /σ
2
X . Units are

ranked based on perceived sizes, U1 · · ·UH , and the rank of U1 is recorded as

judgment rank for the measured observation X∗
1 . The quality of ranking infor-

mation is controlled by the correlation coefficient ρ between the perceived size

(U) and response variable (X).

In the simulation study, we used ρ = 1 (perfect ranking) and ρ = 0.9, 0.75, 0.5

(imperfect ranking). The simulation size was 5,000. Table 1 indicates that the
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rank sum test achieves its nominal size (0.05) under perfect ranking information

when ρ = 1.0, but the size of the test is inflated under even the minor ranking

error ρ = 0.9. Simulated type I error rates are around 0.08 when ρ = 0.9 and

jump to between 0.10 and 0.21 when ranking information is between ρ = 0.75

and ρ = 0.5. The main reason here is that the variance of the rank sum test

statistic is inflated under imperfect ranking, var(
√
n+mT ) = σ2λ,[h,Q](F, F ) >

σ2λ,(H,Q)(F, F ). Since the rank-sum statistic uses σ2λ,(H,Q)(F, F ) as a variance,

even though it is not the correct value under imperfect ranking, the test statistic is

inflated and yields the larger type I error rates. One could estimate σ2λ,[h,Q](F, F )

from the data and use this estimate to construct the test statistic. We find

this approach unappealing since we would need to estimate a large number of

judgment class parameters and some of these judgment classes may have very few

observations. Another approach is to use the bootstrap distribution to compute

the p-value of test statistic.

3. Rank Sum Test Based on Stratification

This section introduces a distribution-free test for any n > 1 and m > 1

under any consistent judgment ranking scheme. The proposed test extends the

Fligner and MacEachern (2006) rank sum test from ranked set sampling design

to a JPS setting. Here it is assumed that the set sizes H and Q in the X- and

Y -samples are equal (H = Q), but the sample sizes n and m can be different.

Let

Tω =

H∑
h=1

ωhIhxJhxIhyJhyTh,h,

where
∑H

h=1 ωhIhxIhy = 1. The test statistic Tω is a linear combination of

rank sum statistics of nonempty strata. The coefficient ωh depends only on

the sample size vectors (N1, . . . , NH) and (M1, . . . ,MH). The weights ωh are

chosen to minimize the conditional variance of Tω given the rank vectors of

the X- and Y -samples. If ω = 1/dnm, we write T1 = Tdnm ,where dnm is the

number of non-empty matching judgment classes from the X- and Y -samples,

dnm =
∑H

h=1 IhxIhy.

There are clear differences between the rank sum test statistics T and Tω.

The test statistic T makes nm comparisons by comparing allX-observations with

all Y -observations, but Tω compares only the X- and Y - observations from the

same judgment class. Thus, Tω makes N1M1+· · ·+NHMH comparisons between

the X- and Y -sample observations. One might think that the test based on the

statistic Tω may have lower power than the test based on the statistic T , but

the loss of efficiency is not very large. Fligner and MacEachern (2006) showed

that these test statistics have the same efficiency under random ranking in a
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two-sample ranked set sample. Under perfect and imperfect ranking information

these two statistics are nearly equal, which of them performs better depends

on the underlying distribution. We provide some preliminary results on the

distributional properties of Tω.

Lemma 4. Let (Xi, Ri); i = 1, . . . , n, and (Yj ,Wj); j = 1, . . . ,m, be two JPS

samples with a consistent ranking scheme with H = Q. If F = G, then for any

n > 1, m > 1, and a ≥ 0, b ≥ 0,

E(
I1xI1yJ

a
1xJ

b
1y

d2nm
)

=

k∗∑
k=1

t∗∑
t=0

(
H−1
k−1

)(
H−k
t

)
Hn+mk2


n−k−t+1∑

n1=1

k+t−1∑
j=1

(−1)j−1

(
k+t−1

j − 1

)(
n

n1

)
(k+t−j)n−n1

na1

×
u∗∑
u=0

(
H−k−t

u

)m−k−u+1∑
m1=1

k+u−1∑
i=1

(−1)i−1

(
k+u−1

i− 1

)(
m

m1

)
(k+u−i)m−m1

mb
1

}
,

where k∗ = min(n,m,H), u∗ = min(m− 1, H − k − t), t∗ = min(n− 1,H − k).

Lemma 5. Let (Xi, Ri); i = 1, . . . , n, and (Yj ,Wj);j = 1, . . . ,m, be two JPS

samples from the X- and Y - populations. Suppose that the same ranking proce-

dure is used in all sets.

(i) E(Tω) =
1
H

∑H
h=1

∫
{1−G[h](y)}dF[h](y).

(ii) If the null hypothesis is true (F = G), then the variance of Tω is

var(Tω) =
H

12

{
E

(
ω2
1I1xI1y
N1

)
+ E

(
ω2
1I1xI1y
M1

)
+ E

(
ω2
1I1xI1y
N1M1

)}
for any n and m.

(iii)The conditional variance of Tω, given the judgment class sample size vectors

N and M , is

var(Tω|R,W ) =

H∑
h=1

ω2
hIhxIhy(Nh +Mh + 1)

12NhMh
.

The choice of the weight

ωh,o =
IhxIhyNhMh/(Nh +Mh + 1)∑H
h=1 IhxIhyNhMh/(Nh +Mh + 1)

(3.1)

minimizes the conditional variance of Tω given the rank vectors R and W . If

To is the test statistic with optimal weight ωh,o in equation (3.1), the variance
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of To is

V (To) =
1

12

H∑
h=1

E

{
IhxIhyNhMh/(Nh +Mh + 1)(∑H
h=1 IhxIhyNhMh/(Nh+Mh+1)

)2

}
=

1

12

H∑
h=1

Ωh.

(3.2)

It is clear that the null variance of Tω is distribution-free regardless of the

quality of ranking information and the choice of the weight vector. For the

optimal weight, we need to evaluate the expectation at (3.2) and an analytic

expression for this expectation is a challenge. On the other hand, sample size

vectors N and M have multinomial distributions regardless of the quality of

the ranking information. We then estimate this expectation from a small sim-

ulation study by generating independent random vectors Ni = (N1i, . . . , NHi)

and Mi = (M1i, . . . ,MHi) from a multinomial distribution with parameters n,

(1/H, . . . 1/H) and m, (1/H, . . . 1/H). Let

ω∗
hi =

IhxiIhyiNhiMhi/(Nhi +Mhi + 1)(∑H
h=1 IhxiIhyiNhiMhi/(Nhi +Mhi + 1)

)2 , i = 1, . . . , B.

We estimate Ωh with Ω̂h =
∑B

i=1 ω
∗
hi/B, where B is selected large enough to have

a consistent estimator. Our simulation study in Section 4 indicates that B = 200

provides a reasonably good estimator for the parameter Ωh.

We now investigate the Pitman efficacies of the tests T , Tω, and To for the

location shift model G(y) = F (y −∆),

eff(T ) =
(µ′T (0))

2

var0(T )
, µT (∆) = E∆(T ),

where µ′T (0) is the derivative of µT (∆) at zero and var0(T ) is the variance of

T under the null hypothesis (Hettmansperger and McKean (2011)). Under this

shift model, G[q](y) = F[q](y −∆); q = 1, . . . , Q. It is easy to see from Lemmas

2 and 5 that

µT (∆) = E∆(T ) =

∫
(1− F (y −∆))dF (y) and µ′T (0) =

∫
f2(y)dy,

µTω(∆) = E∆(Tω)

=
1

H

H∑
h=1

∫
(1− F[h](y −∆))dF[h](y) and µ

′
Tω
(0) =

1

H

H∑
h−1

∫
f2[h](y)dy.

The efficacies of the tests, from the asymptotic null variances of test statistics in
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Lemmas 2 and 5, are then

eff(BW ) = eff(T ) =
(
∫
f2(y)dy)2

σ2λ,[H,Q](F, F )
, eff(MW ) = 12λ(1− λ)

{∫
f2(y)dy

}2
,

eff(FM) = eff(T1) = eff(To) = 12λ(1− λ)
{ 1

H

H∑
h=1

f2[h](y)dy
}2
.

The efficacy factors of BW andMF are given in Bohn and Wolfe (1992) and

Fligner and MacEachern (2006), respectively. Under perfect ranking we replace

the square brackets with parentheses. When the sample sizes n and m get large,

both the X- and Y -population JPS samples approach to a balanced ranked set

sample, with ωh,o ≈ 1/H, and statistics T1 and To yield the same asymptotic

Pitman efficacy. Since the optimal weights ωh,o approach to 1/H for large n and

m, the asymptotic null variance of T1 and To is the same as the asymptotic null

variance of the simple random sample MW statistics

varH0(MW ) = varH0(T1) = varH0(To) =
1

12λ(1− λ)
.

The improved efficiency of T1 and To over MW then comes from µ′T1
(0) and

µ′To
(0). The statistics MW and T have the same slope for the local power, but

they have different null variances.

The asymptotic Pitman relative efficiency of a test T1 with respect to a test

T2 is

RE(T1, T2) =
eff(T1)

eff(T2)
.

Table 2 provides the asymptotic Pitman relative efficiencies of To = T1 with

respect to T and MW for H = Q = 2, 3, 4, 5. We also provide RE(T,MW )

in the last column of Table 2 for comparison purposes. Relative efficiencies are

evaluated for standard normal, Student’s t-distribution with 3 degrees of freedom

(t(3)), and uniform distributions under a perfect ranking scheme. The proposed

testing procedures T1 and To are asymptotically better than MW procedures

for all distributions in Table 2, the amount of improvement depending on the

underlying distribution.

4. Finite Sample Comparisons

In this section, we compare the performance of the testing procedures T1,

To, and T based on JPS, TFM based on RSS, and MW based on simple random

samples in finite sample settings. Our simulation study considered a variety of

set sizes, sample sizes, and underlying distributions; the JPS and RSS samples

were constructed under a wide range of quality of ranking information, ranging
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Table 2. Asypmtotic Pitman relative efficiencies of T1 = To with respect to
T and MW .

Dist H RE(T1, T ) RE(T1,MW ) RE(T,MW )
Normal 2 0.986 1.479 1.5
Normal 3 0.976 1.952 2.0
Normal 4 0.969 2.421 2.5
Normal 5 0.963 2.889 3.0

t(3) 2 0.931 1.396 1.5
t(3) 3 0.901 1.802 2.0
t(3) 4 0.885 2.213 2.5
t(3) 5 0.876 2.627 3.0

Uniform 2 1.185 1.778 1.5
Uniform 3 1.280 2.560 2.0
Uniform 4 1.337 3.344 2.5
Uniform 5 1.376 4.128 3.0

from perfect to random ranking. For all tests the critical values were obtained

from a simulation under the null hypothesis to match their type I error rates at

α = 0.05.

Data sets were generated from the standard normal, t(3), and uniform (0, 1),

using the additive perceptual-error model (Dell and Clutter (1972), Fligner and

MacEachern (2006)). The construction of this model is given in Section 2. In

each case we tested the null hypothesis H0 : ∆ = 0 against Ha : ∆ > 0. The

∆ parameter was taken to be ∆ = 0, 0.1, 0.2, . . . , 1. The quality of ranking

information was controlled by the correlation coefficient between the Ui and Xi

in model (2.1), using ρ = 1 for perfect ranking, and ρ = 0.9 and ρ = 0.75 for

imperfect ranking. For a fourth probability model, the data sets were generated

from the Weibull distribution with gamma perception. This is a non-additive

perceptual model suggested by Fligner and MacEachern (2006). The model is

parametrized based on

X|θ ∼Weibull(θ, β) and U |X ∼ gamma(uX, 1),

where θ and uX are the shape parameters of Weibull and gamma, respectively,

and β is the scale parameter of the Weibull distributions. The quality of ranking

information is governed by the parameter u: the larger the u better the ranking.

For θ = 1, the correlation coefficient betweenX and U is ρ = 1/
√

1 + 1/u. Equiv-

alently, we select the parameter u for a given value of ρ, u = ρ2/(1− ρ2). In this

model we first generated a random vector X = (X∗
1 , X2, . . . , XH) of size H from

Weibull(1, β) and then generated another random vector U from gamma(uX, 1),

where the first component of X, X∗
1 , is considered as the measured observation

in a set in the JPS sample. The components of vector U were ranked and the
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Figure 2. Power plots of five tests based on statistics T , Tω = T1, To, MW
and FM .

rank of U1 was taken as the judgment rank for the measured observation X∗
1 .

The Weibull is an asymmetric distribution. In this model, the X-sample data

were generated with βx = 1 and the Y -sample data were generated with βy > 1.

We tested the null hypothesis H0 : βy = βx against the alternative βy > βx,

equivalent to testing H0 : F
s
= G against H0 : F

s
> G, where F =Weibull(1, βx)

and G =Weibull(1, βy).

The power curves of the tests T , To, T1, FM , and MW are given in Figures

2 and 3 with each power curve computed based on 5,000 iterations. Each panel

shows five power curves: the solid line is for T , short-dashed line is for T1, dotted

line is for To, the dashed-dotted line is for MW , and long-dashed line is for

FM . The lowest power curve in these panels belong to MW , as expected. Since

the ranking process in an RSS sample induces stronger data structure, the FM

test is slightly more efficient than T1, T0, and TBW for small samples (n=m=9,

H=3), but the loss of efficiency in test Tω is not that large. For large sample

sizes (n = m = 24 and n = m = 36), all RSS and JPS tests appear to have
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Figure 3. Power plots of five tests based on statistics T , Tω = T1, To, MW
and FM .

similar efficiencies. In this case, JPS sample has smaller probability of having

empty judgment classes and in the limit it becomes an RSS sample. For the

uniform distribution, while the power curve of FM is still the highest, the power

curve of T1 lies in between those of To and T . The power curve of MW is

the lowest. These results are consistent with Pitman efficiency results except

that To is slightly more efficient than T1 for the uniform. Table 2 has To and

Tω with the same Pitman asymptotic efficiency, though the panels in Figure 2

show higher powers for To. This is a finite sample effect. The optimality of

To is established based on the minimization of the finite sample variance of the

conditional distribution of Tw given the sample size vectors N and M . Even

though they asymptotically have the same efficiency, their efficiencies differ for

finite sample sizes, as in the uniform.

Figure 3 presents the power curves of the five tests for Student’s t-distribution

with 3 degrees of freedom and Weibull distributions. The power curves for T ,

FM , T0 for the t-distribution appear to be identical and slightly higher than
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the power curves of T1. The same pattern holds for the Weibull distribution: T ,

T1, To, and FM have almost identical power curves and are all above the power

curve of MW test based on an SRS sample.

The size of the test T is usually inflated under imperfect ranking unless

its critical region is simulated under the null hypothesis. The tests T1 and To
are distribution free and achieve their nominal sizes for any sample sizes n and

m. The simulation study has the proposed distribution-free test To preferable

over T and MW since its null distribution does not depend on the underlying

distribution, it has almost the same power as the power of the test T , and always

higher power than the power of MW .

5. Example

A pilot study was conducted by the researchers at the Horticulture Research

International and the University of Kent in 1997 to investigate the efficiency of a

ranked-set sample design over a simple random sample design. Murray, Ridout,

and Cross (2000) provided a detailed description of the pilot study and reported

that an RSS design had a significant amount of efficiency gain over an SRS

design in the estimation of a population mean. The experiment compared the

coverage of spray deposits on the leaves of apple trees under two sprayer settings.

The researchers sprayed two plots of nine trees with a water-soluble fluorescent

tracer at 2% concentration. The trees in the first plot was sprayed at a high

volume with a coarse nozzle sprayer setting to produce large droplet sizes on the

surface of the leaves. The second plot of nine trees was sprayed at a low volume

with a fine nozzle sprayer setting to produce small droplet sizes. Twenty-five

sets of five leaves (125 leaves) were sampled from the middle five trees in each

plot. The leaves in the sets were inspected by four observers, independently,

under an ultraviolet light to rank the percentage of upper- and lower-surface

area coverage (%Cover) of the spray deposits. The measurement for %Cover was

made by using an image analysis (Optimax V). The experiment was run for two

randomizations and a total of 125 leaves were measured for each treatment. The

precise measurement of %Cover is a time-consuming and and expensive process,

so subjective ranking provided additional information to improve the statistical

inference. Murray, Ridout, and Cross (2000) also measured the amount of spray

deposit (Deposit) for all leaves in each set to identify the true rank of the leaves,

hence to evaluate the ranking accuracy of the four rankers. The true amount of

deposit was measured by washing the leaf surface with 5mL (mili-liter ) of water

and measuring the relative concentration of tracer deposit.

We use %Cover on the upper surface area of the leaves as the variable of in-

terest and only the ranking information of the first ranker. We treated 125 mea-

surements (from first randomization) from the coarse and fine-treatment groups
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as the X- and Y - sample populations, respectively. For the location shift between

the X and Y populations, The Hodge-Lehman estimate is 0.051. The variances

(σ2x, σ
2
y) of the populations are σ2x = 0.0132 and σ2y = 0.0262. Using the popula-

tions, we simulated many SRS and JPS samples of sample size n = m = 15, 25

and set size H = Q = 3, 5, and compared the empirical powers of the testing

procedures T , T1, To, and MW . The first part of the simulation looked at the

type I error rates of the tests under the null hypothesis for a two-sided test. Test

statistics were computed after subtracting ∆ from each Y -population sample ob-

servations. The critical regions for the tests were computed from the normal

approximation to the null distributions of the test statistics. The second part of

the simulation considered the power of the tests. Here the Y-population observa-

tions were not centered so that shift parameter (alternative hypotheses) between

X- and Y - population was 0.051.

To draw a JPS sample we used the Dell-Clutter perceived size model. For

this data set, the perceived sizes were not observable so we first need to link

the ranking quality of the observer to the correlation coefficient ρ in the Dell-

Clutter model. Fligner and MacEachern (2006) reported that the average value

of the Kendall tau distance between the observer’s ranking and the true ranking

was 1.48 for coarse nozzle setting and 1.40 for the fine nozzle setting. They

also simulated the Dell-Clutter model with set size 5, ρ = 0.9, and the normal

distribution, and reported the average Kendal tau distance between the perceived

ranks and true ranks as 1.43 based on 10,000 replication. The Dell-Clutter model

with ρ = 0.9 can generate the JPS data by approximately matching the ranking

quality in RSS data in Murray, Ridout, and Cross (2000). We first took a simple

random sample of n leaves with replacement. For each selected leaf, Xi; i =

1, . . . , n, another H − 1 leaves were sampled from the remaining leaves to form

a set Xi = (X∗
i , X2, . . . , XH), of size H, where X∗

i is the measured observation

in the set Xi. A random vector, ϵi = (ϵ1, . . . ϵH), of size H was generated from

the normal with variance τ2ϵ = σ2x(1− ρ2)/ρ2. Vectors Xi and ϵi were added to

form the perceived size vector U i = Xi + ϵi. The components of the vector U i

were ranked and the rank of U1 in U i was taken as judgment rank of X∗
i . The

JPS sample for the Y -population was constructed in similar fashion.

We simulated 10,000 JPS and SRS data from the X− and Y -populations

with sample size n = m = 15, 25, set size H = Q = 3, 5, ρ = 1, 0.9, 0.75 and

∆ = 0, 0.051. Since we were sampling with replacement from a finite population,

ties were possible among the sampled units, we broke them at random when they

existed. The empirical powers of T , T1, To, and MW are presented in Table 3.

For a two-sided level 0.05 test, the rejection regions of the tests T1, To, and MW

are approximately equal to the nominal type I error rate (0.05) under the null

hypothesis, regardless of the quality of ranking information. While the testing
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Table 3. Simulated empirical powers of the tests T , T1, To, andMW from the
apple tree experiement in Murray, Ridout, and Cross (2000). The simulation
size is 10,000.

n m H ρ = 1 shift T Tw1 Topt MW
15 15 3 1.00 0.000 0.044 0.039 0.040 0.059
15 15 3 0.90 0.000 0.080 0.044 0.048 0.063
15 15 3 0.75 0.000 0.102 0.047 0.050 0.064
15 15 5 1.00 0.000 0.049 0.036 0.047 0.062
15 15 5 0.90 0.000 0.088 0.038 0.045 0.060
15 15 5 0.75 0.000 0.130 0.042 0.050 0.059
15 15 3 1.00 0.051 0.280 0.278 0.307 0.216
15 15 3 0.90 0.051 0.313 0.240 0.262 0.217
15 15 3 0.75 0.051 0.325 0.208 0.227 0.220
15 15 5 1.00 0.051 0.307 0.329 0.378 0.217
15 15 5 0.90 0.051 0.346 0.251 0.290 0.209
15 15 5 0.75 0.051 0.376 0.204 0.231 0.226
25 25 3 1.00 0.000 0.042 0.037 0.042 0.052
25 25 3 0.90 0.000 0.068 0.037 0.038 0.054
25 25 3 0.75 0.000 0.103 0.042 0.043 0.053
25 25 5 1.00 0.000 0.042 0.035 0.038 0.059
25 25 5 0.90 0.000 0.088 0.033 0.037 0.055
25 25 5 0.75 0.000 0.151 0.040 0.043 0.056
25 25 3 1.00 0.051 0.505 0.494 0.519 0.314
25 25 3 0.90 0.051 0.502 0.424 0.445 0.317
25 25 3 0.75 0.051 0.507 0.363 0.384 0.314
25 25 5 1.00 0.051 0.608 0.587 0.651 0.316
25 25 5 0.90 0.051 0.588 0.457 0.518 0.325
25 25 5 0.75 0.051 0.586 0.353 0.401 0.318

procedure T yielded the nominal type I error rates under the null hypothesis

for ρ = 1, it had inflated error rates for ρ < 1. For the power comparisons, we

ignored the test T because it is not valid under imperfect ranking.

Powers of the tests T1 and To, and MW , when the shift parameter was

∆ = 0.051, were consistent with the simulation results in Section 4. The test

(To) based on optimal weight yielded the highest power. The power of MW test

gave the lowest power, as expected. The type I error rates of To and T1 were not

effected by the quality of ranking information.

6. Concluding Remark

A judgement post-stratified sample has been shown, in many contexts, to

yield desirable properties over a simple random sample. A JPS sample provides

additional information in the form of judgment ranks associated with measured

observations, allowing one to construct more powerful tests and more accurate
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estimators. We considered two issues in developing inference in JPS sample. The

first is that a JPS sample is prone to produce empty judgment classes and, if the

statistics are not properly adjusted, the validity of the statistical inference is in

question. The secondly, many procedures rely heavily on perfect ranking. It is

then important to develop inferential procedures that are robust against ranking

error and the presence of empty judgment classes.

This article develops a class of two-sample test procedures that are robust

against the presence of ranking error and empty judgment classes. All tests in this

class achieve their nominal levels regardless of the quality of ranking information

and the degree of imbalance in the JPS samples (including the empty judgment

classes). Tests are distribution-free for all set and sample sizes. Within this class,

we construct an optimal test procedure by assigning a weight that depends on

the judgment class sample sizes. This test provides a substantial improvement

over a Mann-Whitney-Wilcoxon test based on a simple random sample.
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