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Abstract: Failure time data collected from fielded systems provide indirect informa-

tion about the performance of the system’s components. Since it is often difficult

to create or simulate field conditions in laboratory settings, the process of drawing

inferences about component characteristics from data on system performance is of

practical importance. However, there is very little literature on this problem that

treats such inferences from a nonparametric perspective, and less literature still that

allows the systems of interest to be of arbitrary design. The present paper focuses

on nonparametric estimation of a common component reliability function using

independent samples from coherent systems of varying design whose components

have independent, identically distributed lifetimes. Two estimation approaches are

studied. The first is conventional, and is based on treating each of the estima-

tion problems separately; it is shown that these mixture estimators are consistent,

and their asymptotic behaviours are characterized. The second estimator is quite

unconventional. It is obtained by solving multiple point-wise maximum likelihood

estimation problems simultaneously, and combining the separate estimators, each

at fixed time points, to obtain an overall estimator of the reliability function. We

show that the latter approach produces a legitimate reliability function and that,

asymptotically, it is uniformly superior to all the estimators of the first type. Re-

lated estimators of the lifetime density and failure rate functions are also obtained,

and their theoretical and numerical properties are described.

Key words and phrases: Coherent system, component reliability, density estima-

tion, failure rate estimation, inverse problem, local likelihood, maximum likelihood,

nonparametric estimation, reliability polynomial, survival function, system design.

1. Introduction

1.1. Motivation and context

Estimating the reliability of the components in an engineered system is im-
portant in engineering practice. The data obtained on the performance of fielded
systems is the most relevant source of data for such estimation, as laboratory
experiments on individual components often fail to simulate the environment
in which the components are actually used. The problem treated here has the
essential features of an inverse problem, as the goal is to invert the functional
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relationship between system and component reliabilities in order to gain insight

into the behaviour of the components. Solutions to such problems have appeared

in the reliability literature, but the approach we take to these problems differs

from previous work in important respects.

First, unlike most previous work, we take a fully nonparametric approach to

the problem. Further, while earlier work tends to focus on special system designs

(e.g., series or parallel systems), our approach allows for the systems from which

lifetime data are obtained to be of arbitrary design, subject only to the standard

assumption that the systems be coherent, that is, that a system’s performance be

monotone in its components’ performance and that every component be relevant.

In the estimation problems considered here, we make the realistic assumption that

only system lifetime data are available, that is, there is no auxiliary information

on component performance. Finally, we treat data from multiple systems of

varying design.

Our core assumptions are as follows. It is assumed that a random sample

of lifetimes is available from each of m ≥ 2 systems having possibly different

designs, and that the m samples are mutually independent. It is also assumed

that the components of each system have lifetimes that are independent, with

a common continuous distribution function F (x) = P (X ≤ x) with survival

function F̄ (x) = 1−F (x). Under these assumptions we consider several problems:

estimation of F̄ itself and, under the assumed absolute continuity of F̄ , estimation

of the corresponding density f and of the failure rate r = f/F̄ .

Among the assumptions posited in the preceding paragraph, the assump-

tion that the lifetimes of the components of all m systems are independent and

identically distributed deserves further comment. Samaniego (2007) discusses a

variety of systems to which the assumption applies; examples include wafers or

chips in digital computers, and batteries in flashlights. Large scale applications

include the case of computer hardware that is generally referred to by the term

Raid (Patterson, Gibson, and Katz, 1988). The well documented efficiency and

speed of Raid computers has led to their widespread use. A Raid computer with

n independent disks can be designed to perform as a k-out-of-n system, which

fails upon the kth disk failure. With the aid of a randomization device, Raid

computers can be used to simulate the performance of an arbitrary coherent

system in n components with independent, identically distributed lifetimes.

1.2. Problem description

A special case of the problem of primary interest here was treated by Bhat-

tacharya and Samaniego (2010). For a coherent system comprised of n com-

ponents having independent and identically distributed lifetimes with survival

function F̄ , it is known that the relationship between the system’s reliability
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function F̄T and the reliability function F̄ of its components can be written as

F̄T (t) =

n∑
j=1

dj
{
F̄ (t)

}j
, (1.1)

where the vector of coefficients d = (d1, . . . , dn) is generally referred to as the
domination vector, following Satyanarayana and Prabhakar (1978). The domina-
tion vector d is a topological invariant that depends solely on a system’s design
and does not depend on the underlying component distribution F . For fixed t ≥ 0
we may write p = F̄ (t) for the probability that a given component is working at
time t, and we may represent the probability h(p) that the system is working at
time t as

h(p) =
n∑

j=1

dj p
j . (1.2)

The function h in (1.2) is referred to as the system’s reliability polynomial. It is
well known that h is a continuous, strictly increasing function of p ∈ [0, 1], with
h(0) = 0 and h(1) = 1.

Assume that we have a random sample consisting of the failure times of N
systems of identical design whose components have lifetimes that are indepen-
dent, with a common reliability function F̄ . Now, F̄T (t) = h

{
F̄ (t)

}
for all t ≥ 0,

and we have that the standard, asymptotically optimal estimator of F̄T , namely,
the empirical survival function, which is also the nonparametric maximum like-
lihood estimator of F̄ and is given by

ˆ̄FT,N (t) =
1

N

N∑
j=1

I(t,∞)(tj) , (1.3)

where

IA(t) =

{
1 , t ∈ A,
0 , t /∈ A .

(1.4)

It follows from the continuity and invertibility of the function h that the non-
parametric maximum likelihood estimator of the component reliability function
F̄ (t) may be obtained as

ˆ̄FN (t) = h−1
{
ˆ̄F TN

(t)
}

. (1.5)

Bhattacharya and Samaniego (2010) identify the asymptotic behaviour of
ˆ̄FN (t) as

N1/2
{
ˆ̄FN (t)− F̄ (t)

}
→ V , (1.6)

where the convergence is in distribution and the random variable V has a normal
distribution with zero mean and variance given by (

∑
idi[h

−1{F̄T (t)}]i−1)−2F (t)
F̄ (t), where d and h are specified in (1.1) and (1.2).
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In the present work we address the following more general problem. Sup-
pose that m coherent systems of arbitrary design are fielded, where each system
is based on components whose lifetimes are independent and a have common dis-
tribution F , and suppose that a random sample of lifetimes is drawn from each
system. Specifically, for i = 1, . . . ,m, let Ti1, Ti2, . . . , TiNi be independent and
identically distributed random variables with distribution FTi . If the ith system
has ni components and domination vector di, then the reliability polynomials of
the m systems are

hi(p) =

ni∑
j=1

dijp
j , i = 1, . . . ,m. (1.7)

In this circumstance, the random sample of lifetimes from each individual
system provides an avenue for consistent estimation of F̄ . Specifically, letting
ˆ̄F Ti,Ni(t) denote the empirical survival function based on lifetime data from the
ith system, we have that, for i = 1, . . . ,m, each of the estimators

ˆ̄FNi(t) = h−1
i

{
ˆ̄F Ti,Ni(t)

}
(1.8)

is a consistent, asymptotically normal estimator of F̄ (t). Indeed, every convex
combination of the estimators in (1.8) is, similarly, a consistent, asymptotically
normal estimator of F̄ (t). While this is an interesting and viable class of esti-
mators of F̄ (t), the class is not expected to contain estimators that achieve the
smallest possible asymptotic variance. We therefore extend our investigation by
taking a likelihood approach to the estimation of F̄ (t). In doing so, we shall use
a natural estimator in the class of mixtures of the estimators in (1.8) as an ini-
tial value in Newton-Raphson iterations aimed at maximizing local likelihoods.
Specifically, the estimator

ˆ̄F [1](t) =
1

N

m∑
i=1

Ni
ˆ̄FNi(t) , (1.9)

where N =
∑

iNi, is utilized as our initial estimator of F̄ .
For arbitrary m ≥ 2 the problem of finding the nonparametric maximum

likelihood estimator of F̄ has, in general, proven to be intractable. The likelihood-
based approach we take here is unconventional, proceeding locally rather than
globally. We begin by noting that, for fixed t, the estimation of the parameter
p(t) = F̄ (t) is a regular parametric problem for which the maximum likelihood
estimator of p is consistent and asymptotically normal with minimum variance.
While the maximum likelihood estimator p̂(t) of p(t) will not generally be avail-
able in closed form, it can be approximated reliably through Newton-Raphson

iterations using an initial value ˆ̄F [1](t). It is easily shown that combining this

collection of estimated p(t)s yields a legitimate reliability function ˆ̄F [2](t) that
estimates the true component reliability function F̄ (t) for all t ≥ 0.
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In Theorem 1, we obtain the asymptotic distribution of the estimator ˆ̄F [2](t),
assuming that, for i = 1, . . . ,m, Ni → ∞ in such a way that Ni/N → bi > 0,
where b = (b1, . . . , bm) is an m-dimensional probability vector. Further, we inves-
tigate the asymptotic behaviour of the class of general mixtures of the individual
estimators in (1.8), putting us in a position to prove the asymptotic domination

of the likelihood-based estimator ˆ̄F [2](t) over this natural class of competitors.
Many applications of reliability theory involve the use of parametric models

for the lifetimes of components of systems. In such applications, the estimation
problems that arise tend to be focused on estimating the probability density
function f of the components under study. This of course is usually accomplished
through estimation of the finite-dimensional parameter that defines the model of
interest. This work motivates us to extend our investigation to the problem of
density estimation. Our results in this area will enable a reliability practitioner
to obtain an estimate of the shape of the true density function before a decision
is made about whatever parametric model might be under consideration. Our
investigation leads to results which state explicit conditions under which our
nonparametric estimator of f = F ′ converges to f at an optimal rate. Next, we
focus on the estimation of the failure rate r = f/F̄ . Our final theorem gives the
rate of convergence and asymptotic distribution of our proposed estimator of r.

It is worth noting that the results obtained here apply as well when sampling
lifetimes from mixed systems (i.e., stochastic mixtures of coherent systems) rather
than from coherent systems. This follows from the fact that mixed systems
are fully characterized by their reliability polynomials and thus admit the same
treatment given here to data from coherent systems. More details on mixed
systems may be found in Samaniego (2007). Further, a comment on the iid
assumption made on the component lifetimes of all the systems treated here will
help to clarify the intended applicability of this work. As noted by Navarro,
Samaniego, and Balakrishnan (2011), this assumption ensures the identifiability
of the component reliability function F , while even in the quite direct extension to
the assumption of independent but not identically distributed (inid) component
lifetimes, component lifetimes are not identifiable parameters of the distribution
of system lifetimes.

1.3. Literature review

A number of authors have studied the estimation of a component lifetime dis-
tribution F from system failure times in the presence of additional information.
An early example is Moeschberger and David (1971), who treat the estimation
problem in a competing risks framework. Meilijson (1981) and Bueno (1988)
consider the estimation of F based on system failure times together with au-
topsy statistics on the systems’ components. System failure times have also been
employed in the estimation of F in the sampling scenario usually referred to
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as “masked data”. In this version of the problem, it is typically assumed that

one has access to data on system failure times, possibly accompanied by partial

information on the component failures that were responsible for the failure of

the system. Authors who have studied the estimation of component characteris-

tics from masked data include Miyakawa (1984), Usher and Hodgson (1988) and

Guess, Usher, and Hodgson (1991).

Estimation of the component lifetime distribution from system failure time

data also arises in other contexts. Boyles and Samaniego (1986) derived the non-

parametric maximum likelihood estimator of the underlying component distribu-

tion based on nomination sampling, that is, sampled maxima from independent

samples; such a collection may be thought of as a sample of failure times from

independent parallel systems of varying sizes. See also Boyles and Samaniego

(1987). Inference about the underlying distribution F based on ranked set sam-

pling, a sampling approach equivalent to the observation of independently drawn

order statistics, has been treated by Stokes and Sager (1988) and by Kvam and

Samaniego (1993a,b, 1994). A ranked set sample may be viewed as a set of

independent lifetimes from k-out-of-n systems with varying k and n.

Much of the work cited above makes parametric assumptions about the com-

ponent reliability F̄ . The assumption of exponentiality is the most prevalent,

although other models, notably the Weibull distribution, have also been studied.

None of the work cited in the preceding two paragraphs treats the case of general

systems. There is, of course, a substantial literature on nonparametric inference

in reliability. Recent relevant papers from this literature include Balakrishnan,

Ng, and Navarro (2011a), Balakrishnan, Ng, and Navarro (2011b), Chahkandi,

Ahmadi, and Baratpour (2014) and Eryilmaz (2011).

The present paper proceeds as follows. Estimation of the reliability function

F̄ , its density f and its failure rate r is treated in Section 2. Theoretical results

on the asymptotic behaviour of our estimators are stated in Section 2, with most

of the formal proofs relegated to the Appendix. In Section 3 we illustrate the

performance of the proposed estimators on simulated data and discuss simulation

results aimed at approximating each estimator’s integrated squared error. Our

estimators of F̄ , f and r are shown to perform well even for samples of moderate

size.

2. Methodology and its Basic Properties

2.1. Estimation of the lifetime distribution

We use notation introduced in Section 1, writingm for the number of systems

with different designs and assuming that a random sample of lifetime data has

been recorded for each system. All m systems are assumed to operate solely

with components whose lifetimes are independent with common distribution F .



ESTIMATING COMPONENT RELIABILITY USING LIFETIME DATA 1319

The components’ reliability function 1− F is denoted by F̄ . The available data
consist of a random sample of Ni system lifetimes Ti1, . . . , TiNi for i = 1, . . . ,m.

To estimate F̄ we begin with a collection of indicator functions which track
whether or not a given system survives beyond time t. Let hi, defined in (1.2),
be the reliability polynomial of system i, and let

Xi(t) =

Ni∑
j=1

I(t,∞)(Tij) , (2.1)

where the indicator function I is as defined in (1.4). Since Xi(t) has the Binomial
Bin{Ni, hi(p)} distribution, where p = p(t) = F̄ (t), we can write the likelihood
for data from the ith system as

Li{p,Xi(t)} =

(
Ni

Xi(t)

)
{hi(p)}Xi(t) {1− hi(p)}Ni−Xi(t) .

Here and below we typically suppress the argument of p(t). The likelihood L of
the entire dataset is of course the product of the individual likelihoods above:

L(p, t) =
m∏
i=1

Li{p,Xi(t)} =
m∏
i=1

(
Ni

Xi(t)

)
{hi(p)}Xi(t) {1− hi(p)}Ni−Xi(t) . (2.2)

The maximum likelihood estimator of p(t) = F̄ (t), denoted by p̂(t), is ob-
tained by maximizing L(p,X(t)) with respect to p, typically by numerical means
such as the Newton-Raphson algorithm. We initialize the Newton-Raphson al-

gorithm using the estimator ˆ̄F [1] in (1.9), which in turn is based on the system-

specific estimators ˆ̄FNi , defined in (1.8) for 1 ≤ i ≤ m. If the estimators p̂(t) are
combined, for all t > 0, the result is a step function, to be designated as F̄[2](t),

with at most N =
∑

1≤i≤m Ni jump points.

We can view ˆ̄F [1] as a member of a larger class of estimators having the form

ˆ̄Fk(t) =

m∑
i=1

ki
ˆ̄FNi(t) , (2.3)

where k = (k1, . . . , km), which in practice would depend on N1, . . . , Nm as in
equation (1.9), is a vector of nonnegative components that have the property∑

i ki = 1, and ˆ̄FNi is as in (1.8).
Theorem 1 below is proved in the Appendix, and asserts that the estimator

ˆ̄F [2] is a proper survival function, that ˆ̄F [2] is strongly consistent for F̄ , and that
ˆ̄F [2] is superior to ˆ̄F [1] in terms of asymptotic statistical performance. Indeed,
ˆ̄F [2] is superior to any estimator ˆ̄Fk having the form in (2.3).



1320 PETER HALL, YIN JIN AND FRANCISCO J. SAMANIEGO

In establishing this property of ˆ̄Fk we assume that

(2.4.1) k1, . . . , km are nonnegative functions of {Ni} satisfying∑
i ki = 1,

(2.4.2) N1, . . . , Nm all diverge as N → ∞.
(2.4)

We make the following assumption throughout our theoretical work:

(2.5.1) each hi is a reliability polynomial of a coherent system,
(2.5.2) the component lifetime distribution is nondegenerate.

(2.5)

Our reference to consistency, and other asymptotic properties, in Theorem 1
and in subsequent theoretical results, pertains to properties as N =

∑
i Ni di-

verges, and in particular, we consider each Ni to be a function of N .

Theorem 1. Assume that (2.5) holds. Then: (a) ˆ̄F [2](t) is a non-increasing,

right-continuous function which satisfies the conditions ˆ̄F [2](0) = 1 and ˆ̄F [2](∞) =

0; (b) with probability 1, ˆ̄F [2](t) converges to F̄ (t), uniformly in t ∈ [0,∞]; and

(c) if (2.4) holds then ˆ̄F [2] is asymptotically superior to any estimator ˆ̄Fk having

the form in (2.3), and in particular to ˆ̄F [1], as an estimator of F̄ , in the sense that

the asymptotic variance of ˆ̄F [2] does not exceed that of ˆ̄F [1]. The estimators ˆ̄F [1]

and ˆ̄F [2] of F̄ are asymptotically equivalent at t if and only if each h′i{F̄ (t)} ̸= 0
and

ki = C
Ni

N

h′i{F̄ (t)}2

hi{F̄ (t)} [1− hi{F̄ (t)}]
(2.6)

for i = 1, . . . ,m, where C = C(t) > 0 is chosen so that
∑

i ki = 1.

Since the choice of {ki} given by (2.6) involves the unknown function F̄ ,
there is no practical way of obtaining a mixture estimator with such coefficients.

We shall show in the Appendix that ˆ̄F [2] is asymptotically normally dis-

tributed, and we note that the precursor ˆ̄F [1] also has that property. In that
work, and in Theorems 1 and 2 in the present section, it is assumed that m, the
number of systems, is kept fixed as N diverges.

2.2. Estimation of the lifetime density and failure rate

Our estimator of the lifetime distribution F = 1− F̄ is of course F̂ = 1− ˆ̄F .
We can estimate the corresponding density, f = F ′, by passing a kernel smoother
through F̂ :

f̂(x) =
1

w

∫
K

(
x− y

w

)
dF̂ (y) , (2.7)

where w > 0 is a bandwidth and K is a kernel function.
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An appropriate bandwidth can be determined empirically, as follows. Fit

a plausible model to the data, for example a Weibull or even an exponential

model, using a conventional parametric approach such as maximum likelihood or

even the method of moments. Then, by numerical simulation from that model,

determine the bandwidth w that would minimize integrated squared error,

ISE(w) =

∫ {
f̂(x |w)− f(x)

}2
dx , (2.8)

if the model were correct. Here, to express the fact that f̂ is a functional of w,

we have denoted it by f̂( · |w).
In our numerical work, which involves simulating from non-exponential Weibull

models, we shall use the exponential distribution as the model for bandwidth

choice, to emphasize that in practice the model used does not have to be a par-

ticularly good fit to the data. The methodology that we are employing here is

a generalization, to the present problem, of a technique that is already widely

used for density estimation in much simpler settings than ours. There, the fitted

model is referred to as the reference distribution, and it is typically taken to be

normal with its mean and variance equal to those of the data; see e.g. Silverman

(1986, pp. 45ff, 86f).

The main properties of f̂ will be given in Theorem 2, below. Further, we

note that, once we have estimators f̂ of f and ˆ̄F [2] of F̄ , we can construct an

estimator r̂ = f̂/ ˆ̄F [2] of the failure rate, r = f/F̄ . We shall show in the Appendix

that ˆ̄F [2] converges to F̄ at rate N−1/2, and it will follow from Theorem 2 that,

even if the bandwidth is chosen optimally, f̂ converges to f at a strictly slower

rate than that at which ˆ̄F [2] converges to F̄ . In fact, the convergence rate for f̂

is w2+(Nw)−1/2, and since w → 0 as N → ∞ then w2+(Nw)−1/2 converges to

zero more slowly than N−1/2. Therefore the convergence rate of r̂ to r is really

that of f̂ to f .

Indeed, it will follow from Theorem 2 that, under the assumptions there,

r̂(t) = r(t) +
f̂(t)− f(t)

F̄ (t)
+ op

{
w2 + (Nw)−1/2

}
. (2.9)

A central limit theorem for r̂ is readily proved from (2.9) and the central limit

theorem for f̂ given in (2.13): r̂ − r is asymptotically normally distributed with

bias of the form κ2w
2 f ′′/(2 F̄ ) and variance of the form (Nw)−1 τ2N/F̄ 2, where

κ2 =
∫
u2K(u) du and

τN (t)2 = κ f(t)

m∑
i=1

Ni

N

ai{F (t)}2

cN{F (t)}2
h′i{F (t)} . (2.10)
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As a prelude to stating Theorem 2 we note the following assumptions on f ,
K and w:

(2.11.1) K is a bounded, symmetric, compactly supported prob-
ability density, and has a bounded derivative on the real line,
(2.11.2) w = w(N) → 0 as N → ∞, at a rate that is sufficiently
slow to ensure that (Nw)−1 (logN)2 → 0 as N → ∞,
(2.11.3) f has first two bounded, continuous derivatives in a
neighbourhood of t, and f(t) > 0.

(2.11)

If (2.11.1) holds then the quantities κ =
∫
K(u)2 du and κ2 are finite and

positive. Condition (2.11.1) encompasses most kernels that are used in practice,
except for the standard normal density, which can be addressed by making minor
modifications to our proof. Likewise, (2.11.2) is conventional, since it covers all
cases where w → 0 and Nw → ∞ at polynomial rates, and (2.11.3) is the
standard second order assumption used in theory for density estimation. If we
ask only that the first two derivatives of f be bounded, without the requirement
of continuity asserted in (2.11.3), then Theorem 2 continues to hold provided we
replace the relatively concise term (1/2)κ2w

2 f ′′(t) in (2.13) by simply O(w2);
then we may of course drop the op(w

2) term.
Define

ai(p) =
h′i(p)

hi(p) {1− hi(p)}
, cN (p) =

m∑
i=1

Ni

N

h′i(p)
2

hi(p) {1− hi(p)}
. (2.12)

If (2.5) and (2.11) hold, then τN (t) in (2.10) is bounded away from zero and
infinity as N → ∞.

Theorem 2. Let t be such that 0 < F (t) < 1, and assume that (2.5) and (2.11)
hold. Then,

f̂(t)− f(t) =
1

2
κ2w

2 f ′′(t) + (Nw)−1/2 τN (t)ZN (t) + op
(
w2

)
, (2.13)

where, for each t, the random variable ZN (t), is asymptotically distributed as
normal N(0, 1).

The (1/2)κ2w
2 f ′′(t) term on the right-hand side of (2.13) is the conventional

asymptotic bias for a kernel estimator of f . However, while the error-about-the-
mean term in (2.13), i.e. (Nw)−1/2 τN (t)ZN , is of the same order of magnitude
as its counterpart for a standard kernel estimator with the same sample size and
bandwidth, it generally has larger variance in the case of (2.13).

An immediate corollary of (2.13) is that f̂ has asymptotic mean squared
error of order (Nw)−1 + w4, which is minimized by taking w of size N−1/5.
That in turn implies a mean square convergence rate of O(N−4/5). This rate



ESTIMATING COMPONENT RELIABILITY USING LIFETIME DATA 1323

Figure 1. Three five-component systems.

of convergence is optimal for estimating densities with two derivatives. Stan-
dard methods for establishing the performance of bandwidth selectors could be
adapted to prove that, in this problem, the bandwidth suggested earlier in this
section asymptotically minimizes the order of magnitude of ISE(w), in (2.8).

A proof of Theorem 2 is deferred to the Appendix.

Theorem 3. Under the asumption of Theorem 2,

r̂(t)−r(t) =
1

2
κ2w

2 f
′′(t)

F̄ (t)
+(Nw)−1/2 τN (t)ZN (t)

F̄ (t)
+op{w2+(Nw)−1/2} , (2.14)

where the random variable ZN (t) is asymptotically distributed as normal N(0, 1).

3. Discussion and Numerical Results

The purpose of the present section is to address two practical questions:
(i) What can be said about the performance characteristics of the proposed es-
timators when the available sample sizes are small to moderate? (ii) What can
be said about the global, rather than pointwise, performance of the proposed
estimators as the finite sample size is moderately but steadily increased? We
have examined these questions via simulation, and provide a brief commentary
on our findings.

We shall be especially brief about the results on typical fits of our estimators
in small to moderate samples. Figure 2 below show typical results obtained

from fitting the estimator ˆ̄F to F̄ , based on simulated samples of size 30 from
m = 3 systems, all assumed to have components with iid lifetimes and a common
distribution F . Schematic diagrams of these three systems from which lifetime
data were drawn are shown in Figure 1.

For each of the systems above, a sample of thirty iid system lifetimes were
generated from four commonly used lifetime distributions. In our simulations
the parametric models used as component distributions F were: an exponential,
an IFR Weibull, a DFR gamma and a lognormal distribution. Typical fits of the
estimator to the true distribution are displayed in the panels of Figure 2. The
specific models employed in the runs displayed here are Exp (1), Weibull (2, 1),
Gamma (0.5, 2) and Lognormal (0.5, 1).
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Figure 2. Plot of ˆ̄F (t), represented by the unbroken line, and F̄ (t), repre-
sented by the dotted line, from simulated system lifetimes under four models
for F̄ (t).

Figure 3. Plot of f̂(t), represented by unbroken line, and f(t), represented
by the dotted line, from simulated system lifetimes for F = Gamma (10, 0.5)
or Weibull (5, 1.5).
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Table 1. Estimated truncated integrated squared error (TISE), based on
approximately optimal bandwidth choice, for varying sample sizes.

N1 = N2 = N3 TISE of ˆ̄F TISE of f̂ TISE of r̂
30 0.0013 0.0267 14.3220
35 0.0010 0.0248 8.1653
40 0.0009 0.0223 6.0183
45 0.0008 0.0210 3.8107
50 0.0007 0.0210 2.8070
55 0.0006 0.0184 2.3740
60 0.0006 0.0184 1.9263
65 0.0005 0.0169 1.3720
70 0.0005 0.0164 1.2190
75 0.0004 0.0164 1.2398
80 0.0004 0.0150 1.1393
85 0.0004 0.0150 0.9908
90 0.0004 0.0141 0.9913
95 0.0004 0.0140 0.8010
100 0.0003 0.0139 0.8310

Similar results were found for our proposed density estimator based on sam-
ples of size 50 from these same three systems. The panels of Figure 3 show
typical runs when 50 iid lifetimes were drawn from the Gamma (10, 0.5) and
Weibull (5, 1.5) distributions for component lifetimes. The bandwidth w was
chosen to minimize the integrated squared error using the empirical approach,
based on the reference distribution discussed in Section 2.

Turning our attention to global performance measures for the proposed es-
timators, we calculated, from 1,000 replicated simulation runs, the median in-
tegrated squared error of each of the estimators. Results are tabulated below
as the number of sampled system lifetimes, taken to be equal for each of the
three systems in Figure 1, grew from 30 to 100. The integrated squared error
was calculated between the 5% and 95% percentiles of an underlying Weibull
distribution, since, as expected, the density estimator performs poorly in the
tails of the distribution. We shall therefore refer to the approximated integral as
truncated integrated squared error.

It can be seen from Table 1 that integrated squared error decreases steadily
as the number of samples in each system increases from 30 to 100.
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Appendix

A.1. Central limit theorem for ˆ̄F

Theorem A.1, below, asserts that, for N sufficiently large, ˆ̄F [2](t) is approx-

imately normally distributed with mean F̄ (t) and variance σ2
[2]{F̄ (t)}/N , where

σ2
[2](p) = cN (p)−1 and cN (p) is as in (2.12). The theorem also gives a uniform

bound for the distance between ˆ̄F [2] and F̄ . As noted above Theorem 1, asymp-

totic properties are stated in the context of large N , where N =
∑

i Ni. We

consider each Ni to be a function of N .

Theorem A.1. Assume that (2.5) holds. Then (a) for each t ∈ (0,∞),

N1/2 { ˆ̄F [2](t)− F̄ (t)}/σ[2]{F̄ (t)} is asymptotically normal N(0, 1), and (b) if, in

addition to (2.5), f = F ′ exists and is bounded away from zero and infinity on

an open subset O of the real line, ˆ̄F − F̄ admits the following uniform bound on

every compact subinterval T of O:

sup
t∈T

∣∣ ˆ̄F [2](t)− F̄ (t)
∣∣ = Op

{(
N−1 logN

)1/2}
.

Similarly it can be proved that if (2.5) holds then the precursor ˆ̄F [1](t)

of ˆ̄F [2](t) is approximately normally distributed with mean F̄ (t) and variance

σ2
[1]{F̄ (t)}/N , where

σ2
[1](p) =

m∑
i=1

Ni

N

hi(p) {1− hi(p)}
h′i(p)

2
.

In the remainder of this section we give abbreviated proofs of Theorems 1,

2 and A.1.

A.2. Proof of part (b) of Theorem 1.

Since both ˆ̄F [2] and F̄ are increasing, uniformly bounded functions then the

uniform convergence claimed in part (b) of Theorem 1 follows if we establish

pointwise convergence.

If ˆ̄F [2](t) is not strongly consistent for F̄ (t) then there exists a deterministic

subsequence S of values of N such that, first, each Ni/N has a proper limit, bi

say, as N → ∞ through S, and secondly, ˆ̄F [2](t) does not converge to F̄ (t) almost

surely as N diverges through S. We shall confine attention to N ∈ S, and argue

by contradiction.

Since ˆ̄F [2](t) does not converge almost surely to F̄ (t) as N → ∞ through S
then there exists ϵ > 0 such that

P
{∣∣∣ ˆ̄F [2](t)− F̄ (t)

∣∣∣ > 2 ϵ fasl N ∈ S
}
> 2 ϵ , (A.1)
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where the abbreviation “fasl” means “for all sufficiently large”. Cases where
ˆ̄F [2](t) is arbitrarily close to 0 or 1 can be dismissed using a subsidiary argument,

and so (A.1) implies that, for constants a and b satisfying 0 < a < b < 1,

P
{∣∣∣ ˆ̄F [2](t)− F̄ (t)

∣∣∣ > ϵ and a ≤ ˆ̄F [2](t) ≤ b fasl N ∈ S
}
> ϵ . (A.2)

We interpret p as a particular value of that quantity, for example the solution

p = ˆ̄F [2](t) of D(p) = 0 (as in Section 2), where

D(p) =
m∑
i=1

{
Xi(t)

hi(p)
− Ni −Xi(t)

1− hi(p)

}
h′i(p) , (A.3)

Xi(t) is as in (2.1), and hi is the ith reliability polynomial in (1.2). As N → ∞
through S, D(p)/N converges almost surely to

d∞(p) =
m∑
i=1

bi

{
F̄Ti(t)

hi(p)
− 1− F̄Ti(t)

1− hi(p)

}
h′i(p) ,

uniformly in p ∈ [a, b], where F̄Ti is the reliability function for a generic lifetime

Ti from the ith system. Now, F̄Ti(t) = hi{F̄ (t)} for i = 1, . . . ,m, and so

d∞(p) =

m∑
i=1

bi

[
hi{F̄ (t)}
hi(p)

− 1− hi{F̄ (t)}
1− hi(p)

]
h′i(p) , (A.4)

which of course equals 0 if p = F̄ (t). Therefore, if p = ˆ̄F [2](t) is interpreted as

the solution of D(p) = 0, then we can deduce from (A.2) that

d∞(p) = 0 for at least one p ∈ (0, 1) for which p ̸= F̄ (t) . (A.5)

However, since hi is an increasing function then the term within braces in (A.4)

is a decreasing function of p, and therefore d∞ also has this property. This

result, and the fact that each hi is a proper reliability polynomial, imply that the

equation d∞(p) = 0 has a unique solution. Therefore it is not possible for (A.5)

to be true, and so the initial assumption that ˆ̄F [2](t) does not converge to F̄ (t)

almost surely must have been false.

A.3. Proofs of Theorem 1 (a) and (c) and of Theorem A.1(a)

Part (a) of theorem 1 may be deduced from the following considerations:

The fact that p̂(t) is a step function follows from the fact that the likelihood

function L(p, t) in (2.2) is constant between consecutive observed system life-

times. To see that it is non-increasing, let tj < tj+1 be observed system lifetimes.
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Then the ratio L(p, tj+1)/L{p̂(tj), tj+1} may be written as L(p, tj)/L{p̂(tj), tj}
×gi(p)/gi{p̂(tj)} for some i ∈ {1, 2, . . . ,m}, where, for x ∈ [0, 1], gi(x) = {1 −
hi(x)}/hi(x). Since these functions {gi} are strictly decreasing, it follows that

L(p, tj+1) < L{p̂(tj), tj+1} ≤ L{p̂(tj+1), tj+1} for all p > p̂(tj),

which immediately implies that ˆ̄F [2](tj+1) ≤ ˆ̄F [2](tj). Finally, since 0 < tj < ∞
for 1 ≤ j ≤ N , ˆ̄F [2](0) = 1 and ˆ̄F [2](∞) = 0. Before treating part (c) of

Theorem 1, we will derive part (a) of Theorem A.1. In the arguments below, if

NN is a random variable, and aN > 0 and bN are real numbers depending on

N , we say that “NN is asymptotically normally distributed with mean bN and

variance a2N” to signify that (NN−bN )/aN is asymptotically normally distributed

with zero mean and unit variance.

Let p0 = F̄ (t) ∈ (0, 1) be fixed, and recall that Xi(t) and cN (p) are defined in

(2.1) and (2.12), respectively. The derivative with respect to p of the logarithm

of L{p,Xi(t)}, the latter defined in (2.2), is given by D(p) in (A.3), and can be

shown by Taylor expansion to equal

N1/2 cN (p0)VN (p0)−N cN (p0) (p− p0) +Op

{
N1/2 |p− p0|+N (p− p0)

2
}
,

uniformly in p such that |p− p0| ≤ ϵ if ϵ > 0 is sufficiently small, where

VN (p) =
1

N1/2 cN (p)

m∑
i=1

ai(p) {Xi(t)−Ni hi(p)} . (A.6)

Equivalently, defining δ = δ(p, p0) = N1/2 (p− p0), we have that

D(p)

N1/2 cN (p0)
= VN (p0)− δ +Op

(
N−1/2 |δ|+N−1/2 δ2

)
, (A.7)

uniformly in p in a neighbourhood of p0. Using the fact that the variables

Xi(t) are independent sums of independent, uniformly bounded random vari-

ables, it can be proved from (A.6), using Lyapounov’s central limit theorem,

that N1/2 cN (p0)VN (p0) is asymptotically normally distributed with zero mean

and variance equal to the sum of the variances, i.e. to

m∑
i=1

Ni ai(p0)
2 hi(p0) {1− hi(p0)} . (A.8)

Since p = ˆ̄F [2](t) is the solution of the equation D(p) = 0 when p0 = F̄ (t), it

follows from (A.7) that the corresponding version of δ equals VN (p0)+op(N
−1/2),

and therefore that N1/2 { ˆ̄F [2](t) − F̄ (t)} is asymptotically normally distributed
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with zero mean and variance equal to cN (p0)
−2 multiplied by the quantity in

(A.8). That is, part (a) of Theorem A.1 holds.

Next we establish part (c) of Theorem 1. Recall the definition of ˆ̄Fk in (2.3):

ˆ̄Fk(t) =
m∑
i=1

ki
ˆ̄FNi(t) =

m∑
i=1

kih
−1
i

{
ˆ̄F TiNi(t)

}
=

m∑
i=1

kih
−1
i

{
1

Ni

Ni∑
j=1

I(t,∞)(Tij)

}
.

Using this formula, Taylor expansion and Lyapounov’s central limit theorem, it

can be proved that a suitably standardized version of ˆ̄Fk(t) is asymptotically

normal. More specifically, one may show that

√
N{ ˆ̄Fk(t)− F̄ (t)} D→ Y ∼ N

(
0, σ2

k(t)
)
,

where

σ2
k(t) =

m∑
i=1

k2i
bi

Ai{F̄ (t)}, (A.9)

with

Ai(p) =
hi(p) {1− hi(p)}

h′i(p)
2

, p = p(t) = F̄ (t)

and bi equal to an m-dimentional probability vector, with bi > 0 for all i, as

discussed in the penultimate paragraph of Section 1.2. With the understaning

that p = p(t) = F̄ (t), one can deduce from part (a) of Theorem A.1 that

σ[2](t)
2 =

{
m∑
i=1

bi
Ai(p)

}−1

≤ σk(t)
2 , (A.10)

where the inequality follows from following property, derived using the Cauchy-

Schwarz inequality:

1 =
m∑
i=1

ki =
m∑
i=1

ki

{
Ai(p)

bi

bi
Ai(p)

}1/2

≤
{
σk(t)

2
m∑
i=1

bi
Ai(p)

}1/2

.

Part (c) of Theorem 1 follows directly from (A.10). Note that ˆ̄F [1] is a special case

of ˆ̄Fk, and that, if ki is defined by (2.6), then in view of (A.9), σ2
k(t) = σ2

[2](p), still

with p = F̄ (t). This establishes that aspect of part (c) of Theorem 1 pertaining

to (2.6).

A.4. Proof of part (b) of Theorem A.1

In the argument below we take a < b to be such that P = [a, b] is a subset of

{F̄ (t) : t ∈ O}, where O is the open set mentioned in the statement of part (b)
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of Theorem A.1. Furthermore, we let P ′ denote a regular grid of B points in the

compact interval P, with edge width asymptotic to a constant multiple of N−k

as N increases, where k will be chosen large but fixed. Thus, B is asymptotic to

a constant multiple of Nk.

Let D1(u, p) denote the value taken by D(p) in (A.3) when, in that formula,

we replace the pair (p, t) by (u, F̄−1(p)). Let u = p1, which can be interpreted

as representing a particular value of p̂ (a stochastic function of p), denote the

solution of the equation D1(u, p) = 0, and put δ = N1/2 (p1 − p). The quantity

p1 is defined uniquely since D(p) is a decreasing function of p. Define Xi[p] =

Xi{F̄−1(p)}. Recall that N =
∑

i Ni and that cN (p) is as defined at (2.12). Note

that, by Taylor expansion,

ai(p1) = ai(p) + (p1 − p) bi(p) +O
(
|p1 − p|2

)
,

uniformly in i, in p in any compact subinterval of the open subset O of [0, 1],

and in |p1 − p| ≤ ϵ, where ϵ > 0 does not depend on p, and the function bi is

defined by

bi = a′i =
h′′i hi (1− hi) + 2 (h′i)

2 hi − (h′i)
2

{hi (1− hi)}2
. (A.11)

Define

WN (p) =
1

N1/2 cN (p)

m∑
i=1

bi(p) {Xi(t)−Ni hi(p)} ; (A.12)

this is the same as the definition of VN (p) at (A.6), except that we replace ai
on the right-hand side there by bi here. Recalling that the functions hi, being

polynomials, and the functions ai, which are rational functions of polynomials,

are smooth, we deduce by Taylor expansion that:

D1(p1, p) =

m∑
i=1

ai(p1)
[
Xi[p] {1− hi(p1)} − {Ni −Xi[p]}hi(p1)

]
=

m∑
i=1

{ai(p) + (p1 − p) bi(p)}
{
Xi[p]−Ni hi(p)−Ni (p1 − p)h′i(p)

}
+Op

{
N (p1 − p)2

}
=

m∑
i=1

ai(p) {Xi[p]−Ni hi(p)} − (p1 − p)
m∑
i=1

[
Ni ai(p)h

′
i(p)

− bi(p) {Xi[p]−Ni hi(p)}
]
+Op

{
N (p1 − p)2

}
= N1/2 cN (p1)VN (p)− (p1 − p)

{ m∑
i=1

Ni ai(p)h
′
i(p)
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−N1/2 cN (p1)WN (p)

}
+Op

{
N (p1 − p)2

}
= N1/2 cN (p1)VN (p)−N cN (p) (p1 − p)

+Op

{
N (p1 − p)2 + (N logN)1/2 |p1 − p|

}
, (A.13)

uniformly in p in any compact subinterval of the open subset O. (The appearance

of the logN factor, on the last right-hand side, will be addressed in the subsequent

five paragraphs; see the argument below (A.15) and (A.16).) Dividing both

sides of (A.13) by N1/2 cN (p1), noting that p1 solves D1(p1, p) = 0, and putting

δ = N1/2 (p1 − p), we deduce that

0 =
D1(p1, p)

N1/2 cN (p1)
=VN (p)− δ +Op

[{
N1/2 cN (p1)

}−1
{
N (p1 − p)2

+ (N logN)1/2 |p1 − p|
}]

.

Hence, since cN (p) is bounded away from zero and infinity as N → ∞,∣∣VN (p)−δ
∣∣ = Op

{
(p1−p)2+(logN)1/2 |p1−p|

}
= Op

{
N−1/2 (logN)1/2

}
, (A.14)

which implies part (b) of Theorem A.1.

The logN factor, noted in the previous paragraph, derives from the fact that

sup
a≤p≤b

|WN (p)| = Op

{
(logN)1/2

}
. (A.15)

To derive (A.15) observe first that, using (2.11.3) [that is, assumption (2.11.3)

in condition (2.11)], we can deduce that if p′ is the point in P ′ nearest to p ∈ P,

then, for a constant C1 > 0 not depending on p, it can be shown as in the next

two paragraphs that

|WN (p)−WN (p′)| ≤ C1

{
N−1 +N−1/2

m∑
j=i

∣∣Xi[p]−Xi[p
′]
∣∣}

= Op

(
N−1/2

)
, (A.16)

for all p ∈ P, using the above definite of p′ as a function of p.

To derive (A.16) in detail, go back to the definition (A.12) of WN (p), from

which it follows that

N1/2 |WN (p)−WN (p′)|

=

∣∣∣∣ 1

cN (p)

m∑
i=1

bi(p) {Xi(t)−Ni hi(p)} −
1

cN (p′)

m∑
i=1

bi(p
′) {Xi(t)−Ni hi(p

′)}
∣∣∣∣
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≤
∣∣cN (p)−1 − cN (p′)−1

∣∣ m∑
i=1

|bi(p′)| |Xi(t)−Ni hi(p
′)|

+ cN (p)−1
m∑
i=1

|bi(p)− bi(p
′)| |Xi(t)−Ni hi(p

′)|

+ cN (p)−1
m∑
i=1

|bi(p)|Ni |hi(p)− hi(p
′)| . (A.17)

Exploiting the smoothness of the polynomials hi, and of bi and cN in terms of

hi (see (A.11) and (2.12)), we deduce that if C > 0 is given then k, in the first

paragraph of this proof, can be chosen sufficiently large to ensure that

sup
p∈P

[∣∣cN (p)−1 − cN (p′)−1
∣∣+ max

1≤i≤m

{
|bi(p)− bi(p

′)|

+ |hi(p)− hi(p
′)|
}]

= O
(
N−C

)
. (A.18)

Let Si denote the smallest spacing between adjacent values of Tij , for indices

j in the range 1 ≤ j ≤ Ni such that Tij ∈ F−1(P). Using (2.11.3) it can be

shown, as we do below, that, for a constant C2 > 0,

P
{
|Xi[p]−Xi[p

′]| ≤ 1 for all p ∈ P
}
≥ P

(
Si > C2N

−k
)
= 1−O

(
N−k Ni

)
as N → ∞. This result is derived by, first, using the probability transform to

switch from spacings of the distribution of the ith system lifetimes to spacings

of the exponential distribution on [0,∞), and then applying a standard result on

properties of exponential spacings (see e.g. Sections I.6 and III.3 of Feller, 1966,

or Sections A.2–4.4 of Pyke, 1965). Therefore,

P
{
|Xi[p]−Xi[p

′]| ≥ 2 for some i = 1, . . . ,m and some p ∈ P
}

≤
m∑
i=1

P
{
|Xi[p]−Xi[p

′]| ≥ 2 for some p ∈ P
}

= O

(
N−k

m∑
i=1

Ni

)
= O

(
N−k+1

)
.

It follows that

P
{

max
1≤i≤m

sup
p∈P

∣∣Xi[p]−Xi[p
′]
∣∣ ≤ 1

}
→ 1 . (A.19)

Result (A.16) follows from (A.17), (A.18) and (A.19).
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Bernstein’s inequality implies directly that, for all p ∈ P and all sufficiently
large C3 > 0,

P
{
|WN (p)| > C3 (logN)1/2

}
≤ 2 exp

(
− C4C

2
3 logN

)
= 2N−C4 C2

3 ,

where C4 > 0 does not depend on C3. Therefore,

sup
p∈P

P
{
|WN (p)| > C3 (logN)1/2

}
≤ 2N−C4 C2

3 . (A.20)

Choosing C3 so large that C4C
2
3 > k, we deduce from (A.20) that

sup
p∈P

P
{
|WN (p)| > C3 (logN)1/2

}
= o

(
N−k

)
. (A.21)

Since the grid P ′ has edge width asymptotic to a constant multiple of N−k then
#P ′ = O(Nk), and so the bound (A.21) implies that

P

{
sup
p∈P ′

|WN (p)| > C3 (logN)1/2
}

= o(1) . (A.22)

The desired result (A.15) follows from (A.16) and (A.22).

A.5. Proof of Theorem 2

It can be shown from (A.14) that

f̂(t) = − 1

w

∫
K ′(u) F̂ (t− wu) du

= f(t) + 1
2 κ2w

2 f ′′(t)−QN (t) +Op

{
(Nw)−1 logN

}
+ o

(
w2

)
, (A.23)

where

QN (t) =
1

N1/2w

∫
K ′(u)VN{F̄ (t− wu)} du; (A.24)

to derive (A.23), we use the compactness of the support ofK. In view of (2.1) and
the definition of VN (p), formula (A.24) defines QN (t) as a sum of independent
random variables, and so var{QN (t)} can be computed explicitly. Starting from
that formula, after lengthy calculations it can be proved that

(Nw)2 var{QN (t)} = κw f(t)

m∑
i=1

Ni
ai{F (t)}2

cN{F (t)}2
h′i{F (t)}+ o(w) . (A.25)

Asymptotic normality of QN (t), with mean zero and asymptotic variance given
by (A.25), can be proved using Lyapounov’s theorem. This result and (A.23)
imply Theorem 2.

A.6. Proof of Theorem 3

The result of Theorem 3 follows from (2.9) and Theorem 2.
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