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Supplementary Material

In this supplementary document, we first provide detailed proofs for Step 1 to Step
4 required in proving Theorem 2.1. At the end of this document we prove Theorem 2.1,

which is Step 5 in the main paper.
Lemma S1. Under the assumptions of Theorem 2.1,

Nu=o,(s71). (S.1)
Proof: Note that

Ynt1 — B =—-su and yni2—8=-28+su=(2r+s)u. (S.2)

From the constraint in (A.1), we have

n+2
0= Z w;(yi — sz Yi ) + Wnt1(—su) + wpt2(2r + s)u.

As u is the direction of —f hence the unit vector, multiplying both sides by u’ we obtain

$(Wnt1 — Wnt2) szu )+ 2rwpte = 11 + L.

Consider I first. By the Holder inequality and the fact that > . w? < > | w; <

L) < (wa)l/Q(Zu 5)/u)1/2

1=

vi(wsm) " = 0,(vm).

—
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The last equality follows from the assumption 2 in Theorem 2.1 and the facts that all the
cigenvalues of A ( Jiang (2004), Xiao and Zhou (2010)) and + " | z;z; (Bai and Yin
(1993)) are bounded from above and from below by positive constants in probability,

hence ¢y < ||S1]| < Cp in probability for some ¢y and Cy.

Consider I. Let

20 T% _

n

r

(xS (x—p) =2 i(zi %)z — 2)/),12. (S.3)
By Theorem 1 of Pan and Zhou (2011),

2 =cpy(1—cp)t 4+ 0, (1/y/n). (S.4)
Thus I = O,(1). Therefore,

$(Wn+1 — Wnt2) = Op(Vn). (S.5)

It follows from (2.4), (A.2), (A.6) and (A.9) that

_ _  $(Wns1 — W :o( )—>o. S.6
1—sNu 1+ 2r+s)Nu s St = wnt2) P\ s (5:6)
For any € > 0, if s\'u > ¢, then
1 1 1 1
>0,

_ > _
1—sVu 14+ @2r+s)Vu " 1—€¢ 1+e
which would contradict (S.6). Similarly, s\'u < —e would also lead to a contradiction.

Hence, |sA'u| < € in probability for any ¢ > 0 which implies

Nu=o,(s7h).

Lemma S2. Under the assumptions of Theorem 2.1,

Il = 0p(s71/2), max|N(yi = 8)] = 0, (1/%). (87)

i<n
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Proof: Let A = pf, where p = ||A||. From the model assumption (2.3) in Theorem 2.1,

we have almost surely,

m<ax|0’(yi -B)? = m<ax|9’A*1lev\2 <|0'ATIIT(A1)9) m<ax|z;zi\

P
SK.pI%af‘p_lz(z?j—l)‘—i-Kp (S.8)

j=1

= 0p(n).
Here (and in what follows) K denotes a constant which may change from line to line and
z;; are the i.i.d components of z;. In the last step, we apply Lemma 5.2 in the appendix
of the main paper with X;; = z - and o = 8 = 1. By equation (S.2) and Lemma S1, we

also have

N (ne1 = B) = [sXu| = 0p(1),  [N(Yns2 = B)| = [(2r + s)Nu| = 0p(1).  (S.9)

Recalling the identity (A.3) 712 —¥=8 __ — 0, by the formula —— =1 — 2
=1 1+X(y:—B) T+ 1+;E

and the fact that Z?Jrf yi=> 1,y =0, we have
n+2 n+2 n+2
Nyi — —B)'o
0=S"_AWi=h) Ny
LN S MRS sl T

n+2 - ,9
= (n+2)r\Nu— p? Z 1 " )f();y— ﬁf) ,

then, via (S.9)

n+2 ., P20y By — B
| n rAtul = ; L+ Ny — B)

P* i 0'(yi = B)(yi — B)'0 + 5°(0'w)* + (2r + 5)*(0'n)?
n 1—|—pm<ax|9’(yi—ﬁ)|+\s)\’u|+|(2r+s))\’u|

Y

y p20'S,0
= 1+ 0p(1) + pmax|0(y; — B)|

It follows that
p?0'S10 — p(1 + o(1))|rNu| max 16'(y:i — B)] < (1+ 0p(1))|rA ul. (5.10)

We claim that p = 0,(s~!/2). If not, suppose that lim inf p\/s > 0. Then, |r\'ul max |0 (y:—
n—oo
B)|/p = 0p(1) due to (S.1), (S.8) and the condition (2.4) "‘F — 0in Theorem 2.1. So we
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have 1p26’S16 < |rA'u| from (S.10), which results in p = 0,(s~!/2) since 6'S10 > ¢ in
probability and A'u = 0,(s™!) from Lemma S1. This leads to a contradiction. Therefore
1M = p = 0p(s71/2). (S.11)

Combining (S.8) with (S.11), we have

y: — B)| = . v — B)| = n
max X (y: = B)| = A - max|0'(y; = B) = 0, (1.

Lemma S3. Under the assumptions of Theorem 2.1, we can improve the estimate of A

to

1M = 0p(s™). (5.12)

Proof: Let y; — 8 = kju+ r;, where k; = (y; — 8)'u and r; = (y; — 8) — k;u, for
i=1,2,...,n+2. Thus u'r; = 0. By (S.2), we note that r, 1 = r,,12 = 0. Since the
matrix Sy is of full rank with probability one due to p/n — ¢ < 1, span{y; — 8,i =
1,2,...,n} = RP with probability one. Hence there exist ay, ..., a, with probability one
such that

0= ar(y1 — B) + as(ys — B) + -+ an(yn — B). (5.13)

Substituting y; — 8 = k;u + r; into (S.13), we have
n
0 = (Zaiki>u+a1r1+-~-+anrn. (814)

i=1

Multiplying (S.14) by u’ and ', respectively, we obtain
o = Z aik;,
i=1
1= ( Z aiki>0'u + Z ai9/ri.
i=1 i=1

Thus,
1/2

1 (S ak)| = | St < | St Sy
i=1 i=1 =1 i=1

Suppose that the following two relations are true,

En:a? = O,(1/n). (S.15)
i=1
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n

Z(Q’ri)Q = 0,(n?/s%). (S.16)

i=1

Then under the condition (2.4) in Theorem 2.1, we obtain

W6 =" aiki| = o,(vn/s) “2 1. (S.17)
i=1
From Lemma S1, we have |Nu| = ||A|| - |¢'u| = o0,(s™!) and hence ||| = o,(s™!) via

(S.17). It remains to prove (S.15) and (S.16).

We first prove (S.15). Recalling y; — 3 = A~1T'z;, from (S.13) we have
A0 =a1I'zy +asl'zg + - + a,I'z,.

Hence,

9’A’A9 = (Z aifzi)/(z aini)
i=1

i=1
=trI'T Z a? + Z a?(z1'T'z; — trI'T) + Z a;a;z;1"T'z; (5.18)
i=1 i=1 i#j
= J1+ Jo+ Js.

It’s easy to see J; # 0, otherwise all a;’s will be zero, which would imply that the unit
vector @ is zero from expression (S.13), a contradiction. We next show that J; is the

dominant term. Let z; = (%1, ...,2in) and I'T = (95).

Var(Jy) = EJ3 =Y atE() (25 — Dk + Y _ zinziedre)”

i=1 k=1 k#t
= Z ai B(Y (25 — 1)*0% + Z Zi 7 Okt D)
i=1 k=1 k#t
= af((pa—3)Y_ 0%, +2rI'TT'T) < (ug — Dtr(D'TTT) > af,
i=1 k=1 i=1

and
Var(Js) = EJZ = EZ Z aiajasaz,'T'z;2.1'T'z,
i#£] s#t

=2> alaltr(I'TT'T).
i#]
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Hence

Ja Var(Jz) _ pa—1 trI'TT'T S al K

Pll5] )= V5 L

LI7)ETRe ST wrreE L ar o n

and
TV ala?
P(‘ﬁ‘ >E) - Vm;(Jg) _ 2 tI'TT'T szf’ a5 §5—>0.
Ji J2e2 e )2 (X, a?)? " n

Therefore, Jo/Jy Ly 0, Js/J; Ly 0, as n — oo. By (S.18), we have 0'A’A0 =
trI'T Y0 a?(1 4 op(1)). Since € is a unit vector, ||A’A| (Jiang (2004)) is bounded

from above in probability and ¢rI"T'T'T" > cp for some positive constant c,
Za = 0p(1/n).

Let us turn to (S.16). By the definition of k;, Y., y; = 0 and 8 = —ru, we first

have

n+2 n+2

Zrl = Z yi—8) — Z ku= (n+2)ru— (n+ 2)ruu’u = 0. (S.19)

i=1 i=1

Also, note that k; = (y; — 8)'u and y; are standardized so that
S kiri=> kz((yz -B) - km)
i=1 i=1
= vi-B)yi—Bu->_ kiu
i=1

=1

- ((n—l)Ip—i—n,Bﬁ’)u ( ; k)

i=1
= ((n—l + nr? —ikf)u

Since u and r; ¢ = 1,...,n are orthogonal, we have

> kiri =0. (S.20)
=1

Rewriting the constraint (A.3) on the Lagrange multiplier A as

n+2 ) n+2 n

kiu r;

_ yi— B _
0_;14'/\'(}’1‘—/6) _;1+/\'(yz‘—ﬂ)+;1+)\’(yi—ﬁ)’
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since u and r;,i = 1,...,n are orthogonal, we also have
— =0 S.21
D ) (5:21)
By (S.19), (S.20), (S.21) and applying the equality 1iz = 1— 17 in the following second

and fourth equalities, we have

B n 0'r; , 0'r; N (yi — B)
Zl+/\' Zar’ 214-)\/(372'_5)

__Z k;0'r; N a _i 0'r; \Nr;
1+ N(yi-B) Z 1+ XN(yi—B)

/! i /
7721'{:9/1‘1)\/ +Zk9rz)\u)\ ﬁ)

14+ XN(yi —B)
O'r; NN (y; — B)
_ / i
Zﬁr)\rﬂ—z 1+)\’y—5)
ki0'r:0' (y; — (0'r:)* N (yi — B)
_ I —_—
—)\UPZ 1+/\,(y — pz rz Z 1+>\/(Yi*5) :

i=1 i=1
If p = ||A|| = 0, then Lemma S3 is obviously true. For p # 0, dividing both sides by p

and by Holder’s inequality, Lemma S1, Lemma S2 and (S.8) we have

n

S = a3 BT = 8) | S @) (i =)

P —~ 1+XN(yi—=B) = 1+Nyi—B)
|k:6'r;]
<)\umax|t9 |Z max|)\’y )
- (0'r;)?
—|—pmax|0 |Zl eV T—T
1=1 i<n

0y (Vop (vii/) (Z Zk2)1/2+ On() Y02 - 0p(/5).

= 1=

=

Together with the observation that Y i, kZ = nu’Sju = O,(n), we get

(14 0, (/o) S0 < 0y (%) (L (0'002)
i=1

i= 1=

=

Hence, " (0'r))?|” =o0,(n/s), which concludes the proof of (S.16).
=1 P
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Lemma S4. Under the assumptions of Theorem 2.1, we have

PN = (n+2)r/2+ 0, (/) +0,(1),  p= Al = 0,(n/5?). (3.22)

Proof: By (S.2) and applying the identity 1-%95 —x + % to the constraint equality
(A.3), we have

2
= owi-8) _§T S w2 w'(y; - 8)((vi - B)'A)
Ozgngu(yrﬁ)—;u(y /\+Z 1+)\’y—6)

= (n+2)r— (nu’Sl)\ +s2Nu+ (2r + s)zA’u)

2
Wy A0 =) SvwE (s 208
+Z 1+)\’y—ﬁ) _1—8)\’u+1—(27"+s))\’u

= (n+2)r— (nu’Sl)\ + 25N + (4sr + 4r2)/\’u)

2
2wy - A) ((yz B B)/)\) (6521 + 12572 + 8r3)(Nu)?

P vy W [k D )] +

P 1—(2r+s)Nu

By Lemma S1, Lemma S3 and (S.5), we have the following estimates

(6s2r + 12572 + 8r3)(N'u)?

nu'S1A = npu'S160 = 0,(1), sNu=o0,(1), T~ (2 + )V = 0,(1),
53 (N'u)’ [(n +2) @tz — wat1)| = S2(Nu)o(s\'w),
2
((yz 5)’)\) max |u'(y; = 6) . )
’Z ey e —omaxp(y = B " S0 = onlm/n/) = o)

It follows from (S.4) and the above inequalities that
(n+2)r —25*Nu+ s>Nu - 0,(s\'u) + 0,(1) = 0. (S.23)

Since 0,(sAu) = 0,(1) from Lemma S1, we first obtain Nu = O,(n/s?). Hence via
(S.17), p = |]A| = Nu/|u'0] = Op(n/s*), which implies the second bound in (S.22).
Furthermore s?A'u-0,(s\'u) = o,(n?/s), thus from (S.23), we have s?A'u = $(n+2)r +
0p(n?/s) + 0,(1). The Lemma is proved.
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Proof of Theorem 2.1. 2(5;1/}/2(),;) - %2 =op(n/s)+o0,(1/n), as n—oo.

Proof: By (S.7) and (S.9), max, IN(y: — B)| = 0p(1). So we can use Taylor’s expansion,

—log (n+2)w; =log (1+ X (y; — B8)) = /\/(Yi_ﬁ)_%()‘/(Yi_ﬁ))Q“"% (/\’(yi—ﬁ)f—m,
(S.24)

, 4
where 7; = i(%gﬂ)) and |&;| < |N(y; — B8)]- Then by (S.7), (S.9) and Lemma S4,

jasy sNu \4  1/(2r+s)Nu\4
;m Zm (1+§+1) +1( 1+ Epro )

o N(yi = B)(yi — B)'A sAu 4 (s +2r)Nu\4
—AI ll—max|)\’(yZ B)| +K(1+op(1)> +K(m)

< Kmax [N (y;
i<n
< 0,(1)p* max |8/ (y: — B)* - - 0810+ 0,(1) - (sNw)*

Op(n4/s4).

By the formula W(8) = —23.""log ((n+2)wi) = 25" log (1+ N (yi — B)), we

have

n+2 n+2 1 n+2 n+2

—2{;)\/(}%_6)_;Z(Al(y’i_ﬂ))2+3z}< ) z::m}

1= 1=

<.

1
=2 {(n +2)rNu — %(i (X(Yz' - B)) s?(N'a)? + (s +2r)? 2)

i=1

+ ;(Zz:; ()\/(yi — 6))3 n 83<)\/u)3 —(s+ 27“) ()\/ ) 4/8

= 2{(71 +2)r\u — %(Z (X(yi — ﬂ))z +252(Nu)? + (4rs + 4r2)()\’u)2)

i=1

+§(§3(Xb%*5»3*(M%”%ng+8ﬁﬂXuf>fOAnﬁfﬂ

:2%HQMXu—§th+OM#ﬁﬁ}
(S.25)
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where by Lemma S4 and condition (2.4) the last equality follows from the fact that

n

> (Vi - 5))2 = np0'810 = 0,(n/s"), (4rs +4r>)(N'u)® = O,(n*/s?),

i=1

. 3
‘ ; (/\’(yi - ﬂ)) ‘ < Tlp3 I?gari( |0l(}’i -B)|- 0'S,0 = Op(ng\/ﬁ/(84\/§))’
(65°r + 1251 + 8r°) (N'u)® = O, (n’/s*).

By Lemma S4, multiplying (S.25) by s? and using s?XN'u = (n+2)r/2+0,(n?/s) +0,(1),

we have

sSSW(B) =2 [(n +2)rs?XNu — (s2Nu)? + Op(n4/52)]
$.26)

1 (

= i(n +2)2r2 + 0, (n®/s) + Op(n*/s?) + 0,(n?/s) + 0,(1) + 0,(n),

It follows from (S.26), (S.3) and condition (2.4) that

25°W(B) T*

(n + 2)2 n = OP(TL/S) + Op(l/n)a as n — oQ.

The proof of Theorem 2.1 is completed.



