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Abstract: The empirical likelihood is a versatile nonparametric approach to testing

hypotheses and constructing confidence regions. However it is not clear if Wilks’

Theorem still works in high dimensions. In this paper, by adding two pseudo-

observations to the original data set, we prove the asymptotic normality of the log

empirical likelihood-ratio statistic when the sample size and the data dimension are

comparable. In practice, we suggest using the normalized F (p, n − p) distribution

to approximate its distribution. Simulation results show excellent performance of

this approximation.
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1. Introduction

Empirical likelihood (EL) method, introduced by Owen (1988, 1990), has

been shown to perform remarkably well in a wide range of settings as a tool

for nonparametric and semiparametric inference. Its advantage is that EL pro-

vides nonparametric analogs of parametric likelihood-based tests and confidence

regions while keeping two key properties of the conventional likelihood: Wilks’

theorem and Bartlett correction. Applications of EL in statistical inference in-

clude the mean of a distribution, quantiles of a distribution, (censored) linear

models (Qin and Jing (2001)), partial linear models (Wang and Jing (1999)),

estimating equations (Qin and Lawless (1994)) and more.

In this paper, we focus on the EL for the population mean, an important

application. Suppose {x1, . . . ,xn} is a sample of n independent and identically

distributed (i.i.d.) p-dimensional vectors, distributed according to some unknown

distribution F . Let µ and Σ be the p-dimensional population mean vector and

the p × p positive definite population covariance matrix, respectively. The EL

ratio statistic for any hypothesized value µ0 is

Rn(µ0) = max

{ n∏
i=1

nωi : ωi ≥ 0,
n∑

i=1

ωi = 1,
n∑

i=1

ωixi = µ0

}
. (1.1)

For a fixed dimension p, Owen (1990) proved that the log EL ratio statistic

W (µ) = −2 logRn(µ)
d−→ χ2

p (1.2)

http://dx.doi.org/10.5705/ss.2013.246


1660 BINBIN CHEN, GUANGMING PAN, QING YANG AND WANG ZHOU

as n → ∞, similar to the parametric likelihood (Wilks (1938)). Here, “
d−→” means

“convergence in distribution”. Then a level-α EL confidence interval for the mean

µ is formed by the set {µ0 : W (µ0) ≤ χ2
p,α}, where χ2

p,α is the (1−α)-quantile of

the chi-square distribution with degrees of freedom p.

High dimensional data analysis has attracted widespread attention in scien-

tific areas, bringing new challenges to the EL method. One question is how to

formulate (1.2) when p tends to infinity. A natural extension of (1.2) is

1√
2p

(W (µ)− p)
d−→ N(0, 1) (1.3)

when both n and p tend to infinity, since χ2
p is asymptotically normal with mean

p and variance 2p. Hjort, Mckeague, and Van Keilegom (2009) argued that (1.3)

still holds when p = o(n1/3), under some mild conditions. Chen, Peng and Qin

(2009) provided a general rate for the dimension p, which is shown to depend on

the trace of the population covariance matrix Σ and the largest eigenvalue of Σ

but, roughly speaking, p = o(n1/2). Then a natural question is whether we can

apply the EL approach to a higher order dimensional data compared with the

sample size, say, p is proportional to n.

The answer to this is negative if one only considers the usual log EL ratio

statistic. It was pointed out by Chen, Peng, and Qin (2009) that p = o(n1/2)

is likely the best rate for p such that the log EL ratio is asymptotically normal.

When p is relatively large compared to n, care is needed with the EL approach,

e.g., to check whether there exists a solution ωi, i = 1, . . . , n to (1.1). In fact, a

solution to (1.1) exists only if the zero vector is an interior point of the convex

hull of {xi − µ, i = 1, . . . , n}. It was noticed in Tsao (2004) that for fixed p

and n with p/n > 1/2, the EL for a p-dimensional population mean breaks

down with a positive probability, so the standard EL method is not then reliable.

The situation is definitely more serious for high-dimensional data. A number

of suggestions have been proposed for improving the behavior of the EL ratio

statistic, mainly in the small sample setting. Among them, adding artificial data

points to the observed sample is an easy and efficient approach that solves the

convex hull problem (see Chen, Variyath, and Abraham (2008), Emerson and

Owen (2009)). Interestingly, this simple strategy allows the EL to perform well

in a high-dimensional setting.

In this paper, we extend the scope of the EL method to high-dimensional

data for p/n = cn → c ∈ (0, 1) by adopting the method of Emerson and Owen

(2009), adding two points to the data set, to address the convex hull problem.

The asymptotic normality of W (µ) is established. Our result extends results in

Chen, Peng, and Qin (2009), where p = o(n1/2), and in Hjort, Mckeague, and

Van Keilegom (2009), where p = o(n1/3).



LARGE DIMENSIONAL EMPIRICAL LIKELIHOOD 1661

Figure 1. The left figure shows an example in which the zero vector is not
contained in the convex hull of the original data set; The middle figure shows
the zero vector is contained in the convex hull of the new data set to which
one point is added (see Chen, Variyath, and Abraham (2008)); The right
figure shows the convex hull of the data set to which two points are added
(see Emerson and Owen (2009)).

Another finding of this paper is that using the normalized F (p, n − p) dis-

tribution to approximate W (µ) is more appropriate than using the normal ap-

proximation, see our simulation results. The rest of the paper is organized as

follows. The main theorems are stated in Section 2. Simulations are reported in

Section 3. A case study is given in Section 4. We sketch proofs in the appendix

and leave the details to the supplementary document.

2. Balanced Adjusted Empirical Likelihood

Suppose {xj , j = 1, . . . , n} ∈ Rp are i.i.d. random vectors following the

multivariate model

xj = Γzj + µ, j = 1, . . . , n,

where zj , j = 1, . . . , n are i.i.d. p-dimensional random vectors. The components

of zj are also i.i.d. with mean 0, variance 1, and finite fourth moment µ4. One

can generate a rich collection of xj from zj with the given covariance matrix

Σ = ΓΓ′, where Γ = Σ1/2. In the rest of this paper, we assume that all the

eigenvalues of Σ are between the positive constants c0 and C0.

Chen, Variyath, and Abraham (2008) modified the EL function by adding

one point, called a pseudo-observation, to make sure that the zero vector was an

interior point of the convex hull of the new set {xi−µ, i = 1, . . . , n, n+1}, where
xn+1 = µ− bn(x̄− µ), x̄ is the sample mean of the original data set, and bn is a

well chosen constant that may depend on n. Figure 1 provides an example that

after adding xn+1 to the data set, the zero vector becomes an interior point of

the convex hull of the new data set, even when the zero vector is not contained

in the original data set.
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It was pointed out in Emerson and Owen (2009) that addressing the convex

hull problem by adding one point to the original data set results in two short-

comings: the sample mean of the new data set is changed; the log EL statistic

is bounded from above, which leads to poor performance when the dimension

is large, say p = 7. Simulations in Emerson and Owen (2009) support their ar-

guments. Hence, it is better to add two pseudo-observations to the data set in

order to preserve the sample mean. This method is called the Balanced Adjusted

Empirical Likelihood (BAEL) method in Emerson and Owen (2009).

2.1. Normal approximation

Let x̄ and S = (1/(n− 1))
∑n

j=1(xj− x̄)(xj− x̄)′ = Γ
(
(1/(n− 1))

∑n
j=1(zj−

z̄)(zj − z̄)′
)
Γ′ be the sample mean and sample covariance matrix respectively,

where z̄ = (1/n)
∑n

i=1 zj . Since all the eigenvalues of S are bounded from above

and from below (Jiang (2004) and Xiao and Zhou (2010)), with probability one

the inverse of S exists almost surely. Following Emerson and Owen (2009), the

two pseudo-observations are

xn+1 = µ− scũũ, xn+2 = 2x̄− µ+ scũũ, (2.1)

where cũ =
(
ũ′S−1ũ

)−1/2
, ṽ = x̄ − µ, r̃ = ∥ṽ∥ and ũ = ṽ/r̃. As illustrated

in Emerson and Owen (2009), the choice of cũ is the inverse Mahalanobis dis-

tance of a unit vector from x̄ in the direction of ũ. By imposing xn+1, the zero

vector must be contained in the convex hull of {xi − µ, i = 1, . . . , n, n + 1};
the second point xn+2 is included to maintain the original sample mean, since

(1/(n+ 2))
∑n+2

j=1 xj = x̄. For the new data set {xj , j = 1, . . . , n, n + 1, n + 2},
the BAEL ratio for any hypothesized value µ0 is

R(µ0) = max

{ n+2∏
i=1

(n+ 2)ωi : ωi ≥ 0,

n+2∑
i=1

ωi = 1,

n+2∑
i=1

ωi(xi − µ0) = 0

}
,

and the log BAEL statistic is

W (µ0) = −2 logR(µ0). (2.2)

Our results establish the equivalence of W (µ) to Hotelling’s T 2 statistic and

its asymptotic normality under the setting that p is proportional to n.

Theorem 1. Suppose the following conditions hold

1. {xj , j = 1, . . . , n} ∈ Rp are i.i.d. random vectors satisfying

xj = Γzj + µ, j = 1, . . . , n, (2.3)

where zj , j=1, . . . , n are i.i.d. p-dimensional random vectors, and the compo-

nents of zj are i.i.d. with mean 0, variance 1, and finite fourth moment µ4.
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2. Γ = Σ1/2, where Σ is a covariance matrix with eigenvalues bounded below and

above by positive constants c0 and C0, respectively.

3. The p′s are functions of n, satisfying

p

n
= cn → c ∈ (0, 1),

n
√
n

s
→ 0, as n → ∞. (2.4)

Then,
2s2W (µ)

(n+ 2)2
− T 2

n
= op(

n

s
) + op(

1

n
), as n → ∞, (2.5)

where T 2 = n(x̄ − µ)′S−1(x̄ − µ) is Hotelling’s T 2 statistic, an op(α(n)) term

tends to zero in probability when divided by α(n), and
i.p.−−→ signifies convergence

in probability.

Pan and Zhou (2011) proved that Hotelling’s T 2 statistic is asymptotically

normal by using random matrix theory, see Lemma A.1 in the Appendix. The

following is a direct consequence of Theorem 1 and Lemma A.1.

Corollary 1. Under the assumptions of Theorem 1,√
n

2cn(1− cn)−3

(2s2W (µ)

(n+ 2)2
− cn(1− cn)

−1
)

d−→ N(0, 1), as n → ∞. (2.6)

Remark 1. We require s → ∞ along with n satisfying the condition (2.4).

In practice, we may choose s = n2. The condition (2.4) also implies that the

dimension p cannot exceed the sample size n.

Remark 2. It is well-known that the log EL ratio statistic is asymptotically

equivalent to Hotelling’s T2 statistic when the dimension p is fixed, see Owen

(1988, 1990). Theorem 1 now implies the asymptotic equivalence of the log

BAEL statistic and Hotelling’s T2 statistic.

2.2. Calibration by normalized F (p, n− p) distribution

A simulation study shows that the normal approximation in Corollary 1 is

good, but not perfect, see Table 1 in Section 3.1 and Figure 4 in Section 3.2.

To calibrate the normal approximation to W (µ) for high dimensional data, one

approach is to use bootstrap calibration (see Owen (1988), Hjort, Mckeague,

and Van Keilegom (2009)) which involves resampling from the original data K

times to get the new data sets. For k = 1, . . . ,K, the k-th resampled data set

is {x(k)
1 , . . . ,x

(k)
n }. Then compute the EL ratio statistic W (k)(x̄) with this k-th

resampled data set. The p-value is given by the distribution of W (k)(x̄), k =

1, . . . ,K. The bootstrap calibration is reasonably good but computationally

intensive, especially when the dimension is large.
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Theorem 1 indicates the connection between the scaled W (µ) and Hotelling’s

T2 statistic under a high-dimensional setting. Noticing that (n− p)T 2/(pn) fol-

lows the F distribution with degrees of freedom p and n−p when the population is

N(µ,Σ), we suggest using the normalized F (p, n−p) distribution to approximate

the log BAEL statistic.

Theorem 2. Under the assumptions of Theorem 1, we have√
n

2cn(1− cn)−3

(2s2W (µ)

(n+ 2)2
−cn(1−cn)−1

)
=

F (p, n− p)− 1√
2/p+ 2/(n−p)

+op(1), as n → ∞.

3. Simulation Results

Here we report on simulation studies to investigate the performance of the

BAEL statistic. Our p-dimensional data follow the model (2.3). We generated

the components of zj from three distributions: the standard normal distribution,

the standardized Gamma(4, 2), and the standardized student t distribution with

5 degrees of freedom, t(5). Throughout the simulation, we took the covariance of

xj , Σ = ΓΓ′, to be a Toeplize matrix with first row (1, 0.5, 0.52, 0.53, . . . , 0.5p−1),

the covariance matrix for the AR(1) model with the parameter σ = 0.5.

We focussed on the large-dimensional case with p/n → c, using n = 200,

400, 800, c = 0.4, 0.8. The s satisfying (2.4) was chosen as s = n2. We carried

out M =5,000 simulations for each (n, c)-combination and for each distribution

of zj .

3.1. Empirical sizes

In the first section, we tabulate the empirical sizes of the BAEL statistic

when the standard normal distribution and the normalized F (p, n−p) were used

as calibrations. From Table 1, we can see that the empirical sizes according to

the normalized F (p, n−p) approximation were closer to the nominal significance

level 0.05.

3.2. Q-Q plots

We used Q-Q plots to compare the accuracy of the normalized F (p, n − p)

approximation and the N(0, 1) approximation. For each (n, c)-combination and

for each distribution of zj , we simulated the normalized log BAEL statistic ζ =√
n/2cn(1− cn)−3(2s2W (µ)/(n+ 2)2−cn(1−cn)

−1) for M times and calculated

the quantiles of the theoretical (F (p, n− p)− 1)/
√

2/p+ 2/(n− p) and N(0, 1)

distributions at probabilities i/(M + 1), i = 1, . . . ,M .

Q-Q plots are given in Figures 2 and 3. Figure 2 corresponds to the normal-

ized F (p, n−p) approximation. Here, as the dimension p increases proportionally
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Table 1. Empirical sizes for N(0, 1) and F (p, n − p) approximations when
zj is standard normal, standardized Gamma(4,2), or standardized t(5).

Standard Normal Standardized Gamma(4,2) Standardized t(5)

(n, c) N(0, 1) F (p, n− p) N(0, 1) F (p, n− p) N(0, 1) F (p, n− p)

(200,0.4) 0.0530 0.0478 0.0684 0.0628 0.0548 0.0494

(200,0.8) 0.0746 0.0514 0.0794 0.0554 0.0666 0.0460

(400,0.4) 0.0540 0.0508 0.0584 0.0568 0.0448 0.0436

(400,0.8) 0.0574 0.0456 0.0598 0.0490 0.0590 0.0496

(800,0.4) 0.0532 0.0454 0.0520 0.0500 0.0492 0.0506

(800,0.8) 0.0552 0.0514 0.0548 0.0496 0.0556 0.0510

to the sample size n, the normalized F (p, n − p) distribution approximates the

normalized log BAEL with high accuracy. These figures also show that whether

the underlying variables were generated from a fatter-tail distribution or not

(the fourth moment of three distributions are 3, 4.5, and 6, respectively), the

performance of the normalized F (p, n− p) approximation is unaffected.

Figure 3 shows the performance of the N(0, 1) approximation under different

populations. Compared with the F (p, n−p) approximation, the normal approxi-

mation is unsatisfactory and suggest using the normalized F (p, n−p) distribution

for calibration.

3.3. Ratio of ||λ|| to 1/s

As a numerical illustration of the result ||λ|| = op(s
−1), we report the ratio

of ||λ|| to 1/s by boxplots (Figure 4) for different (n, c)-combinations and for the

three distributions of zj mentioned above. These boxplots show that the ratio of

||λ|| to 1/s is close to zero regardless of the sample distributions.

3.4. Difference between Hotelling’s T 2 and BAEL

Set r2 = T 2/n and ς = 2s2W (µ)/(n+ 2)2. Since we choose s = n2 in our

simulation, (2.5) in Theorem 2.1 indicates r2− ς = op(1/n). We used simulations

to check the difference. Figure 5 reports (r2 − ς) under different (n, c) pairs and

different sample distributions. Overall, this difference is much smaller than 1/n

and shows a significant decrease as n becomes larger. Another observation is that

the difference (r2 − ς) is always larger than 0, which may imply that BAEL test

is less likely to make the Type I error than Hotelling’s T 2 test. This phenomenon

is also observed in our data case study.
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Figure 2. Normalized F (p, n−p) approximation with the sample generating
from normal distribution(first row), standardized Gamma(4,2)(second row)
and standardized t(5)(third row). c = p/n is 0.4(left) and 0.8(right), and
the sample size is 200(plus), 400(triangle) and 800(dot).



LARGE DIMENSIONAL EMPIRICAL LIKELIHOOD 1667

Figure 3. N(0, 1) approximation with the sample generating from normal
distribution(first row), standardized Gamma(4,2)(second row) and standard-
ized t(5)(third row). c = p/n is 0.4(left) and 0.8(right), and the sample size
is 200(plus), 400(triangle) and 800(dot).
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Figure 4. Ratio of ||λ|| to 1/s with the sample generating from normal distri-
bution (first row), standardized Gamma(4,2) (second row) and standardized
t(5) (third row). c = p/n is 0.4 (left) and 0.8 (right), and the sample size is
200 (left), 400 (middle) and 800 (right).
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Figure 5. (r2− ς) with the sample generating from normal distribution (first
row), standardized Gamma(4,2) (second row) and standardized t(5) (third
row). c = p/n is 0.4 (left) and 0.8 (right), and the sample size is 200 (left),
400 (middle) and 800 (right).
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4. Data Analysis

We considered a financial application of large dimensional BAEL to test the

mean of the stock returns of 508 companies from the S&P 500. The data contain

the daily closing bid prices for these stocks from 1 Jan 2010 to 31 Dec 2011 (data

can be downloaded from Wharton Research Data Services). We adopted 2-day

returns in the hope of making observations independent, leading to 125 obser-

vations for each stock. We investigated the returns in each sector of S&P 500

rather than the overall returns. These sectors are consumer discretionary, con-

sumer staples, energy, financials, health care, industrials, information technology,

materials, telecommunications services and utilities. In sector k, k = 1, . . . , 10,

let pk denote the number of stocks contained in the sector. The dimension of

sector k is pk while the number of observations is n = 125.

Let h
(k)
t = (h

(k)
1t , h

(k)
2t , . . . , h

(k)
pkt

)′, k = 1, . . . , 10, t = 1, . . . , 252 be the daily

closing bid prices for the stocks in sector k at time t. The j-th, j = 1, . . . , 125,

log-returns for stocks in sector k is

x
(k)
j =

(
log

h
(k)
1,2j+1

h
(k)
1,2j−1

, log
h
(k)
2,2j+1

h
(k)
2,2j−1

, . . . , log
h
(k)
pk,2j+1

h
(k)
pk,2j−1

)′
.

Hence the pk × n data matrix for sector k is X(k) =
(
x
(k)
1 ,x

(k)
2 , . . . ,x

(k)
n

)
. We

take x
(k)
1 , . . . ,x

(k)
n as i.i.d. random vectors satisfying (2.3). Let µ(k) = Ex

(k)
1 . We

are interested in testing

H
(k)
0 : µ(k) = 0pk vs H

(k)
1 : µ(k) ̸= 0pk , (4.1)

where 0pk is a pk-dimensional vector with all the elements zero. Following (2.1),

we can construct two pseudo-observations x
(k)
n+1 and x

(k)
n+2 under the null hypoth-

esis where s = n2. Similarly define W (0pk) as in (2.2). The test statistic is

S(k)
n =

√
n

c
(k)
n (1− c

(k)
n )−3

(2s2W (0pk)

n2
− c(k)n (1− c(k)n )−1

)
,

where c
(k)
n = pk/n. With the normal distribution as the calibration, S

(k)
n

d−→
N(0, 1). If we use the normalized F (p, n − p) as the calibration, Theorem 2

allows us to calculate the critical value.

Following the notation in Section 3.4, we denote

r2k =
T 2(0pk)

n
, ςk =

2s2W (0pk)

(n+ 2)2
, k = 1, . . . , 10,

satisfying r2k − ςk = op(1/n) according to Theorem 1.
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Table 2. BAEL test and Hotelling’s T 2 test for large dimensional data in
S&P 500.

Sector p Sn ς r2 HT-Pvalue EL-N-Pvalue EL-F-Pvalue
CD 86 -0.2175 2.074215 2.074632 0.4142 0.4139 0.3981
CS 42 -1.7398 1.08842 1.088575 0.0410 0.0409 0.0074
EG 40 0.0002 0.4706132 0.4706565 0.5002 0.5001 0.5131
FN 82 -0.2463 1.78189 1.782221 0.4030 0.4027 0.3888
HC 53 -0.7753 0.5900303 0.5900913 0.2192 0.2191 0.1999
IND 62 -0.7610 0.794661 0.7947569 0.2234 0.2233 0.2004
IT 69 0.0207 1.238644 1.238833 0.5085 0.5083 0.5047
MR 30 -0.2434 0.2930243 0.2930453 0.4039 0.4038 0.4214
TS 9 0.0548 0.07966701 0.07966996 0.52188 0.52185 0.5770
UL 35 -0.2893 0.3571932 0.3572217 0.3863 0.3862 0.3985
Overall 508

CD, CS, EG, FN, HC, IND, IT, MR, TS, UL are abbreviations for the sectors consumer discretionary, consumer

staples, energy, financials, health care, industrials, information technology, materials, telecommunications

services, and utilities, respectively.

We report the values of S
(k)
n , ςk, r

2
k, p-values for Hotelling’s T 2 test, and

p-values for BAEL test when the N(0, 1) and normalized F (p, n− p) are used as

approximations. They are denoted as Sn, ς, r
2, HT-Pvalue, EL-N-Pvalue and

EL-F-Pvalue, respectively, in Table 2.

The dimension of the sectors can be as large as 80 and comparable to the

number of observations. Table 2 has the p-values for consumer staples (CS) all

less than 0.05; especially, when the normalized F (p, n− p) calibration is used for

the BAEL test, the p-value is 0.0074. Hence we can reject the null hypothesis

at the level of significance α = 0.05. Indeed, according to a report, shares of

consumer staples companies, accounting for a total of about 11.4% of the S&P

500 Index, were up 5.3%, compared with a 3.3% drop for the S&P 500. Com-

parison among the three p-values for CS implies that the normalized F (p, n− p)

approximation for the BAEL test performs much better than Hotelling’s T 2 test

and the N(0, 1) approximation since its p-value is significantly smaller than 0.05

when the null hypothesis should be rejected. This again supports our suggestion

to use the normalized F (p, n−p) as calibration in the simulation study of Section

3.2.

We are unable to reject the remaining null hypotheses since the p-values for

the other sectors are not too low. In particular, the data from the sectors of

energy (EG), information technology (IT) and telecommunications services (TS)

show little change.

In Table 2, r2 is always a little bit larger than ς; this phenomenon was also

seen in the simulations of Section 3.4.
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Appendix

Lemma A.1 (Theorem 1 in Pan and Zhou (2011)). Under the assumptions of

Theorem 1, we have√
n

2cn(1− cn)−3

(T 2

n
− cn(1− cn)

−1
)

d−→N(0, 1), as n → ∞,

where

r2 , T 2

n
= (x̄− µ)′S−1(x̄− µ).

Lemma A.2 (Lemma 2 in Bai and Yin (1993)). Let {Xij , i, j = 1, . . . , } be a

double array of i.i.d. random variables and let α > 1/2, β ≥ 0 and M > 0 be

constants. Then as n → ∞,

max
j≤Mnβ

∣∣∣∣∣n−α
n∑

i=1

(Xij − c)

∣∣∣∣∣ → 0 a.s.,

if and only if the following hold:

(i) E|X11|(1+β)/α < ∞;

(ii) c =

{
EX11, if α ≤ 1,

any number, if α > 1.

Under (2.4), the covariance matrix S is of full rank with probability one.

Hence we have S = AA′ where A is a p × p invertible matrix. To simplify the

notation, we work on standardized data. Let yi = A−1(xi − x̄), for i = 1, . . . , n,

ȳ = (1/n)
∑n

i=1 yi = 0, and β = A−1(µ− x̄). Take v = ȳ − β = −β, r = ∥v∥ =

∥β∥, u = v/r = −β/r, yn+1 = β − su and yn+2 = −β + su, where ∥f∥ denotes

the Euclidean norm if f is a vector or the spectral norm if f is a matrix. As the

EL method has the invariance property under transformation x 7−→ x̃ = Mx,

where M is any invertible matrix, we have

R(µ) = R(µ;x1, . . . ,xn+2) = R̆(β;y1, . . . ,yn+2) = R̆(β),

where
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R̆(β) = max
{ n+2∏

i=1

(n+ 2)ωi : ωi ≥ 0,

n+2∑
i=1

ωi = 1,

n+2∑
i=1

ωi(yi − β) = 0
}
. (A.1)

Thus W (µ) = W̆ (β) = −2 log R̆(β). An explicit expression for R̆(β) and W̆ (β)

can be obtained by using Lagrange multipliers. The optimal weights ωi for R̆(β)

are

ωi =
1

n+ 2

1

1 + λ′(yi − β)
, i = 1, . . . , n+ 2, (A.2)

where λ ∈ Rp is the Lagrange multiplier satisfying

n+2∑
i=1

yi − β

1 + λ′(yi − β)
= 0. (A.3)

Hence

W̆ (β) = 2

n+2∑
i=1

log
(
1 + λ′(yi − β)

)
. (A.4)

Proof of Theorem 1. The proof of Theorem 1 proceeds in several steps. We

only sketch the proofs here. One may refer to the supplementary document for

further details.

Step 1 (w.r.t Lemma S1). Step 1 is to establish λ′u = op(s
−1). To this end,

using the constraint
∑n+2

i=1 ωi(yi−β) = 0, we can write s(ωn+1−ωn+2) as a sum

of two terms:

s(ωn+1 − ωn+2) =

n∑
i=1

ωiu
′(yi − β) + 2rωn+2.

The first term is shown to be Op(
√
n) by the Hölder inequality; the second term

is shown to be bounded according to Hotelling T 2’s property. By the expressions

of ωn+1 and ωn+2, s(ωn+1 − ωn+2) can be re-expressed as

n+ 2

s
· s(ωn+1 − ωn+2) =

1

1− sλ′u
− 1

1 + (2r + s)λ′u
.

Combing these two gives 1/(1− sλ′u)−1/(1 + (2r + s)λ′u) = Op(n
√
n/s), which

leads to λ′u = op(s
−1). Details can be found in Lemma S1 of the supplementary

material.

Step 2 (w.r.t Lemma S2). Step 2 is to prove ∥λ∥ = op(s
−1/2) and maxi≤n

|λ′(yi − β)| = op(
√

n/s). Let λ = ρθ, ρ = ∥λ∥. We first show that maxi≤n

|θ′(yi − β)|2 = Op(n) by Lemma 5.2. Then we split the equality
∑n+2

i=1 (λ
′(yi
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−β))/(1 + λ′(yi − β)) = 0 according to the identity 1/(1 + x) = 1 − x/(1 + x),

from which we can get

n+ 2

n
rλ′u =

ρ2

n

n+2∑
i=1

θ′(yi − β)(yi − β)′θ

1 + λ′(yi − β)
.

Checking both sides here by applying the results maxi≤n |θ′(yi−β)|2 = Op(n) and

λ′u = op(s
−1) from Step 1, we can obtain ∥λ∥ = ρ = op(s

−1/2). Finally the bound

maxi≤n |λ′(yi − β)| = op(
√

n/s) comes from the fact that maxi≤n |λ′(yi − β)| =
∥λ∥·maxi≤n |θ′(yi−β)|. Details can be found in Lemma S2 of the supplementary

material.

Step 3 (w.r.t Lemma S3). The aim of this step is to improve the bound on

the norm of λ to ∥λ∥ = op(s
−1). Based on the conclusion in Step 1, we have

∥λ∥ · |u′θ| = |λ′u| = op(s
−1). So once |u′θ| i.p.−−→ 1 is proved, ∥λ∥ = op(s

−1) is

clear.

To prove this, we construct yi − β = kiu + ri, where ki = (yi − β)′u, ri =

(yi − β) − kiu, u
′ri = 0, i = 1, . . . , n + 2. Then we show that with probability

one there exist a1, . . . , an such that

θ = a1(y1 − β) + a2(y2 − β) + · · ·+ an(yn − β)

=
( n∑

i=1

aiki

)
u+ a1r1 + · · ·+ anrn.

Multiplying both sides by u′ gives u′θ =
∑n

i=1 aiki, and multiplying both sides

by θ′ gives 1 =
(∑n

i=1 aiki

)
θ′u+

∑n
i=1 aiθ

′ri.

The proof of |u′θ| i.p.−−→ 1 reduces to showing
∣∣∣1−(∑n

i=1 aiki

)2∣∣∣= ∣∣∣∑n
i=1 aiθ

′ri

∣∣∣
≤

∣∣∣∑n
i=1 a

2
i ·

∑n
i=1(θ

′ri)
2
∣∣∣1/2 i.p.−−→ 0. To deal with

∑n
i=1 a

2
i , we observe that

trΓ′Γ
∑n

i=1 a
2
i is the leading term of θ′A′Aθ, which is bounded from above in

probability. So
∑n

i=1 a
2
i = Op(1/n). To deal with

∑n
i=1(θ

′ri)
2, as in Step 2,

we split
∑n

i=1 θ
′ri/(1 + λ′(yi − β)) twice according to the identity 1/(1 + x) =

1− x/(1 + x), to get

n∑
i=1

θ′ri
1+λ′(yi−β)

= λ′uρ

n∑
i=1

kiθ
′riθ

′(yi−β)

1+λ′(yi−β)
−ρ

n∑
i=1

(θ′ri)
2+ρ

n∑
i=1

(θ′ri)
2λ′(yi−β)

1+λ′(yi−β)
.

As
∑n

i=1 θ
′ri/(1 + λ′(yi − β)) is shown to be 0 from our construction,

ρ

n∑
i=1

(θ′ri)
2 = λ′uρ

n∑
i=1

kiθ
′riθ

′(yi − β)

1 + λ′(yi − β)
+ ρ

n∑
i=1

(θ′ri)
2λ′(yi − β)

1 + λ′(yi − β)
.
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Using the conclusions λ′u = op(s
−1) in Step 1 and ∥λ∥ = op(s

−1/2), maxi≤n |λ′(yi

−β)| = op(
√

n/s), maxi≤n |θ′(yi−β)|2=Op(n) in Step 2, we obtain
∑n

i=1(θ
′ri)

2

= op(n
2/s2) from the above equality.

Then
∣∣∣∑n

i=1 a
2
i ·

∑n
i=1(θ

′ri)
2
∣∣∣1/2 = op(

√
n/s)

i.p.−−→ 0 given (2.4), by which we

can conclude that |u′θ| i.p.−−→ 1 and thus ∥λ∥ = op(s
−1). Details can be found in

Lemma S3 of the supplementary material.

Step 4 (w.r.t Lemma S4). λ is further found to satisfy s2λ′u = (n+ 2)r/2 +

op(n
2/s) + op(1) and ∥λ∥ = ρ = op(n/s

2). Applying the identity 1/(1 + x) =

1− x+ x2/(1 + x) to expand (A.3), we can get

0 =
n+2∑
i=1

u′(yi − β)

1 + λ′(yi − β)

=

n+2∑
i=1

u′(yi − β)−
n+2∑
i=1

u′(yi − β)(yi − β)′λ+

n+2∑
i=1

u′(yi − β)
(
(yi − β)′λ

)2

1 + λ′(yi − β)

= (n+ 2)r −
(
nu′S1λ+ 2s2λ′u+ (4sr + 4r2)λ′u

)
+

n∑
i=1

u′(yi − β)
(
(yi − β)′λ

)2

1 + λ′(yi − β)
− s3(λ′u)2

[
(n+ 2)(ωn+2 − ωn+1)

]
+
(6s2r + 12sr2 + 8r3)(λ′u)2

1− (2r + s)λ′u
.

The right hand side here can be reduced to (n+2)r−2s2λ′u+ s2λ′u · op(sλ′u)+

op(1) by using the bounds proved in the first three steps. Its equivalence to

zero further implies the conclusion. Details can be found in Lemma S4 of the

supplementary material.

Step 5. To prove Theorem 1, with a Taylor’s expansion, W̆ (β) in (A.4) can be

expanded as

W̆ (β) = 2

n+2∑
i=1

log
(
1 + λ′(yi − β)

)
= 2

[ n+2∑
i=1

λ′(yi − β)− 1

2

n+2∑
i=1

(
λ′(yi − β)

)2
+

1

3

n+2∑
i=1

(
λ′(yi − β)

)3
−

n+2∑
i=1

ηi

]
.

Using the bounds in the previous steps, this expansion can be further simplified

to

W̆ (β) = 2
[
(n+ 2)rλ′u− s2(λ′u)2 +Op

(n4

s4

)]
.
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Multiplying both sides by 2s2/(n+2)2 and using s2λ′u = (n+2)r/2+op(n
2/s)+

op(1) from Step 4, we have

2s2W̆ (β)

(n+ 2)2
− r2 = op(

n

s
) + op(

1

n
).

Noting that r2 = T 2/n, the proof of Theorem 1 is completed.

Proof of Corollary 1. Combining Theorem 1 and Lemma A.1, we have√
n

2cn(1− cn)−3

(2s2W (µ)

(n+ 2)2
− cn(1− cn)

−1
)

=

√
n

2cn(1− cn)−3

(T 2

n
− cn(1− cn)

−1
)
+

√
n

2cn(1− cn)−3

(2s2W̆ (β)

(n+ 2)2
− T 2

n

)
d−→ N(0, 1), as n → ∞.

Proof of Theorem 2. By the Law of Large Numbers and the Central Limit

Theorem, we have
Yn − 1√

2/p+ 2/(n− p)

d−→ N(0, 1), (A.5)

where Yn follows the F (p, n − p) distribution. Then Theorem 2 follows directly

from Corollary 1 and (A.5).
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