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In this supplementary document, we give technical proofs for theorems and corollaries for the

paper “Confidence sets for model selection by F -testing”. The main assumptions and notations

can be found in the main paper.

S1 Proof of Theorem 2.3

For the necessary condition, we just need to show that if there is a sequence of γn ∈ Γu

such that δγn/
√
dfγn − dfγf is uniformly bounded by C > 0, then the corresponding F -statistic

stays below the cutoff value with a non-vanishing probability. Without loss of generality, assume

σ2 = 1. For the model γn, the F -statistic has the non-central F -distribution Fν1,ν2,δγn , with

degrees of freedom ν1 = dfγn − dfγf = p − pγn and ν2 = dfγf = n − p − 1 and non-centrality

parameter δγn . Since RSSγf ∼ X
2
ν2 and if ν2 →∞, we have√
ν2

2

(
RSSγf
ν2

− 1

)
d→ N(0, 1).

Therefore RSSγf /ν2 is bounded away from zero and infinity in probability. Let f∗γ denote the

cut-off point for the F -ratio F(
dfγ−dfγf

)
,dfγf

(α). For the numerator of the F -statistic, since

RSSγn −RSSγf follows a non-central chi-squared distribution with ν1 degrees of freedom and

non-centrality parameter δγn , we have [RSSγn−RSSγf −(ν1 +δγn)]/
√

2(ν1 + 2δγn)
d→ N(0, 1),

when either ν1 or δγn →∞. Thus when ν1 →∞,

ν1√
2(ν1 + 2δγn)

(
RSSγn −RSSγf

ν1
− ν1 + δγn

ν1

)
d→ N(0, 1).

For the F -test, we have

P

(
(RSSγn −RSSγf )/

(
dfγn − dfγf

)
RSSγf /dfγf

≤ f∗γn

)

≥ P

([
RSSγn −RSSγf
dfγn − dfγf

≤ f∗γn
]
∩
[
RSSγf /dfγf ≥ 1

])
= P

(
ν1√

2(ν1 + 2δγn)

(
RSSγn −RSSγf

ν1
− ν1 + δγn

ν1

)
≤ ν1√

2(ν1 + 2δγn)

(
f∗γn −

ν1 + δγn
ν1

))
×P

(
RSSγf /dfγf ≥ 1

)
.
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When ν2 is of order n (so that ν1 is bounded above by a multiple of ν2), from Theorem A (due

to Laurent and Massart [2000]) and Theorems 5.1 and 5.2 in Inglot [2010], it can be shown that

f∗γn ≥ 1 + τα/
√
ν1 for some constant τα > 0, with τα →∞ as α→ 0.

Thus, as long as δγn/
√
dfγn − dfγf is uniformly upper bounded,

ν1√
2(ν1 + 2δγ)

(
f∗γn −

ν1 + δγ
ν1

)
≥

0 when α is small enough. Together with that P
(
RSSγf /dfγf ≥ 1

)
is bounded away from zero,

regardless of whether ν1 →∞ or not, we know
(RSSγn−RSSγf )/

(
dfγn−dfγf

)
RSSγf /dfγf

has a non-vanishing

probability to be smaller than F(
dfγn−dfγf

)
,dfγf

(α), and thus γn is included in the confidence

set with a non-vanishing probability. This completes the proof of the necessity condition for

detectability of the true terms by the ECS.

Now for the sufficient condition, letXγ,n =
(
RSSγ −RSSγf

)
/
(
dfγ − dfγf

)
, Yn = RSSγf /dfγf

and denote by f∗γ the cut-off point for the F -ratio. We want to show that under the condition

on δγ , we have

P

( ⋃
γ∈Γu

{
Xγ,n
Yn

≤ f∗γ
})
→ 0.

Again, from the result in Inglot [2010], we have that

f∗γ ≤

[
ν1 + 2 log

(
2

α

)
+ 2

√
ν1 log

(
2

α

)]
/ν1[

ν2 + 2 log

(
2

α

)
+

1

4

√
ν2 log

(
2

α

)]
/ν2

.

Then,

P

(
Xγ,n
Yn

≤ f∗γ
)
≤ P

Xγ,nYn
≤

[
ν1 + 2 log

(
2

α

)
+ 2

√
ν1 log

(
2

α

)]
/ν1[

ν2 + 2 log

(
2

α

)
+

1

4

√
ν2 log

(
2

α

)]
/ν2

 (S1.1)

≤P

(
Xγ,n ≤ 1 +

β̃1√
ν1

+
β̃2
√
ηn√
ν2

)
+ P

Yn ≥
ν2 + 2 log

(
2

α

)
+

1

4

√
ν2 log

(
2

α

)
ηn

ν2

 , (S1.2)

for any ηn → ∞ and where β̃1 and β̃2 depending on α. With ηn → ∞, the second probability

in (S1.2) goes to zero as n→∞.

Next, we use a probability bound for the non-central chi-square distribution of Birgé [2001]

to upper bound the probability of each event{
Xγ,n ≤ 1 +

β̃1√
ν1

+
β̃2
√
ηn√
ν2

}
.

Note that the maximum possible range of ν1 is 1 to n− 1, and there are no more than
(
pn
ν1

)
≤
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exp
(
ν1 log

(
epn
ν1

))
models of size pn − ν1 terms. From Lemma 8.1 in Birgé [2001], we have

∑
γ∈Γu

P

(
Xγ,n ≤ 1 +

β̃1√
ν1

+
β̃2
√
ηn√
ν2

)

≤
p−1∑
ν1=1

exp

{
− min
γ∈Γu,dfγ=n−1−(p−ν1)

(δγ − β̃1
√
ν1 − β̃2

√
ηnν1/

√
ν2)2

4(ν1 + 2δγ)
+ ν1 log

(
epn
ν1

)}
.

It is then sufficient to show that

(δγ − β̃1
√
ν1 − β̃2

√
ηnν1/

√
ν2)2

4(ν1 + 2δγ)
≥ aν1 log

(
epn
ν1

)
+ ξn

for some constant a > 1 and some ξn →∞. When ν2 is of order n, this requirement is satisfied if

δγ ≥ b

(√
ν1 log

(
epn
ν1

)
+ ξ′n

)
for some large enough constant b > 0 and some slowly increasing

ξ′n →∞.

Finally, we briefly show that the sufficient condition cannot be generally improved. Here

we consider the case that pn → ∞. Recall that p0 is the number of terms in the true model,

which is assumed to satisfy that log p0 is of order logn and p0/pn → 0. For notational ease,

assume that the first p0 terms are in the true model, and let γ−i denote the model obtained

from removing the i-th term in the true model for 1 ≤ i ≤ p0. Let ν1 = p − p0 + 1 and for

1 ≤ i ≤ p0, let

Ai =

{
(RSSγ−i −RSSγf )/ν1

RSSγf /ν2
≤ f∗γ−i

}
.

To show non-detectability of the true terms, it suffices to show P (∪p0i=1Ai) is bounded away

from zero. Note that P (∪p0i=1Ai) is lower bounded by

P

(
p0⋃
i=1

[
RSSγ−i −RSSγf

ν1
≤ f∗γ−i

]
∩
[
RSSγf /dfγf ≥ 1

])

= P

(
p0⋃
i=1

[
RSSγ−i −RSSγf

ν1
≤ f∗γ−i

])
× P

(
RSSγf /dfγf ≥ 1

)
.

Thus, it is sufficient to establish P
(⋂p0

i=1

[
RSSγ−i−RSSγf

ν1
≥ f∗γ−i

])
is bounded away from 1. To

proceed, consider the case that the true predictors are orthonormal with the same coefficient.

Then the above probability is equal to the p0-th power of P
([

RSSγ−i−RSSγf
ν1

≥ f∗γ−i
])

, which

is upper bounded by 1−P
(
RSSγ−i −RSSγf ≤ ν1 (1 + τα/

√
ν1)
)
, where 1 + τα/

√
ν1 is a lower

bound on f∗γ−i . Then, for δγ−i =
√
ν1 log(Cp0) for some constant C > 0, the moderate

deviation probability P
(
RSSγ−i −RSSγf ≤ ν1 (1 + τα/

√
ν1)
)

is well-behaved and it is seen

that the sought probability bound (away from 1) holds. This completes the proof of Theorem

2.3.
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Proof of Corollary 3.1

Suppose that the ECS asymptotically detects all the true terms. Let An denote the event

that all the models in Γ̂ are super models of γ∗ (including itself). Then by the assumption,

P (An) → 1. Clearly, when γ∗ ∈ Γ̂ and An holds, γ∗ must be the unique model of LBM(Γ̂).

Together with Theorem 2.1, the conclusion follows. The second statement holds similarly. This

completes the proof of Corollary 3.1.

Proof of Corollary 3.4

From Theorem 2.3, we have lim infn→∞ P (LBM(Γ̂) = {γ∗}) ≥ 1− α. The statement on MEI

thus holds. Also from Theorem 2.3, with probability going to 1, only the true and larger models

will be included in LBM(Γ̂). Therefore, the variables in the true model will be included in all

models in LBM(Γ̂) with probability going to 1. This completes the proof of Corollary 3.4.
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