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Abstract: We introduce the notion of variable selection confidence set (VSCS) for

linear regression based on F -testing. Our method identifies the most important

variables in a principled way that goes beyond simply trusting the single winner

based on a model selection criterion. The VSCS extends the usual notion of con-

fidence intervals to the variable selection problem: A VSCS is a set of regression

models that contains the true model with a given level of confidence. Although the

size of the VSCS properly reflects the model selection uncertainty, without specific

assumptions on the true model, the VSCS is typically rather large (unless the num-

ber of predictors is small). As a solution, we advocate special attention to the set

of lower boundary models (LBMs), which are the most parsimonious models not

statistically significantly inferior to the full model at a given confidence level. Based

on the LBMs, variable importance and measures of co-appearance importance of

predictors can be naturally defined.

Key words and phrases: Confidence set, linear regression, model selection, variable

selection.

1. Introduction

A statistical model can be interpreted as a story about how the data might

have been generated by a particular random process. In many empirical analyses,

a relevant question is: “Which story is the most plausible?”. Sometimes, we are

in the fortunate situation where the data strongly support one story, and so

the corresponding model may be properly singled out as the “truth” for most

purposes. More often than not, however, while we wish to select a single model,

the data do not clearly support a unique model.

In the literature of model selection, this issue is sometimes referred to as

model selection uncertainty (Chatfield (1995), Draper (1995), Hoeting et al.

(1999), Yuan and Yang (2005)). A wealth of methods is available in the lit-

erature of statistics and machine learning for variable selection. However, often

it is difficult to declare a single model as superior to all possible competing mod-

els or even among the best set of models, due to the prevailing effect of model

selection uncertainty. The methodology proposed in this paper is not meant to

compete with existing model selection methods. Rather, it aims to characterize
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the intrinsic model selection uncertainty associated with the data at hand and

to provide information on variable importance that goes beyond the standard

single-final-model approach.

A well-established way to address model selection uncertainty is model aver-

aging. It is now well understood that by weighting the candidate models properly,

estimation or prediction can be much improved. See, e.g., Hoeting et al. (1999);

Yang (2001); Hjort and Claeskens (2003) and references therein. In our view,

a fundamental drawback from selecting a single model, which is not sufficiently

dealt with by model averaging, is that when a single set of variables is chosen,

a wealth of information is possibly thrown away in three key aspects. One is

that alternative stories, possibly equally well supported, are ignored, which may

be highly undesirable in terms of scientific understanding of the nature of the

data. The second aspect is that it does not give any indication of how reliable

the selected model is, since uncertainty measures such as standard errors and

confidence intervals based on the final model can be highly misleading. The

third issue is that centering on a single model alone fails to provide trustworthy

association among the predictors in jointly influencing the response variable.

This paper approaches variable selection from a different perspective by re-

ducing the set of all possible collections of the variables to a smaller set, variable

selection confidence set (VSCS), that contains the true model with a given level of

confidence. Our methodology reflects variable selection uncertainty: if the data

are uninformative, distinguishing between models is difficult and the VSCS may

contain a large number of interesting models; in the presence of abundant infor-

mation, the VSCS tends to be much smaller and essentially gives out the true

model when the sample size grows to infinity. We begin with a set of predictors of

size smaller than the sample size, possibly after a variable screening or an initial

variable selection. We then construct an exact VSCS based on F -tests. Such a

confidence set can be very large but, as will be seen, some sparse model selection

methods sometimes produce a model not in the VSCS, in which case one can be

confident that the selected model is too sparse. Next, an important subset of the

VSCS is identified, the lower boundary models (LBMs), defined as the smallest

models that are not statistically significantly inferior to the full model at a given

confidence level. Dropping any term(s) in the LBMs would make the reduced

model unfit from a hypothesis testing perspective. At the given confidence level,

each model in the LBM set tells a well-justified, most parsimonious story. We

show that the LBMs contain the information on the true predictors as n→ ∞; at

the same time the LBMs are computationally more tractable. The set of LBMs

can provide useful information on how many plausible stories are there to explain

the data, which predictors are definitely needed in most of the stories and which

predictors co-star in most of the stories.
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The idea of a confidence set for models has been explored. For example, Shi-

modaira (1998) advocates the use of a set of models that have AIC values close

to the smallest among the candidates based on hypothesis testing. An important

work of Hansen, Lunde and Nason (2011) proposes a notion of model confidence

set in a framework that does not directly require the specification of the data

generating model. The approach is analogous to some step-down procedures for

multiple hypothesis testing (e.g., Dudoit, Shaffer and Boldrick (2003), Lehmann

and Romano (2006) or Romano and Wolf (2005)), as is mentioned in Hansen,

Lunde and Nason (2011). Although we share the same general motivation, our

approach is different: we start with a strong linear model assumption and con-

cretely build variable selection confidence sets. The focused framework offers a

number of advantages: we achieve exactly the specified coverage probability for

the globally optimal model; in our setting the number of predictors, p, is allowed

to grow with the sample size, n; in addition to the confidence sets, our approach

leads to tools to assess model selection uncertainty.

The rest of the paper is organized as follows. In Section 2, we present the

exact VSCS based on F -tests. In Section 3, the subset of LBMs is defined, and

the properties of LBMs and variable importance measures are given. In Section

4, we illustrate the utility of our methods based on two data sets. Simulation

results are in Section 5. A discussion of the closely related work of Hansen,

Lunde and Nason (2011) is in Section 6, followed by final remarks in Section 7.

The proofs of the main theorems are deferred to a separate Appendix available

on-line.

2. Exact Confidence Set

2.1. Setup

In this section, we construct an exact confidence set (ECS) in terms of cov-

erage probability and study a related issue of detectability of the terms in the

true model. Throughout, we assume a normal regression model for the response

variable:

Yi = β0 +

p∑
j=1

βjxj,i + ϵi, i = 1, . . . , n, (2.1)

where ϵi are i.i.d. from N(0, σ2), for some σ2 > 0. The predictors are considered

to be fixed and the intercept is always included. Some of the coefficients in

(β1, . . . , βp) are possibly zero. Let γ∗ denote the set of indexes of all non-zero

terms in the true mean expression. Our main interest is to construct a confidence

set of models, Γ̂, such that P (γ∗ ∈ Γ̂) ≥ 1− α, for a given 0 < α < 1. We use γ

as the index of a model, which corresponds to a collection of predictors.
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2.2. Exact confidence sets based on F-testing

We use the familiar F -test to look for models that can plausibly be the true

model. The full model is assumed to be uniquely fitted by least squares, which

is typically appropriate when p is smaller than n. When p is larger than n,

screening methods may be needed to reduce the number of predictors to be less

than n. When one uses the VSCS to assist a model selection method by providing

additional information, a “full model” can be constructed to be a super model

of the presently selected model by the method (see Section 4.2). Let γf denote

the full model. The F -test compares the candidate model γ to the full model γf .

Particularly, γ is rejected when

F̂ (γf , γ) =

(
RSSγ −RSSγf

)
/
(
dfγ − dfγf

)
RSSγf /dfγf

> F(
dfγ−dfγf

)
,dfγf

(α), (2.2)

where RSSγ and dfγ denote the usual residual sum of squares from fitting γ and

the associated degrees of freedom and Fν1,ν2(α) is the upper α quantile of the

F -distribution with ν1, ν2 degrees of freedom.

Considering all the subset models from the p predictors as the candidates

models, the variable selection confidence set Γ̂ is taken to be the set of all those

models that satisfy F̂ (γf , γ) ≤ F(
dfγ−dfγf

)
,dfγf

(α). By default, the full model is

included in Γ̂.

Theorem 1. Under the normal model, if the true model is not the full model, we

have P (γ∗ ∈ Γ̂) = 1− α. When the true model is the full model, P (γ∗ ∈ Γ̂) = 1.

The result follows trivially from the fact that when γ = γ∗, the F -statistic

has a F(
dfγ∗−dfγf

)
,dfγ∗

distribution. We call Γ̂ the exact confidence set (ECS).

The confidence set can be used to check if a given model (e.g., from a selection

rule) is too parsimonious. A model in Γ̂ is said to be (1 − α)-SAFE (surviving

against F -test evaluation). If a model is not (1−α)-SAFE, it most likely misses

important predictors. As will be seen, models selected by some popular sparse

model selection methods sometimes are not (1− α)-SAFE.

The simple VSCS has exact 1−α coverage probability, but its size needs to be

discussed. The largeness of VSCS is necessary in general. Without any condition

on the magnitudes of the effects of the predictors, to guarantee the coverage

probability, we must include large models because one cannot tell whether two

nested models are both correct, or the smaller model is wrong but the extra

terms in the larger one are tiny relative to the sample size. Therefore, Γ̂ cannot

be improved without further conditions on signal strength. From a practical

perspective, this VSCS can be too large to be directly useful beyond checking a

model suspected of being overly parsimonious.
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2.3. ECS after screening or a conservative selection

In various applications, p is larger than n. Methods such as Lasso and

Scad can be applied to obtain a sparse model with a relatively small number of

predictors. An important issue then is to examine the reliability of the selected

model. In this context, VSCS can provide a complementary perspective on which

variables and models may be important.

To construct a VSCS when p > n, a variable screening method can be used

to sift out unimportant variables and reduce the number of predictors for further

consideration to be less than the sample size. In the literature, several screening

methods have been proposed with theoretical justifications (see, e.g., Fan and Lv

(2008) and Fan and Song (2010)).

Consider a variable screening method ψ that yields a reduced collection of

the original predictors, denoted by Ω(ψ), of size at most n − 1. The size is

typically substantially smaller than n, say of a smaller order. For example, in the

sure independence screening procedure of Fan and Lv (2008) based on marginal

correlations, the prescribed size of Ω(ψ) is dn = O(n/ log(n)). Treating Ω(ψ) as

the full model, we can find the ECS as described in the previous subsection and

denote it by Γ̂Ω(ψ).

Alternatively, we may consider a set of L high-dimensional model selection

methods Ψ = {ψ1, . . . , ψL} that each produces a model with a choice of a tuning

parameter. For our purpose, the tuning parameter for each method is chosen

conservatively so that the selected model is more likely to not miss the true

predictors (but may include noise variables at the same time). The set Ψ (with

the tuning parameters) is said to be collectively over-consistent if with probability

going to 1 the union of the sets of predictors in the selected models by the L

methods, denoted by Ω(Ψ), contains all the predictors in the true model. Clearly,

if any of the model selection methods is actually consistent or over-consistent in

selection, then Ψ is collectively over-consistent, but the reverse is not true. Hence

the condition is much milder than demanding at least one of the methods to be

consistent. Let Γ̂Ω(Ψ) denote the ECS based on Ω(Ψ) as the full model (assumed

to be of size less than n).

For the result below, we assume that the screening or pre-selection by Ψ is

done based on a side data set (e.g., from a previous study) or using a small part

of the present data. In applications, when the sample size is small and there is

no side data, variable screening may be done with the full data, as done in Fan

and Lv (2008), although there might be a bias due to reuse of the same data for

both steps (screening and VSCS construction).

Corollary 1. If screening method ψ has Ω(ψ) containing all the variables in γ∗

with probability going to 1, or if Ψ is collectively over-consistent, then lim infn→∞
P (γ∗ ∈ Γ̂Ω) ≥ 1− α, where Ω is Ω(ψ) or Ω(Ψ), respectively.
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2.4. Detectability conditions

We look for conditions under which the terms in the true model will eventu-

ally not be missed in the models in the ECS. Let γ denote a model that misses

at least one true term. The F -statistic F̂ (γf , γ) has a non-central F -distribution

F(
dfγ−dfγf

)
,dfγ ,δγ

, where δγ is the non-centrality parameter summarizing the over-

all effect from missing one or more terms. A VSCS method is said to asymptot-

ically detect all the true terms if all the true terms are included in each of the

models in the confidence set with probability going to 1. Asymptotic detectabil-

ity does not address the issue of inclusion of unnecessary terms. Here we let the

number of predictors p depend on n, say pn. We assume that pn ≤ (1− ε)n for

some possibly small 0 < ε < 1. Let p0 denote the number of terms in the true

model, assumed to satisfy that log p0 is of order log n and p0/pn → 0.

Theorem 2. Let Γu denote the set of models that miss at least one true term.

For the ECS, a necessary condition for asymptotic detectability of the true terms

at each 0 < α < 1 is

min
γ∈Γu

δγ√
dfγ − dfγf

→ ∞ as n→ ∞.

The true terms are asymptotically detectable if, for some postive constant C

min
γ∈Γu

δγ

ξn +
√

(dfγ − dfγf )
(
1 + log pn/(dfγ − dfγf )

) > C

for some slowly increasing sequence of ξn → ∞. There is a setting with pn →
∞ such that this condition is necessary for the true terms to be asymptotically

detectable.

These necessary and sufficient conditions typically hold when the list of mod-

els is fixed (and contains the true model), as n→ ∞. There is a small gap (at the

order of a logarithmic term in pn) between the sufficient and necessary conditions

if pn → ∞ (although the term ξn is technically needed when the other term in

the denominator stays bounded, since it is allowed to approach ∞ arbitrarily

slow it is ignored in the discussion). As is shown in the proof, we can construct

a setting where the extra logarithmic term is necessary. Therefore the sufficient

condition in the theorem is not generally improvable.

Consider a proper subset model of the true model with at least one true

term missing. Under the usual assumption that predictors are normalized and not

highly correlated, the detectability condition implies that nβ2/(
√
pn − p0 log(pn))

→ ∞, where β is any true coefficient. If the true model is sparse and pn is only

of a slightly larger order than p0, this condition is mild. If the full model is so
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large that p is of order n, even if the true model is sparse, the true coefficients

have to be much larger to ensure the detectability of all the true terms. One

should avoid a large full model, if possible. This understanding can be exploited

to derive empirical rules to construct a “full model” based on a high-dimensional

model selection method so as to gain more insight than offered by the selected

model alone (see Section 4.2 for an example).

3. The Subset of Lower Boundary Models (LBMs)

Let γ be a model in a confidence set Γ̂. We say that γ is a lower boundary

model if there is no model in Γ̂ that is nested within γ. Let LBM(Γ̂) denote the

set of all lower boundary models. From Theorem 1, with probability at least 1−α,
the true model is a LBM or it contains at least one LBM (as its subset model).

Therefore, the set of the lower boundary models can naturally serve as a tool to

check if a selected model is over-simplifying: If it is not on the lower boundary

or above, we can confidently say that the model has missed important predictors

and we have an idea of what they are. For the purpose of model identification

beyond predictive performance, such an objective check can be helpful to avoid

consequences of a decision based on an excessively simplified description of the

data.

When the true model is weak (relative to the sample size and the error vari-

ance), LBM(Γ̂) can involve noise variables. When the signal is strong, however,

we have this result.

Corollary 2. Assume that the ECS asymptotically detects all the true terms. As

n → ∞, if γ∗ is not the full model, then P (LBM(Γ̂) = {γ∗}) → 1 − α; if γ∗ is

the full model, then P (LBM(Γ̂) = {γ∗}) → 1.

Thus, for a large sample size, when the true terms are asymptotically de-

tectable, the true model will be the only LBM at the given confidence level, and

all the useful variables will not be missed in the LBMs with probability close to

one.

When constructing a VSCS, it is natural to require that if a model is included

in Γ̂, then any larger model is also included. We call such a confidence set

expansive, the ECS in the previous subsection is not necessarily expansive.

For an expansive confidence set, all we need to know is the set of lower

boundary models. The characteristics of the LBMs can be informative regarding

the roles of the predictors; we discuss some possibilities.

1. LBM(Γ̂) is unique. Here all the predictors in the model are important and

no other predictor is proven to be necessary with the limited information

available. When the sample size gets much larger, LBM(Γ̂) may involve

more predictors.
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2. The size of LBM(Γ̂) is larger than 1, but small. One possibility is that the

models in LBM(Γ̂) differ in only one or two predictors, in which case the

common predictors in the LBMs are important and several predictors are

useful but we do not know which one is the best. Another possibility is that

the LBMs are quite different in terms of variable composition, which indicates

that various combinations of the predictors can give similar explanation power

of the response variable.

3. The size of LBM(Γ̂) is moderate. This can happen when the number of

predictors is not small and a number of predictors are moderately or highly

correlated.

4. The size of LBM(Γ̂) is relatively large. For high-dimensional cases, this may

be typical and one cannot realistically find the “true” or best model; any

model selection rule is picking out a model from among many possibilities

that have similar criterion values.

3.1. A multiple-explanation index and inclusion importance

Based on the LBMs, we propose some quantities that can be useful for mea-

suring the degree to which multiple models seem to explain the data well, and

also the importance of a variable. For a set A, |A| denotes the size of the set.

For a given predictor xi, let K(xi) be the number of times that xi appears in the

models in LBM(Γ̂).

Definition 1. The (1− α)-multiple-explanation index (MEI) is

MEI = log |LBM(Γ̂)|.

The MEI can be as large as the logarithm of the combinatorial number

of p choose ⌊p/2⌋, roughly (p/2) log(2e). The MEI describes (on a log-scale)

how many most-parsimonious models there are to explain the data at the given

confidence.

Definition 2. The (1− α)-inclusion importance of a predictor xj is

II(xj) = K(xj)/|LBM(Γ̂)|.

A predictor that appears in all models in LBM(Γ̂) has II = 1; for others it

is less. A variable with II = 0 should not be declared useless, only that there is

not enough evidence to support that it is useful at the time being.

Corollary 3. Assume that the ECS asymptotically detects all true terms. Then

we have lim infn→∞ P (MEI = 0) ≥ 1−α and limn→∞ P (II(xj) = 1) = 1 for all

xj in the true model and limn→∞ P (II(xj) > 0) ≤ α for all xj not in the true

model.
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We also consider inclusion importance based on the entire confidence set Γ̂,

defined by ĨI = K̃(xj)/|Γ̂|, j = 1, . . . , p, where the function K̃(xj) is the number

of times that xj appears in the models of Γ̂. Here, unimportant predictors tend to

have ĨI close to 1/2 because, when expanding from the lower boundary models,

given the other added predictors the predictor being examined may or may not

be included. See the examples in Sections 4 and 5.

3.2. Importance profile and co-importance of predictors

Let Γ̂α and LBM(Γ̂α) denote a 1− α confidence set ECS, Γ̂, and its corre-

sponding lower boundary set, LBM(Γ̂). Tracing the LBMs as α changes between

these two extremes can be informative.

We introduce two graphical tools to study the explanatory role of predictors.

The first is the predictor II profile plot, which traces the inclusion importance,

II(xj) or ĨI(xj) of all (or some) predictors, against α. Here one can inspect

whether one or more predictors become more important as the confidence level

changes. Thus a sharp and steady increase in II when the confidence level

changes from 99.9% to 95% suggests that the predictor is highly relevant and

should not be missed (see Figures 1(a) and 3(a)).

The second tool is the co-inclusion importance (CII) plot. The CII plot dis-

plays the co-importance of variable pairs {xj , xk}, j, k = 1, . . . , p. Let K(xj , xk)

denote the number of models in the LBM(Γ̂α) including both xj and xk. The

co-importance of xj and xk is taken as

CII(xj , xk) =
K(xj , xk)

K(xj) +K(xk)−K(xj , xk)
(3.1)

if K(xj , xk) > 0, and CII(xj , xk) = 0 if K(xj , xk) = 0. Here the denomina-

tor counts all the models in LBM(Γ̂α) that include either xj or xk, so 0 ≤
CII(xj , xk) ≤ 1. For the example of genetic data in Section 4.2, we display co-

inclusion importance using a display in which the nodes represent variables and

the thickness of the edges is proportional to CII values (see Figures 1(b) and 3

(b)).

Model selection methods often exclude predictors that are highly correlated

with ones that are already in a model, whether or not they should be included

from a different angle. Some methods, such as Elastic Net( Zou and Hastie

(2005)), have been proposed to alleviate the problem. The examination of the

LBMs can offer insight on the question of whether two predictors should co-

appear or not. The idea also works for a set of three predictors or more.
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Table 1. Exact confidence sets (ECSs) for the prostate cancer data. The

columns represent confidence level ((1−α)%), size of Γ̂ (ECS size), multiple
explanation index (MEI), and relative frequency of the predictors in the ECS
(columns 4–11).

(1−α)% ECS size MEI lcavol lweight age lbph svi lcp gleason pgg45
99.9 86 1.10 1.00 0.74 0.48 0.56 0.63 0.49 0.48 0.49
99.0 53 0.69 1.00 0.81 0.49 0.53 0.79 0.43 0.40 0.53
95.0 32 0.00 1.00 1.00 0.50 0.50 1.00 0.50 0.50 0.50

4. Data Examples

4.1. Prostate cancer data

Consider the benchmark data set from a study of prostate cancer studied

in the model selection literitures by Stamey et al. (1989). Tibshirani (1996),

Zou and Hastie (2005) and Li and Lin (2010), among others. The predictors are

the clinical measures log(cancer volume) (lcavol), log(prostate weight) (lweight),

age, the logarithm of the amount of benign prostatic hyperplasia (lbph), seminal

vesicle invasion (svi), log(capsular penetration) (lcp), Gleason score (gleason)

and percentage Gleason score 4 or 5 (pgg45). The response is the logarithm of

prostate-specific antigen (lpsa). In Table 1, we show size and relative frequency

of the predictors for the ECSs at the 95, 99 and 99.9% confidence levels. The size

of the ECS is clearly monotone in α. At the 99 and 99.9% levels, lcavol, lweight,

lbph and svi appear in more than half of the sets, yielding only 2 and 3 LBMs

respectively. At the 95% confidence level, lcavol, lweight and svi appear in all

the models in the ECS and there is a single LBM containing these predictors.

In Table 2, we show the lower boundary models for the 95 and 99% confidence

levels, and models selected using AIC and BIC, Lasso and Scad (Fan and Li

(2001)). To compute Lasso and Scad we used the R package ncvreg (available

at http://cran.r-project.org). The tuning parameters for Lasso and Scad were

chosen by 10-fold cross validation. All selection procedures considered turned out

to be SAFE at the 95% confidence level, since the selected models were found

in the exact confidence set. Our II statistic shows four variables appearing at

least once in the lower boundary at the 99% confidence level (lcavol, lweight,

lbph, and svi), suggesting that such variables are indeed relevant. At the 95%

confidence level, only lcavol, lweight and svi are relevant for a parsimonious

story of the underlying process. The other selection methods tend to agree on

the importance of these variables.

In Figure 1(a), we show the inclusion importance profiles for the variables

computed at the 95% level. Besides the models in the lower boundary, the ECS

also includes all the models obtained by expanding from the lower boundary

models; therefore, for the ECS we have ĨI=1/2 for α sufficiently close to 0. As
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Table 2. Lower boundary models and model selection for the prostate can-
cer data. We list the lower boundary models (LBMs) (1=predictor included,
0=predictor not included) computed for α=0.01, 0.05, and variable inclu-
sion importance (II) for each predictor. The last columns show the models
selected using AIC, BIC, Lasso and Scad (1= predictor included, 0= predic-
tor not included); For the AIC and BIC we used exhaustive search for all
possible models; for Lasso and Scad we used 10-fold cross validated tuning
parameters.

α = 0.01 α = 0.05
Term LBMs II LBMs II AIC BIC Lasso Scad
lcavol 1 1 1.00 1 1.00 1 1 1 1
lweight 1 0 0.50 1 1.00 1 1 1 1
age 0 0 0.00 0 0.00 1 0 0 1
lbph 0 1 0.50 0 0.00 1 0 1 1
svi 0 1 0.50 1 1.00 1 1 1 1
lcp 0 0 0.00 0 0.00 0 0 0 0
gleason 0 0 0.00 0 0.00 0 0 0 0
pgg45 0 0 0.00 0 0.00 0 0 1 1

α increases, we observe different behaviors of the predictors. The importance of

lcavol, lweight, and svi increases rapidly as α grows reaching the limit value ĨI=1

for α larger than 0.035. In contrast, the importance of age, lbph, lcp, gleason, and

pgg45 converges to 0.5, meaning that we have insufficient information to declare

such variables important when α gets larger than 0.035. When α is between 0

and 0.035, lbph and pgg45 appear moderately relevant. In Figure 1(b), we show

the co-inclusion importance graph for the variables computed at the 99% level.

The nodes correspond to individual variables, while the thickness of the edges

is proportional to the co-inclusion importance statistic, CII, defined in Section

3.2. The graph emphasizes pairwise occurrence of variables lcavol, lweight, svi

and lbph in the lower boundary. It suggests that, at the 99% level, in terms of

explaining the variability in the prostate-specific antigen most parsimoniously,

svi and lbph appear together, and they serve as an alternative to lweight.

4.2. Bardet-Biedl syndrome genetic data

We applied our methods to gene expression data from the micro-array ex-

periments of mammalian eye tissue of 120 twelve-week-old male rats (Scheetz et

al. (2006)). The outcome of interest is the expression of TRIM32, a gene which

has been shown to cause Bardet-Biedl syndrome (Chiang et al. (2006)), a genetic

disease of multiple organ systems, including the retina. The micro-arrays contain

over 31,042 different probe sets. For each probe, gene expression is measured on

a logarithmic scale. Following the pre-processing steps in Scheetz et al. (2006)

and Huang and Zhang (2008), we selected 18,976 of the 31,042 probe sets on the
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(a) (b)

Figure 1. Inclusion and co-inclusion importance for the prostate cancer
data: (a) Inclusion importance (ĨI) for individual variables based on the

exact confidence set, Γ̂, for α ranging from 0 to 0.05. (b) Co-inclusion
importance graph at the 99% confidence level with edges representing values
the co-inclusion statstic CII defined in Section 3.2.

array as they “exhibited sufficient signal for reliable analysis and at least 2-fold

variation in expression”; then we restricted our attention to the 3,000 probes

with the largest variance.

Example 1 (Marginal correlation and Lasso screening). Here we consider sta-

tistical screening, which is routinely applied on micro-array data when no bio-

logical hypothesis is available. Following Huang and Zhang (2008), we selected

200 variables with the strongest correlation with TRIM32; then we used penal-

ized regression to select a smaller subset of predictors. As an illustration, we

considered the Lasso method to carry out the latter step using the R package

ncvreg. We computed models Γ = {γ1, . . . , γ100} along the Lasso solution path

corresponding to a grid of 100 Lasso regularization parameters and selected the

best model γ̂∗ ∈ Γ using 5-fold cross-validation consisting of 18 predictors. We

then built the “full model” γf by moving along the lasso path and taking the

largest model on the path with the number of predictors p̃ such that

δ̂max√
(p̃− p∗ + 1)(1 + log p̃− log(p̃− p∗ + 1))

> C, (4.1)

where δ̂ = maxj{t̂2j} is an estimated upper-bound for the non-centrality pa-

rameter when one term is missing, t̂j (j = 1, . . . , p∗) are the t-statistics for the



CONFIDENCE SETS FOR MODEL SELECTION BY F -TESTING 1649

individual variables in the lasso model, and C is a constant representing the

necessary signal-to-noise ratio to detect the true terms in the sense of Theorem

2. The left hand side in (4.1) represents an approximated upper bound to the

detectability condition in Theorem 2; for example, with C = 3, we end up with

a full model with 21 predictors. The rationale for the above choice of full model

is that if we are to trust the lasso model at all, using a larger full model than

given above may even make the strongest term in the lasso model undetectable.

In Figure 2(a), we show the p-values corresponding to the F -test comparisons

between the full model and the candidate sub-models along the Lasso path. The

upper region in the plot contains 95%-SAFE models along the Lasso path, while

the bottom part of the plot contains models that are unsafe due to the overly

aggressive Lasso selections, which miss one or more important variables. Of

particular interest are the model closest to the boundary (circled in Figure 2(a)),

since they represents the most parsimonious Lasso path model within the ECS.

Such models include the probes 1370429 at, 1374106 at, 1379971 at, 1383110 at,

1383673 at, 1383996 at, and 1389584 at, which alone explain approximately 70%

of the variability in TRIM32. The probes selected by such parsimonious models

overlap with the selection obtained by the adaptive Lasso and adaptive Scad

methods described Huang and Zhang (2008). The best fitting ECS model on the

Lasso path (also circled in Figure 2(a)) accounts for 74% of the variability in

TRIM32, but contains almost twice as many variables. In Figure 2(b) we show

the inclusion importance of predictors at the 95% confidence level. It shows that,

except for two predictors that appear on at least 40% of the LBMs, the other

predictors have rather low II values, which reflects the fact that there are many

roughly equally plausible models with different compositions of the predictors

that can explain TRIM32. From the plot, we may need to admit that the task

of identifying the best model at the current sample size is infeasible.

Example 2 (Biological screening). In this example, we consider as potential

predictors expression in 11 probes with significant linkage to the known retinal

disease genes Bbs1, Bbs4, Bbs8, Opn1sw, Pcdh15, Pde6a, Pex1, Pex7, Rdh12,

and Rdp4 in Scheetz et al. (2006) (probe ids 1384603 at, 1383417 at, 1383007 at,

1378416 at, 1388025 at, 1378408 at, 1393426 at, 1376595 at, 1379784 at,

1382949 at, 1371762 at). Figure 3(a) shows the marginal inclusion importance

profile plot for α ranging from 0 to 0.1. The most important genes appear to be

Bbs8, Bbs4, Pex7, and Opn1sw for all considered confidence levels. We remark

that Bbs4 and Bbs8 are known to be related to the Bardet-Biedl syndrome, since

they belong to the so-called BBS group. Also Opn1sw is reputed to be important

since it represents a non-contiguously regulated gene encoding proteins related

to the disease. Figure 3(b) shows the co-inclusion importance graph, where the
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(a) (b)

Figure 2. SAFE models on the Lasso path: (a) p-values based on the F -test
of the full model γf with 21 predictors against smaller models on the Lasso
path; the models above the line are safe at the 95% confidence level. (b)
Inclusion importance of predictors (II) computed from the lower boundary
models.

thickness of the edges represents values of the co-inclusion importance statistic

CII defined in Section 3.2. (edges corresponding to CII ≤ 0.2 are omitted

for clarity). It offers information unavailable in the marginal ĨI plot or from

usual model selection processes. The totally isolated predictors in the graph are

weak on their own and also do not appear to have any potential jointly with

another predictor. There is some evidence to support Rdh12, Opn1sw, and Pex1

as useful, which is already seen from Figure 3(a). But Figure 3(b) further shows

that Rdh12 and Pex1 tend to influence the response by appearing together, but

they are not connected with Opn1sw, suggesting that {Rdh12, Pex1} and Opn1sw

have competing (rather than synergistic) effects. While Bbs4 and Opn1sw have

the same high II value, 0.62, their CII value is very small (the connection is very

light), which says that their effects are redundant if appearing together. Such

information may help the biologist gain more insight on the problem.

In Table 3, we show lower boundary models at the 95% confidence (models

LBM1–LBM8), and inclusion importance statistics. For comparison purposes,

we also report 5-fold cross-validated Lasso, Scad, and Mcp models selected. Due

to pronounced noise in the data, Lasso, Scad, and Mcp generate quite different

models for different cross-validation runs; for illustration purposes, we show a

single instance. We also show the AIC and BIC models computed by exhaustive

search. For each model we report p-values from the F -test defined in Section 2.2
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Table 3. Model selection for the Bardet-Biedl data at the 95% confidence
level: Lower boundary models (LBM1–LBM8), inclusion importance statis-

tics for the entire confidence set (ĨI) and the lower boundary (II), full,
Lasso, Scad, Mcp, AIC, and BIC selections; X denotes “selected” and (*)
indicates models outside the confidence set (unSAFE). For each model we
include percent p-values for the F -test with the full model (p-val) and co-
efficients of determination based on ordinary least squares fits (R2). Lasso,
Scad, and Mcp are computed using 5-fold cross-validated hyper-parameters.
AIC and BIC models are computed by exhaustive search.

Abca4 Bbs1 Bbs4 Bbs8 Opn1 sw Pcdh15 Pde6a Pex1 Pex7 Rdh12 Rdp4 p-val(%) R2

LBM1 X X X X X 5.38 0.49
LBM2 X X X X 9.37 0.49
LBM3 X X X X X X 6.72 0.49
LBM4 X X X X X 5.15 0.48
LBM5 X X X X 6.96 0.49
LBM6 X X X X 5.82 0.49
LBM7 X X X X 5.51 0.50
LBM8 X X X X 6.96 0.50
II 0.12 0.25 0.62 1.00 0.62 0.00 0.00 0.37 0.75 0.25 0.50

ĨI 0.42 0.45 0.94 1.00 0.78 0.44 0.48 0.57 0.83 0.48 0.68
Full X X X X X X X X X X X 100.00 0.55
Lasso X X X X X X 23.23 0.51
Scad X X X X 58.16 0.49
Mcp(*) X X 0.42 0.44
AIC X X X X X X 45.30 0.53
BIC(*) X X X 4.70 0.48

and R2 obtained from a ordinary least square fit. The lower boundary models

contain 4 to 6 variables emphasizing various combinations of predictors equally

useful in explaining TRIM32. All the LBMs give R2 near 50%, while the full

model with 11 variables yields R2 = 55%. Genes Bbs4, Bbs8, Opn1sw and Pex7

are included in most LBMs. The same genes also appear frequently in the other

selected models. The Mcp and BIC models fall outside the confidence set, so those

models cannot be trusted at the 95% confidence level. This is not surprising since

BIC and Mcp criteria are known to generating overly sparse selections, so here

they are likely missing at least one important variable.

5. Monte Carlo Simulations

We sampled n covariate vectors in the design matrix from a multivariate

normal distribution with mean zero and covariance matrix Σ. For each covariate

vector, we computed the corresponding response y = x′β + ϵ, ϵ sampled from

N(0, σ2). We studied the following setups. Model 1: βj = 1, j = 1, . . . , p/2 and

βj = 0, j = p/2 + 1, . . . , p. The correlation between the ith and jth covariates

is Σij = ρ|i−j|, 0 ≤ ρ < 1. Model 2: βj = 1/j, j = 1, . . . , p/2 and βj = 0, j =

p/2+1, . . . , p. The correlation between the ith and jth covariates is Σij = ρ|i−j|,

0 ≤ ρ < 1. Model 3: Coefficients as in Model 1, but the half of the predictors

with zero and the half with nonzero coefficients have Σij = ρ ̸= 0. The remaining
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(a) (b)

Figure 3. Inclusion and co-inclusion importance at the 95% confidence level
for the the Bardet-Biedl micro-array data. (a) Inclusion importance profile of

predictors (ĨI) computed on the entire confidence set. (b) 95% confidence co-
inclusion importance graph with edges representing values the co-inclusion
statistic CII defined in Section 3.2 (edges corresponding to CII < 0.2 are
omitted for clarity).

pairwise correlations are zero.

5.1. MC Example 1: ECS and LBM set size

In Table 4, we show Monte Carlo estimates for the ECS size, LBM set size,

and average number of variables for the lower boundary models based on dif-

ferent choices of p, ρ, and α. The number of models in the ECS is monotone

in α with smaller values of α corresponding to larger confidence sets. A similar

behavior occurs for the LBM set size when the predictors are orthogonal and

all the non-zero coefficients have the same size (Model 1). However, when some

of the coefficients are small relative to the others (Model 2), we do not have

monotonicicty in α.

While the size of the ECS increases rapidly in p, that of the LBM set remains

relatively small. This is important in light of Corollary 2, since the boundary

models contain sufficient information about the variables in the true model. In

the worst case, in terms of signal-to-noise ratio (Model 2, p = 12, ρ = 0.7), the

boundary set has less than 12 models. This suggests that although the size of

all the models in the ECS may be huge without further restrictions when p is

large, computing the LBMs can still be managed for a moderately large number
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Table 4. Monte Carlo estimates for size of the exact confidence set (ECS),
lower boundary model (LBM) set, and the average size of LBMs. The results
are based on 500 Monte Carlo samples of size n = 100 from Models 1 and
2, for different choices of confidence levels (Conf.), predictors’ correlation
(ρ), and numbers of predictors (p). Monte Carlo standard errors are smaller
than 0.01.

Model 1 Model 2
p = 8 12 8 12

Conf. (%) ρ = 0.0 0.7 0.0 0.7 0.0 0.7 0.0 0.7
99.9 17.14 49.36 76.19 392.33 100.27 131.27 1714.08 2176.32

ECS 99.0 15.99 30.89 65.00 211.16 76.03 105.73 1281.22 1737.52
size 95.0 15.29 21.53 60.75 122.81 53.78 81.42 883.06 1327.67

90.0 14.47 18.02 57.31 93.22 42.91 67.94 687.12 1102.03
99.9 1.13 3.77 1.49 8.89 1.75 3.51 3.24 9.26

LBM set 99.0 1.03 2.53 1.14 5.84 1.85 3.69 3.89 10.45
size 95.0 1.04 1.82 1.14 3.80 1.86 3.68 4.29 11.11

90.0 1.07 1.63 1.19 3.07 1.85 3.63 4.44 11.17
99.9 3.92 3.28 5.84 5.04 1.59 1.71 1.73 2.32

LBMs 99.0 3.99 3.55 5.99 5.42 2.02 2.07 2.29 2.77
av. size 95.0 4.06 3.81 6.09 5.77 2.54 2.43 2.92 3.23

90.0 4.12 3.99 6.17 5.96 2.83 2.67 3.29 3.47

of predictors.
The number of predictors in the LBMs grows with α. When the confidence

level increases, the LBMs are more parsimonious. If the confidence level is small,
there are only a few, relatively large LBMs. In the presence of relatively small
coefficients and a large correlation, the LBMs are numerous but they contain
fewer predictors.

5.2. MC Example 2: importance profile of predictors

We illustrate the behavior of the ECS and LBM sets given different signif-
icance levels. We considered a sequence of equally spaced values for α ranging
from 0.001 to 0.1, and drew 100 Monte Carlo samples of size n = 100 from Model
3 with p = 8 predictors. Only the first four predictors had nonzero coefficients
β1 = β2 = β3 = β4 = 1. While x1 x2, x5 and x6 were orthogonal to all the other
predictors, x3, x4,x7 and x8 were moderately correlated with correlation ρ = 0.5.

Figure 4(a) shows the Monte Carlo averages of the predictors’ inclusion im-
portance profile plots (solid line) for the ECS with 95% confidence bands (dashed
lines). The lighter lines show individual Monte Carlo realizations of the profile
plots. All the predictors with nonzero coefficients show inclusion importance close
to 1, meaning that the relevant predictors are almost always included in the ECS.
In contrast, the independent predictors show smaller variability compared to the
correlated predictors.
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Figure 4. Inclusion importance (II) profile plots simulated from Model 3.
The solid and dashed black lines represent Monte Carlo means and 95%
confidence bands, respectively. The lighter lines show 100 Monte Carlo real-
izations. The plots are based on 50 Monte Carlo samples of size n = 100 from
Model 3, where predictors x1, x2, x5, x6 are orthogonal to all the predictors,
while x3, x4, x7, x8 have pairwise correlation ρ = 0.5.

6. Comparison with the Work of Hansen, Lunde and Nason (2011)

A recent paper by Hansen, Lunde and Nason (2011) is closely related to

our work. We share the goal of providing a confidence set of models to give the

data analyst a proper sense on how far the information in the data can allow

him/her to go in terms of identification of the best model. They also share the

view that the size of the confidence set is a valuable indicator of the degree of

model selection uncertainty. Here we discuss the differences.
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As to assumptions in Hansen, Lunde and Nason (2011) the true model is

not specified, and candidate models provide estimations/predictions that are

assessed in terms of a chosen loss function. This flexible framework targets

various applications. Our work starts with a clearly specified full model in the

normal regression setting and the issue is on which subset model to use. Given our

setup in this paper, assumptions are not needed for construction of the variable

selection confidence sets, whrer Hansen, Lunde and Nason (2011) assume that

the mean of the loss difference between any two models stays the same over

time. This last seems restrictive, for the usual regression data, conditional on

the design matrix, even for the true model the losses at the observations typically

are distinct and the mean loss differences are expected to depend on the cases.

Further, their demand that for each pair of models the mean loss difference is

either zero or a nonzero constant seems at odds with common applications. The

mean loss difference assumption in Hansen, Lunde and Nason (2011) also rules

out applications where overfitting models exist, and it may over-simplify the

nature of different performances of the candidate models.

Given our framework, the exact confidence set offers a finite-sample coverage

guarantee. When the set of lower boundary models is considered, we give only

asymptotic results on the containment of the true model and related quantities

under an additional condition on the signal strength. Hansen, Lunde and Nason

(2011) have an asymptotic result on the behavior of their confidence set. Later,

in pursuit of a finite-sample coverage probability, a coherency condition is needed

to relate the equivalence test and the elimination rule. Since the coherency is an

exact requirement, the asymptotic justification of their bootstrap method does

not appear to be sufficient for deriving a non-asymptotic confidence set.

We allow the number of predictors, p to grow with n to capture the challenge

in high-dimensional regression. In such a setting, there are possibly many models

that are hard to distinguish by any method. Our idea is to use the set of lower

boundary models to properly reflect reality. Although it is not explicitly stated

in Hansen, Lunde and Nason (2011), the number of models considered there is

fixed for the theoretical results. The issue with the number of candidate models

being large relative to the sample size seems to be a real challenge to the their

methodology.

7. Concluding Remarks

For reasonably complicated high-dimensional data, it is usually unrealistic

to expect a unique model to stand out as the “true” or best model. Rather

a number of models are more or less equally supported by the data. In such a

situation, it is better to be aware of the top models for a deeper understanding of

the relationship between the response and the predictors. In this work, we have
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demonstrated the usefulness of having a variable selection confidence set from

multiple aspects. Specifically, the examination on whether a model selected is

(1− α)-SAFE, the inclusion importance and co-inclusion importance all provide

valuable information unavailable in the single selected model, no matter the

model selection criterion.

Statistical estimation/prediction or inference based on more than one model

is not a new topic. Model averaging tries to reduce the uncertainty associated

with the choice of a single model. For example, Burnham and Anderson (2002)

advocate the use of Akaike weights for assessing strengths of the candidate mod-

els, and for model averaging. While such model selection criterion-based weights

provide an intuitive view on the relative usefulnesses of the candidate models,

more work is needed to understand how the weights can be interpreted pertaining

to reliably selecting the most important variables.

Our VSCS can be used as a model selection diagnostic tool. To examine a

model selected by a sparse modeling method, one can first come up with a super

model by moving further along its solution path and adding a few predictors

recommended by some other model selection methods. If the model is not 95%-

SAFE, then there is strong reason to doubt the soundness of the set of predictors

in the model. Furthermore, by comparing it with the LBMs, one has a good

idea of which important predictors are missed. Of course, the outcome of the

diagnostic process is much more informative when a negative result is reached.

Although we can always quickly check whether one or a few models selected

by certain methods are in the ECS or not, when p is large it is computationally

challenging to go over all the subset models to identify the entire ECS without

further conditions. With that, in the numerical work of this paper, we have

limited our scope to manageable sets of candidate models with p relatively small

(possibly after a variable screening). Although the size of the ECS may grow

quickly in p, the number of LBMs does not grow as much and can often be

computed, as seen in the illustrations of Section 5. Nevertheless, the computation

to list out all the LBMs can still be costly. We plan to seriously examine the

computation issues of ECS and LBMs in the future.
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