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Abstract: Survival data often contain tied event times. Inference without careful

treatment of the ties can lead to biased estimates. This paper develops the Bayesian

analysis of a stochastic wear process model to fit survival data that might have a

large number of ties. Under a general wear process model, we derive the likelihood

of parameters. When the wear process is a Gamma process, the likelihood has a

semi-closed form that allows posterior sampling to be carried out for the parameters,

hence achieving model selection using Bayesian deviance information criterion. An

innovative simulation algorithm via direct forward sampling and Gibbs sampling

is developed to sample event times that may have ties in the presence of arbitrary

covariates; this provides a tool to assess the precision of inference. An extensive

simulation study is reported and a data set is used to further illustrate the proposed

methodology.
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1. Introduction

Tied event times are a common phenomenon in time-to-event studies. For

events that only happen at specific points in time, ties occur naturally, and for

events that can happen at any point in time, ties may arise when a coarse time

scale is used to record data (cf., Rossi, Berk, and Lenihan (1980)). Even when

continuous event times are recorded at a fine time scale, ties can occur. Thus,

machines in a workshop can stop working instantaneously from a power outage,

an abrupt worsening of air quality can cause multiple emergency calls in a short

time period, and in a sudden natural or man-made disaster casualties tend to

happen at the same time (cf., Gold et al. (2007)). It can be more useful to model

observed ties as the outcome of a certain mechanism underpinning the events

than to either account for them as artifacts or to ignore them altogether.

Under the Proportional Hazards (PH) model of Cox (1972, 1975), the sur-

vival function of a subject with time-invariant covariates is expressed as

P (T > t |x) = exp{−H(t) exp(x′β)}, (1.1)
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where T is the failure time, x is a vector of covariates, H is a completely un-

specified baseline cumulative hazard function, and β is a vector of regression

coefficients. In the non-Bayesian setting, inference from the model uses the par-

tial likelihood of β, which implicitly assumes that the baseline hazard rate H ′(t)

exists, hence ruling out ties between independent failure times. In practice, in

the presence of ties, approximation can be made by applying the formula for

the no-tie case or by discretizing time (Cox (1972); Peto (1972); Breslow (1974);

Efron (1977)).

Taking H as modeled as a stochastic process provides a powerful way to

handle ties. In reliability analysis, Gaver (1963) took H to be a process with

independent increments. Reynolds and Savage (1971) studied Gaver’s model in

detail and obtained a likelihood function of its parameters and, for the case of

Gamma process, several closed form results. However, as Gaver’s model sets

β = 0 in (1.1), its primary concern is different from the PH model. Within

the Bayesian setting, Dirichlet, Gamma, Beta, beta-Stacy and, more generally,

neutral-to-the-right processes have been introduced as priors onH or its transfor-

mations (Ferguson (1973); Doksum (1974); Kalbfleisch (1978); Ferguson and Pha-

dia (1979); Hjort (1990); Walker and Muliere (1997); Epifani, Lijoi, and Prünster

(2003)), and inference on β can be based on maximum likelihood estimation or

Bayesian posterior analysis (Kalbfleisch (1978); Hjort (1990); Damien, Laud, and

Smith (1996); Laud, Damien, and Smith (1998); Kim and Lee (2003); Lee and

Kim (2004)). Under these priors, tied event times occur with positive proba-

bility. On the other hand, a standard Bayesian approach that rules out ties

imposes priors on the baseline hazard rate function H ′, which leads to continu-

ous H (Antelman and Savage (1965); Reynolds and Savage (1971); Dykstra and

Laud (1981); Lo and Weng (1989); Clayton (1991); Ibrahim, Chen, and Sinha

(2001); Nieto-Barajas and Walker (2004); James (2005, 2006); Lijoi, Prünster,

and Walker (2008b); Peccati and Prünster (2008); Kim and Kim (2009); Kim,

Park, and Kim (2011)). In data analysis, tie-breaking has been used to artificially

transform tied event times into distinct ones (Kalbfleisch (1978); Chen, Ibrahim,

and Shao (2006)). However, the resulting estimate can be seriously biased if the

proportion of ties is large (Burridge (1981)).

Following Gaver (1963), we regard H as a hidden stochastic wear process

underlying the failures, rather than a parameter with a certain prior distribution.

Based on the joint likelihood of β and the parameters of the process H, we

establish Bayesian inference and model selection to analyze survival data with

ties. The joint likelihood is obtained under a general multivariate process model

that associates with each subject a possibly different H. This model unifies

the PH model as a limiting case and others, such as the Lévy copula model

(Epifani and Lijoi (2010)). We obtain the likelihood of the parameters using
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an argument similar in spirit to those for several special cases (Reynolds and

Savage (1971); Lijoi, Prünster, and Walker (2008a); Epifani and Lijoi (2010)).

For homogeneous Gamma wear processes, we derive the likelihood in a semi-

closed form. By imposing suitable noninformative priors on β and the parameters

of the Gamma process, we can sample from their joint posterior distribution

efficiently using Gibbs sampling. While similar methods have been used for

posterior sampling of β (Damien, Laud, and Smith (1996); Laud, Damien, and

Smith (1998)), the joint sampling appears to be new. With this in place, we

propose to use the Bayesian deviance information criterion (DIC) (Spiegelhalter

et al. (2002)) to guide the selection of Gamma process models.

We develop a Gibbs sampling-based simulation algorithm, termed the Direct

Forward Sampling (DFS), to sample multiple failure times allowing for ties from

a homogeneous Gamma process H in the presence of arbitrary values of β and

covariates. The sampling is clearly different from posterior sampling, which has

failure times already observed, and it does not rely on truncating the Lévy mea-

sure or sampling the path of H at pre-selected time points (Damien, Laud, and

Smith (1996); Laud, Damien, and Smith (1998); Lee and Kim (2004)). Except

for the approximation error of the Gibbs sampling of H just before and at failure

times, as in posterior Gibbs sampling (Laud, Damien, and Smith (1998)), our

sampling method is precise. In fact, by replacing Gibbs sampling with rejection

sampling, exact sampling can be achieved (Chi (2012)).

The rest of the paper is as follows. Section 2 sets up notation. In Section 3

we propose a general multivariate additive process model, derive the likelihood

function for the model, and apply it to Gamma wear processes. In Section 4

we describe the DFS algorithm. Section 5 details a Gibbs sampling algorithm

for posterior computation. In Section 6 we report on an extensive simulation

study to examine the empirical properties of the Gamma wear process model.

In this section, we use DIC to guide the choice of parameters. In Section 7

we analyze a prostate cancer data set with our methodology. Section 8 ends

with a discussion and potential future research work on this topic. Proofs and

a discussion on possible extension to processes other than Gamma processes are

given in Supplementary Material.

2. Basic Setup

Suppose n subjects are observed in a time-to-event study. Denote by Ti, Ci,

and Yi = min(Ti, Ci), the random failure time, right-censoring time, and endpoint

of the ith subject, respectively. We use the corresponding lower-case letters to

denote the actual values of the random variables. Thus yi = min(ti, ci) is the

observed endpoint for the ith subject, with ti observable if and only if ti ≤ ci.

Let δi = I {yi = ti} = I {ti ≤ ci}. The observed data is Dobs = {yi, δi, xi; i ≤ n},
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where xi is the vector of covariates of the ith subject. Let D = {i : δi = 1},
N = {i : δi = 0}, so D consists of those subjects that fail before censoring, and

N those that are censored. Denote by 0 < τ1 < τ2 < · · · < τN the distinct values

of y1, . . . , yn and τ0 = 0. For j ≤ N , let

Dj = {i ∈ D : yi = τj}, Nj = {i ∈ N : yi = τj},
(2.1)

Rj =
∪
i≥j

(Di ∪ Ni), R′
j = Rj \ Dj ,

so Dj consists of subjects that fail at time τj , Nj those censored at τj , Rj those

at risk in time interval (0, τj), and R′
j those at risk in time interval (0, τj ]. Let

nT = |{j : Dj ̸= ∅}| be the number of endpoints where failures occur. For

A ⊂ {1, . . . , n}, take κA = (a1, . . . , an) with ai = I {i ∈ A}. For brevity, write

κi = κ{i}. Let

ϱj = κRj
, ωj = κR′

j
, j = 1, . . . , N (2.2)

and ϱN+1 = ωN+1 = (0, 0, . . . , 0). All analyses are conditional on C1, . . . , Cn.

A stochastic process W = (W(t) : t ≥ 0) is said to be additive if it has

independent increments, is stochastically continuous, and with probability 1, the

function t → W(t) is right-continuous in t ≥ 0 with W(0) = 0 and has left limit

in t > 0. In this paper, W = (H1, . . . , Hn) is an additive process taking values

in Rn
+ with R+ := [0,∞), and we refer to W as a pure jump process. It is well

known that each Hi in W is nondecreasing and, for a ∈ Rn
+,

E[e−a′W(t)] = e−Ψ(a,t) with Ψ(a, t) =

∫ t

0
dv

∫
(1− e−a′s)φ(ds | v), (2.3)

where given t > 0, φ(ds | t) is a Lévy measure on Rn
+ with

∫
min(1, |s|)φ(ds | t) <

∞ (Sato (1999)). We refer to Ψ as the characteristic exponent ofW. By Ferguson

and Phadia (1979), W is homogeneous if Ψ(a, t) = Ψ1(a)Ψ2(t).

Denote by U(0, 1) the uniform distribution on (0, 1), Gamma(a, b) the dis-

tribution with density I {x > 0} b−axa−1e−x/b, Exp(c) = Gamma(1, c), and δ the

unit mass concentrated at 0. If F is a nondecreasing function on R+, then let

F ∗(z) = inf{t > 0 : F (t) ≥ z} with the convention inf ∅ = ∞.

3. Joint Likelihood for Wear Process Model

3.1. N-variate wear process model

Assume that each of n subjects is exposed to a type of environmental fluc-

tuation characterized by a nondecreasing stochastic process Hi with Hi(0) = 0

and Hi(∞) = ∞, such that W = (H1, . . . , Hn) is a pure jump process and,
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conditional on W, the failure times T1, . . . , Tn of the subjects are independent,

with

P (Ti > t |W) = e−Hi(t), i ≤ n. (3.1)

We assume W is unobservable. We also assume the right-censoring times C1,

. . . Cn are independent of W and T1, . . . , Tn. The process W is referred to as a

(cumulative) wear process (Gaver (1963); Reynolds and Savage (1971)).

Example 1 (PH model). In a Bayesian analysis of the PH model, typically there

is a univariate pure jump process H such that, conditional on H, T1, . . . , Tn are

independent with P (Ti > t |H) = e−γiH(t), where γi is a constant that may

incorporate covariates of the ith subject. Here, H is often referred to as the

baseline cumulative hazard function. To account for possible changes over time

of the covariates, one might take P (Ti > t |H) = exp{−
∫ t
0 γi(v) dH(v)}, where

γi ≥ 0 is a bounded nonrandom function such that
∫∞
0 γi(v) dH(v) = ∞ with

probability 1. Let Hi(t) =
∫ t
0 γi(v) dH(v) and W = (H1, . . . , Hn). Since W is

H-measurable,

P (T1 > t1, . . . , Tn > tn |W) = E[P (T1 > t1, . . . , Tn > tn |H) |W]

= E
[ n∏
i=1

e−Hi(ti)
∣∣∣W] = n∏

i=1

e−Hi(ti).

The PH model can thus be formulated as an n-variate model with W the wear

process. Let φ0(dx | t) be the Lévy measure of H. For a ∈ Rn
+ and t > 0, since

E[e−a′W(t)] = E[e−
∫ t
0 λ(v) dH(v)] = exp{−

∫ t
0 dv

∫∞
0 [1 − e−λ(v)x]φ0(dx | v)}, with

λ(t) = a1γ1(t) + · · ·+ anγn(t), the characteristic exponent of W is

Ψ(a, t) =

∫ t

0
dv

∫ ∞

0
[1− e−a1γ1(v)x−···−anγn(v)x]φ0(dx | v).

Consequently, the Lévy measure φ(ds | t) of W, where s = (s1, . . . , sn), is as

follows. Given t > 0, if all γi(t) = 0, then φ(ds | t) = 0. On the other hand, if

γi(t) > 0 for some i, then

φ(ds | t) = φ0

( dsi
γi(t)

| t
)∏

j ̸=i

δ
(
dsj −

γj(t)si
γi(t)

)
. (3.2)

Clearly, φ is determined by both φ0 and γi. In Bayesian analysis, often only

the parameters in γi are estimated, while the parameters of φ0 are regarded as

hyperparameters. However, under the n-variate model, this distinction between

φ0 and γi disappears, as both become parameters of the wear process W.
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Example 2 (Lévy copula). A Lévy copula survival model was studied by Epifani

and Lijoi (2010), in which the subjects are divided into two nonempty groups and

a bivariate pure jump process Z = (Z1, Z2) is used as the wear process such that,

conditional on Z, the failure times are independent, and for each i = 1, . . . , n

and j = 1, 2, if the ith subject is in the jth group, then P (Ti > t |Z) = e−Zj(t).

By letting Hi = Zj , the model becomes an n-variate model. Suppose subject 1

belongs to group 1, subject 2 belongs to group 2 and, for each i > 2, ji is the

index of the group subject i belongs to. Then the characteristic exponent and

Lévy measure of W = (H1, . . . ,Hn) are

Ψ(a, t) =

∫ t

0
dv

∫
(1− e−a1s1−a2s2−

∑
i>2 aisji )φ0(ds1, ds2 | v),

φ(ds | t) = φ0(ds1, ds2 | t)
∏
i>2

δ(dsj − sji), s = (s1, . . . , sn),

respectively, where φ0 is the Lévy measure of Z.

Example 3 (Independent failure times). In the above examples, the Hi are

dependent processes, making Ti dependent random variables. If the Hi are inde-

pendent, then the Ti are independent. If the Lévy measure of eachHi is φi(dx | t),
then the characteristic exponent and Lévy measure of W are

Ψ(a, t) =
n∑

i=1

Ψi(ai, t), φ(ds | t) =
n∑

i=1

φi(dsi | t)
∏
j ̸=i

δ(dsj),

respectively, where Ψi(ai, t) is the characteristic exponent of Hi.

Under the n-variate model, when the Hi are dependent, the probability of

ties among Ti is positive. From (3.1),

P (Ti > t) = exp

{
−
∫ t

0
fi(v) dv

}
, with fi(v) =

∫
(1− e−si)φ(ds | v) ≥ 0,

so each Ti has a probability density. Then the Ti are dependent. It is noteworthy

to mention that Ti are pairwise locally independent as defined by Oakes (1989).

Let X, Y > 0 be random variables. For t = (t1, t2), let S(t) = P (X > t1, Y > t2)

and Dα = ∂/∂tα. Then θ∗XY (t) = S(t)D1D2S(t)/[D1S(t) ×D2S(t)] is the ratio

of the conditional hazard rate of X at t1 given Y = t2, to that of X at t1 given

Y > t2. X and Y are called locally independent if θ∗XY (t) ≡ 1.

Proposition 1. T1, . . . , Tn are pairwise locally independent.

3.2. Likelihood function

The Lévy measure φ can be regarded as the only parameter of W.
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Theorem 1. The likelihood function of φ based on Dobs is

L(φ |Dobs) =

N∏
j=1

e−Ψ(ϱj ,τj)+Ψ(ϱj ,τj−1)×
∏

Dj ̸=∅

∫
e−ω′

js
∏
i∈Dj

(1−e−si)φ(ds | τj). (3.3)

Kalbfleisch (1978) observed that in the setting of Example 1, ifH is a Gamma
process, then depending on its variability a spectrum of likelihoods can be ob-
tained. To characterize this in general, write φ(ds | t) = cν(c ds | t), with c > 0,
where ν(ds | t) is a Lévy measure with support in Rn

+. Suppose for all i = 1, . . . , n
and t > 0,

mi(t) :=

∫ t

0
dv

∫
siν(ds | v) < ∞, (3.4)

and σii(t) < ∞, where σij(t) =
∫ t
0 dv

∫
sisj ν(ds | v), j = 1, . . . , n. Let m(t) =

(m1(t), . . . ,mn(t)) and Σ(t) = (σij(t)). Then

E[W(t)] =

∫ t

0
dv

∫
sφ(ds | v) =

∫ t

0
dv

∫
cs ν(c ds | v) = m(t),

Var[W(t)] =

∫ t

0
dv

∫
ss′ φ(ds | v) =

∫ t

0
dv

∫
css′ ν(c ds | v) = c−1Σ(t).

Here, c is called a precision parameter; the larger c is, the less variable W
is. For us, c is fixed, its value will be determined via model selection, so it is
not a part of the parameter to be estimated; see Sections 6−7 for more detail.
Whenever c is involved, we rewrite the likelihood as L(ν | c,Dobs).

Proposition 2. If we fit Dobs to the model W, with Lévy measure c ν(c ds | t)
satisfying (3.4), then, as c → ∞,

L(ν | c,Dobs) → I {all |Dj | = 0 or 1} ×
n∏

i=1

e−mi(yi)[m′
i(yi)]

δi .

Consider Example 1 again. Suppose φ0(dx | t) = ch(cx, t) dx for x > 0.
Letting g(t) =

∫ t
0 sh(s, v) dv, it can be seen that mi(t) =

∫ t
0 γi(v)g

′(v) dv. As a
result, as c → ∞, the likelihood tends to

I {all |Dj | = 0 or 1} ×
n∏

i=1

e−
∫ t
0 γi(v)g

′(v) dv[γi(yi)g
′(yi)]

δi ,

and hence it behaves similarly to the one under the PH model. However, whereas
the likelihood based on the n-variate model automatically discriminates against
ties in this case, the one based on the PH model cannot.

The result implicitly assumes thatm is differentiable at every τj with Dj ̸= 0.
Following the argument for the existence of probability density of Ti, this indeed
holds with probability 1. Here then is some information on the probability of
ties for the case of most interest to us.
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Proposition 3. Let W be homogeneous such that, for any a ∈ Rn
+, Ψ(a, t) =

Ψ1(a)Ψ2(t). Then

P (Ti = Tj) =
Ψ1(κi) + Ψ1(κj)

Ψ1(κi + κj)
− 1, i ̸= j. (3.5)

If W has Lévy measure φ(ds | t) = cν(cds | t) with ν(ds | t) = h(t)λ(ds) satisfying

(3.4), where λ is a Lévy measure on Rn
+, then as c → ∞, P (Ti all different) → 1.

3.3. A Gamma wear process model

Let W = γH, where γ = (γ1, . . . , γn) is a constant vector with γi > 0 and H

is a homogeneous Gamma process with Lévy measure

φ0(ds | t) = cf(t)I {s > 0} s−1e−cs ds,

with c > 0 being the precision parameter and f = F ′. Denote H ∼ G P(cF, c).

We refer to the corresponding n-variate model as the Gamma Process (GP)

model. The parameters of the model are γ, F , and c, but c will be fixed via

model selection and only γ and F will be estimated.

Corollary 1. The likelihood function for the GP model is

L(γ, F | c,Dobs) =

N∏
j=1

(
c

c+ ϱ′jγ

)c[F (τj)−F (τj−1)]

×
∏

j:Dj ̸=∅

cf(τj)

∫ ∞

0
s−1e−(c+ω′

jγ)s
∏
i∈Dj

(1− e−γis) ds. (3.6)

The proof of (3.6) is quick. As a′W(t) = a′γH(t) ∼ Gamma(cF (t), a′γ/c)

for 0 ̸= a ∈ Rn
+, e

−Ψ(a,t) = (1 + a′γ/c)−cF (t). Then the first factor on the right

hand side in (3.6) follows from that in (3.3); the second factor follows from that

in (3.3) and (3.2).

When the data have no ties, (3.6) can be shown to coincide with (14) in

Kalbfleisch (1978). To take ties into account, Kalbfleisch (1978) derived a likeli-

hood of regression coefficients in his (23) which, if expressed in integral form, is

a part of the likelihood in (3.6) but with the factor
∏

Dj ̸=∅ cf(τj) missing. From

Proposition 2, we get the following when c → ∞.

Corollary 2. Given Dobs, let the GP model be fit with W = γH, where γ =

(γ1, . . . , γn) with γi > 0 and H ∼ G P(cF, c). Fixing γ and F , as c → ∞,

L(γ, F | c,Dobs) → I {all |Dj | = 0 or 1} ×
n∏

i=1

e−γiF (yi)[γif(yi)]
δi .
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Corollary 3. Suppose there is no censoring. Then for any i ̸= j,

P (Ti = Tj) =
ln(1 + γi/c) + ln(1 + γj/c)

ln(1 + γi/c+ γj/c)
− 1.

Thus, as c → 0, P (Ti all equal ) → 1, and as c → ∞, P (Ti all different ) → 1.

It should be noted that in general, as the wear process becomes more variable,

it is not necessarily true that P (Ti all equal) → 1. For example, let H be a

generalized Gamma process with time-independent Lévy density c2h1(cs), where

h1(s) = s−α−1e−s, 0 < α < 1 (Hougaard (1986); Brix (1999); Epifani, Lijoi,

and Prünster (2003); Lijoi, Mena, and Prünster (2007); Argiento, Guglielmi, and

Pievatolo (2010)). Then Ψ1(λ) = (1+λ/c)α− 1 and, by Proposition 3, as c → 0,

P (Ti = Tj) =
(γi + c)α + (γj + c)α − 2ca

(γi + γj + c)α − cα
− 1 →

γαi + γαj
(γi + γj)α

− 1 ∈ (0, 1).

4. Sampling of Survival Data from Gamma Process

Proposition 4. Let F be strictly increasing and α(t) = cF (t). Let G ∼ G P(t, 1)

be a standard Gamma process and ηi be i.i.d. Exp(c) random variables indepen-

dent of G. Then (T1, . . . , Tn) ∼ (α−1(G∗(η1/γ1)), . . . , α
−1(G∗(ηn/γn))).

Here, since ηi and G are independent, if we can sampleG∗(θi) for an arbitrary

fixed set of θi > 0, then we can sample T1, . . . , Tn. The result follows from the

inversion formula for univariate distributions (Devroye (1986)). The inversion is

used by Bender, Augustin, and Blettner (2005) to sample failure times with no

ties for the PH model. We next describe how to jointly sample G∗(θi) forwardly.

For convenience, suppose θi are already sorted in increasing order.

Theorem 2. Let G ∼ G P(t, 1). Given a single θ > 0, the distribution function

of G∗(θ) is given by

P (G∗(θ) ≤ t) =
1

Γ(t)

∫ ∞

θ
ut−1e−u du (4.1)

and, given G∗(θ) = τ , the conditional distribution of G(τ) is

P (G(τ) ≤ r |G∗(θ) = τ) =
Mθ,τ (r)

Mθ,τ (∞)
, θ ≤ r < ∞, (4.2)

where

Mθ,τ (r) =

∫ r

θ
e−s

(∫ θ

0

uτ−1 du

s− u

)
ds.
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This enables us to sample G∗(θi) for 0 < θ1 < · · · < θn, as follows. First

sample τ1 = G∗(θ1) from (4.1) and r1 = G(τ1), conditional on τ1, from (4.2). If

r1 ≥ θn, then all G∗(θi) = τ1. Otherwise, with s the number with θs ≤ r1 < θs+1,

G∗(θ1) = · · · = G∗(θs) = τ1 < G∗(θs+1) ≤ · · · ≤ G∗(θn). In general, if (τ1, r1),

. . . , (τk, rk) have been sampled but there is s < n such that θs ≤ rk < θs+1, then

τk+1 and rk+1 = G∗(τk+1) are sampled as follows. First, independently from all

(τj , rj), j ≤ k, sample τ̃k+1 ∼ G∗(θs+1 − rk) from (4.1) and r̃k+1 ∼ G(τ̃k+1),

conditional on G∗(θs+1 − rk) = τ̃k+1, from (4.2). Then τk+1 = G∗(θs+1) = τk +

τ̃k+1 and rk+1 = rk + r̃k+1. If rk+1 ≥ θn, then all G∗(θs+1) = · · · = G(θn) = τk,

otherwise, sample the next distinct failure time τk+2 and rk+2. The procedure

continues until all G∗(θi) are sampled.

Gibbs sampling can be applied to the conditional distribution (4.2). Intro-

duce two latent variables U and V such that 0 < U < θ, V > 0 and, conditional

on G∗(θ) = τ , G(τ), U , and V have joint density

mθ(r, u, v) ∝ e−ruτ−1e−v(r−u), θ < r < ∞, 0 < u < θ, 0 < v < ∞.

Let ζ = ln[U/(θ−U)] and denote the conditional joint density of G(τ), ζ, and V

by mθ(r, z, v). Using the collapsed Gibbs method (Liu (1994); Chen, Shao, and

Ibrahim (2000)), we then sample from, in turn: (i) mθ(z | r), (ii) mθ(v | r, z), and
(iii) mθ(r | v). For (i), we have

mθ(z | r) ∝
eτz

(1 + ez)τ
× 1

r + (r − θ)ez
, −∞ < z < ∞;

this can be shown to be a log-concave density with the conditional mode

zmod = ln

[
(τ − 1)(r − θ) + {[(τ − 1)(r − θ)]2 + 4(r − θ)τr}1/2

2(r − θ)

]
,

thus allowing the application of the adaptive-rejection algorithm of Gilks and

Wild (1992) to sample ζ conditional on G(τ) = r. For (ii), we have

mθ(v | r, z) ∝ exp

{
−v

(
r − θez

1 + ez

)}
, 0 < v < ∞,

which is an exponential density with mean [r−θez/(1+ez)]−1. For (iii), mθ(r | v)
∝ e−r(1+v), r > θ, and hence sampling r is also straightforward. We use the

following algorithm to generate failure times that may have ties.

Direct Forward Sampling (DFS) Algorithm

1. Set n (number of failure times), c (precision parameter), and γ1, . . . , γn (co-

efficients).
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2. Generate ηi i.i.d. ∼ Exp(c) and set θi = ηi/γi for i ≤ n.

3. Rearrange (γi, θi) so that 0 < θ1 < · · · < θn.

4. Initialize k = 0, t = 0, and h = 0.

5. Generate τ , which is a realization of G∗(θk+1 − h).

6. Generate r, which is a realization of G(τ) conditional on G∗(θk+1 − h) = τ .

7. Update t to t+ τ .

8. Update h to h+ r.

9. If h ≥ θn, then G∗(θk+1) = · · · = G∗(θn) = t. Go to Step 14.

10. If θk+s ≤ h < θk+s+1 for some 1 ≤ s < n − k, then G∗(θk+1) = · · · =
G∗(θk+s) = t.

11. Update k to k + s.

12. Go to Step 5.

13. Follow Steps 8 through 12 until all G∗(θ1), . . . , G
∗(θn) are generated.

14. Return c−1F−1(G∗(θi)), the failure times from G P(cF, c).

5. Bayesian Posterior Inference

Henceforth, we assume that in the GP model γi = exp(x′iβ), where xi is the
vector of covariates of the ith subject and β the vector of regression coefficients.
Our goal is to develop posterior inference for (β, F ) given c.

5.1. Prior

We assume a piecewise linear model for F as follows. Partition the time axis
into K intervals (a0, a1], (a1, a2], . . . , (aK−1, aK ], where a0 = 0 and aK ≥ τN .
Then let f(t) = F ′(t) = λk for ak−1 < t ≤ ak. Under our model,

F (τj)− F (τj−1) =
K∑
k=1

λk djk, with djk = |(ak−1, ak) ∩ (τj−1, τj)|. (5.1)

Let λ = (λ1, . . . , λK)′, and for j ≤ N , ν(j) be the unique index with aν(j)−1 <
τj ≤ aν(j). Then, the likelihood function in (3.6) can be rewritten as

L(β, λ | c,Dobs) =
N∏
j=1

(
c

c+ ϱ′iγ

)c[F (τj)−F (τj−1)]

×
[
cλν(j)

∫ ∞

0
s−1e−(c+ω′

jγ)s
∏
i∈Dj

(1− e−γjs) ds

]I{Dj ̸=∅}
. (5.2)
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We assume the prior π(β, λ) ∝ exp(−β′Σ−1
0 β/2)

∏K
k=1 λ

α0−1
k e−α1 λk . Under

the prior, β, and λ1, . . . , λK are independent, with β ∼ Np(0,Σ0) and λk ∼
Gamma(α0, 1/α1). In Sections 6 and 7, we specify Σ0 = 104Ip and α0 = α1 =

10−2, which lead to a relatively vague prior for (β, λ).

5.2. Posterior computation

To sample the joint posterior distribution

π(β, λ | c,Dobs) ∝ L(β, λ | c,Dobs)π(β, λ),

introduce the latent variable s = (sj : Dj ̸= ∅, j ≤ N) and define an augmented

joint posterior distribution π(β, λ, s | c,Dobs) ∝ L(β, λ, s | c,Dobs)π(β, λ), where

L(β, λ, s | c,Dobs)

=

N∏
j=1

(
c

c+ ϱ′jγ

)c[F (τj)−F (τj−1)][
c λν(j)s

−1
j e−sj(c+ω′

jγ)
∏
i∈Dj

(1− e−γisj )

]I{Dj ̸=∅}
.

Since
∫
π(β, λ, s | c,Dobs) ds = π(β, λ |Dobs) by Corollary 1, π(β, λ | c,Dobs) can

be sampled by applying Gibbs sampling to π(β, λ, s | c,Dobs). We sample (β, λ, s)

from the following, in turn: (i) π(β |λ, s, c,Dobs), (ii) π(λ |β, s, c,Dobs), and (iii)

π(s |β, c,Dobs). For (i),

π(β |λ, s, c,Dobs)

=

N∏
j=1

(
c

c+ ϱ′jγ

)c[F (τj)−F (τj−1)] [
e−sj(c+ω′

jγ)
∏
i∈Dj

(1− e−γisj )

]I{Dj ̸=∅}
π(β).

Since γi = exp(x′iβ), it is easy to show that π(β |λ, s,Dobs) is log-concave in each

component of β, and so we can use the adaptive rejection algorithm of Gilks and

Wild (1992) to sample β. For (ii), given β and s, λ1, . . . , λK are conditionally

independent and, for each k, the conditional posterior distribution of λk is

π(λk |β, s, c,Dobs)

∝ λ
α0+

∑N
j=1 I{Dj ̸=∅,ak−1<τj≤ak}

k exp

{
− λk

[
α1 − c

N∑
j=1

djk ln
( c

c+ ϱ′jγ

)]}
.

Thus, λk follows a Gamma distribution that is easy to sample. For (iii), given β,

s1, . . . , sN are conditionally independent and, for each j with Dj ̸= ∅,

π(sj |β, c,Dobs) ∝ s−1
j e−(c+ω′

jγ)sj
∏
i∈Dj

(1− e−γisj ).
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Let uj = ln sj . Then the conditional posterior density of uj is

π(uj |β, c,Dobs) ∝ exp
{
−(c+ ω′

jγ)e
uj
} ∏

i∈Dj

(1− exp{−γi e
uj}).

It is easy to show that π(uj |β,Dobs) is log-concave. Then we again can use the

adaptive rejection algorithm to sample uj and set sj = exp(uj).

6. A Simulation Study

We conducted a simulation study to compare the PH model and the GP

model with H ∼ G P(cF, c). As the value of c is unknown in practice, to guide

the choice of c in fitting the GP model, we use deviance information criterion

(DIC) (Spiegelhalter et al. (2002)). Define the deviance function

D(ψ) = −2 lnL(β, λ | c,Dobs),

where ψ = (β′, λ′)′ and L(β, λ | c,Dobs) is given in (5.2). Then

DIC = D(ψ) + 2pD, (6.1)

where ψ = E[ψ |Dobs] and pD = D(ψ) − D(ψ) with D(ψ) = E[D(ψ) |Dobs].

In (6.1), D(ψ) measures the goodness-of-fit, and pD is the effective number of

model parameters. The DIC is a Bayesian measure of fit or adequacy with 2pD
being the dimensional penalty term. The smaller the DIC value, the better the

model fits the data. In this simulation study, our second goal was to examine

the performance of DIC in correctly identifying c in the fitted the GP model.

In the simulation study, the data were generated as follows. We generated

xi = (xi1, xi2)
′, i ≤ n, where xi1 ∼ N(0, 1), xi2 ∼ Bernoulli(0.7) were all inde-

pendent. We set β = (β1, β2) = (1,−0.5), and F (t) = t, and considered sample

sizes n = 250 and 500. We used the DFS algorithm in Section 4 to generate

failure times from the GP model with γi = exp(x′iβ), and for c as 1, 10, and 100.

We independently generated n censored times from a rescaled beta distribution

such that Ci = 38qi with qi ∼ beta(1, 3), which yielded approximately 15% of

censored observations for each simulated data set. We independently generated

500 data sets under each simulation setting.

For each data set, we let Ntotal =
∑

j |Dj |I {|Dj | > 1} and Nmax = maxj |Dj |,
where Dj is defined as (2.1). Figure 1 shows the boxplots ofN

(1)
total, . . . , N

(500)
total and

Figure 2 shows the boxplots of N
(1)
max, . . . , N

(500)
max for the 500 simulated data sets

under the six simulation settings. From Figure 1, we can see that as c increases

from 1 to 100, N
(1)
total, . . . , N

(500)
total in the simulated data sets decrease as a whole,

and their median drops substantially.
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(a) n = 250 (b) n = 500

Figure 1. Boxplots of the total numbers of ties in 500 simulated data sets
of sizes n = 250 and n = 500 generated from the GP models with c = 1, 10,
and 100.

(a) n = 250 (b) n = 500

Figure 2. Boxplots of the maximum numbers of ties in 500 simulated data
sets of sizes n = 250 and n = 500 generated from the GP model with
c = 1, 10, and 100.

For each simulated data set, we fit the PH model with a constant baseline

hazard rate function and the GP model with F (t) = t; the true value of c was

used in the simulation. For each simulated data set, we implemented the Gibbs

sampling algorithm of Section 5.2 and used 5,000 Gibbs iterations after a burn-

in of 500 iterations to compute the posterior estimates. Let β̂jℓ and sdℓ(βj)

denote the posterior mean and the posterior standard deviation of βj computed

from the ℓth simulated data set for ℓ = 1, . . . , 500. The simulation posterior

estimate (Est), the simulation posterior standard deviation (SD), the simulation

error (SE), and the mean squared error (MSE) for βj are, respectively, β̂j =

(1/500)
∑500

ℓ=1 β̂jℓ, sd(βj) = (1/500)
∑500

ℓ=1 sdℓ(βj), SE(βj) =
[
(1/499)

∑500
ℓ=1(β̂jℓ −

β̂j)
2
]1/2

, and MSE(βj) = (1/500)
∑500

ℓ=1(β̂jℓ − βj)
2, where βj is the true value.

We define the same simulation summary statistics for λ. We let CP denote

the coverage probability of the 95% highest posterior density (HPD) intervals

that contain the true parameter value in the 500 simulated data sets, using the

Monte Carlo method developed by Chen and Shao (1999). Table 1 shows these
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Table 1. Summary of posterior estimates for the GP and the PH Models in
simulation studies.

n Parameter
True c = 1 True c = 10 True c = 100
GP PH GP PH GP PH

250

β1

True 1 1 1
Est 1.012 0.827 1.013 0.965 1.002 0.995
SD 0.096 0.070 0.085 0.072 0.078 0.073
SE 0.094 0.242 0.085 0.127 0.079 0.085
MSE 0.009 0.089 0.007 0.017 0.006 0.007
CP 0.944 0.300 0.950 0.682 0.942 0.906

β2

True -0.5 -0.5 -0.5
Est -0.504 -0.407 -0.514 -0.482 -0.498 -0.494
SD 0.178 0.158 0.152 0.156 0.139 0.156
SE 0.157 0.176 0.142 0.158 0.128 0.144
MSE 0.025 0.040 0.020 0.025 0.016 0.021
CP 0.974 0.894 0.962 0.956 0.966 0.970

λ

True 1 1 1
Est 1.055 0.903 1.020 0.964 1.011 1.007
SD 0.225 0.116 0.135 0.123 0.113 0.128
SE 0.234 0.782 0.136 0.254 0.109 0.145
MSE 0.057 0.619 0.019 0.066 0.012 0.021
CP 0.940 0.262 0.944 0.654 0.962 0.924

500

β1

True 1 1 1
Est 1.010 0.824 0.999 0.964 1.003 0.995
SD 0.068 0.050 0.061 0.051 0.057 0.051
SE 0.071 0.244 0.063 0.129 0.055 0.062
MSE 0.005 0.091 0.004 0.018 0.003 0.004
CP 0.938 0.184 0.948 0.532 0.964 0.892

β2

True -0.5 -0.5 -0.5
Est -0.501 -0.400 -0.511 -0.489 -0.508 -0.500
SD 0.129 0.113 0.113 0.111 0.098 0.110
SE 0.117 0.156 0.098 0.112 0.094 0.108
MSE 0.014 0.034 0.010 0.013 0.009 0.012
CP 0.966 0.754 0.972 0.952 0.948 0.952

λ

True 1 1 1
Est 1.026 0.860 1.020 0.986 1.013 1.000
SD 0.188 0.078 0.108 0.089 0.081 0.090
SE 0.190 0.597 0.102 0.263 0.079 0.112
MSE 0.037 0.375 0.011 0.070 0.006 0.013
CP 0.940 0.200 0.970 0.498 0.956 0.870

simulation summary statistics. We see that the GP model generally performed

well and the posterior estimates were very close to the true values of β and λ,

and the coverage probabilities were close to 95%. Meanwhile, the PH model

performed poorly and there were substantial biases in the posterior estimates,
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(a1) n = 250, true c = 1 (a2) n = 250, true c = 10 (a3) n = 250, true c = 100

(b1) n = 500, true c = 1 (b2) n = 500, true c = 10 (b3) n = 500, true c = 100

Figure 3. Boxplots of DIC differences in 500 simulations for the data of sizes
n = 250 and n = 500 generated from the GP model with c = 1, c = 10, and
c = 100.

especially when c was small. When c = 100, the performance of the PH model

improved and the biases of the posterior estimates under the PH model were

reduced considerably, but the coverage probabilities were still smaller than the

expected 95%, especially for β1 when n = 500.

To examine the performance of DIC, for each simulated data set, we fit the

GP model with c = 1, 10, and 100 when the true c = 1 or 100. When the true

c = 10, we fit the GP model with c = 1, 10, 15, and 100. In the DIC computation,

we used (3.6) to compute L(β, λ, c |Dobs). Our simulation codes were written in

FORTRAN 95 with double precision. The IMSL subroutine DQDAGI was used

for evaluating all one-dimensional integrals involved in the likelihood function.

For ℓ = 1, . . . , 500, let DICc,ℓ denote the DIC computed for the ℓth simulated

data set. The boxplots of the DIC differences ∆ℓ(c, c
′) = DICc′,ℓ − DICc,ℓ for

different values of c′ and c in Figure 3 show that DIC could identify the true GP

model correctly for most of the simulated data sets and the DIC differences were

quite large when the value of c in the fitted GP model was far from the true c.

Even when c in the fitted GP model was close to the true one, for example, when

c = 15 in the fitted GP model and the true c = 10, the boxplot shown in Figure

3 is nearly above zero, but with much smaller DIC differences.

7. Analysis of Prostate Cancer Data

We considered a subset of the data from a prostate cancer study published

by D’Amico et al. (2010), which consisted of 558 patients with high risk prostate



BAYESIAN INFERENCE OF HIDDEN GAMMA WEAR PROCESS MODEL 1629

Figure 4. Plots of DIC values versus c with K = 5, 10, 15 for the prostate
cancer data.

cancer, namely, prostate specific antigen (PSA) > 20, clinical Gleason score ≥ 8,

or clinical stage T3 or higher. All patients in the subset were treated with radical

prostatectomy (RP) between 1989 and 2008. In these data, the response is time

to PSA failure or time to the last follow-up from the time of RP, whichever

is smaller. The time of PSA failure is the time of prostate cancer recurrence

after RP. The clinical implication of PSA recurrence is that men are offered

salvage therapy (second treatment), which may prolong life or cure the patient

but may have side effects. The covariates include age in years at the date of RP,

the logarithm of PSA (logpsa), pathological Gleason score (pGS7 and pGS8H),

pathological stage (pT3H), positive surgical margin (Margin), and year of RP.

Among these covariates, age, logpsa, and year of RP are continuous, while pGS7

= 1 and pGS8H = 0 if pathological Gleason score was 7, pGS7 = 0 and pGS8H

= 1 if pathological Gleason score was 8 or higher, and pGS7 = 0 and pGS8H = 0

if pathological Gleason score was 6 or less; pT3H = 1 if pathological stage was

T3 or higher and 0 otherwise; Margin = 1 if the surgical margin was positive and

0 if surgical margin was negative. There are 216 censored and 342 failed patients

in the data. The total number of ties is 215 and the maximum size of tied group

is 16.

We fit the GP model with the seven covariates (age, logpsa, pGS7, pGS8H,

pT3H, Margin, year of RP) to the data. In all the posterior computations, the

covariates were standardized. A piecewise linear model was assumed for F (t)

in the GP model. The intervals (ak−1, ak] were chosen to be the (100k/K)th

percentile of the ordered distinct failure times for k ≤ K. The model parameters

included β = (β1, . . . , β7)
′ and λ = (λ1, . . . , λK)′. We computed DIC and pD
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under various values of c and K. The values of DIC are plotted in Figure 4.

For all the values of c considered, the values of pD range from 12.03 to 12.16

for K = 5, 17.03 to 17.13 for K = 10, and 22.12 to 22.23 for K = 15; these

are almost the same as those corresponding numbers of parameters. The GP

model with c = 185 and K = 10 attained the smallest DIC value among all of

the combinations of (c,K) considered. However, as seen from Figure 4, the DIC

values were very close for 170 ≤ c ≤ 200. In fact, for K = 10, the DIC values

were 2,939.63, 2,939.61, 2,939.49, 2,939.32, 2,939.40, 2,939.64 for c = 170, 175,

180, 185, 190, 200, respectively. To further verify this finding, we simulated 500

data sets of size n = 558 from the GP model with c = 185 under the simulation

setting discussed in Section 6; the resulting median and IQR of Ntotal were 219

and (208, 229), closely matching Ntotal = 215 in the prostate cancer data. In

addition, as shown in Figure 4, the GP model with K = 10 clearly outperforms

those with K = 5 and K = 15 according to the DIC measure.

Under the best DIC GP model with c = 185 and K = 10, we computed the

posterior means, posterior standard deviations (SD), and 95% HPD intervals of

β. We also fit the PH model with the piecewise linear baseline hazard function

with K = 10. Table 2 shows the maximum partial likelihood estimates (MPLEs)

and Bayes estimates of β. From Table 2, we see that (i) under the PH model, the

Bayes estimates were very close to the MPLEs; (ii) the estimates of β1 and β7
were very similar under the PH and GP models; (iii) the estimates of β2, β5, and

β6 under the PH model were slightly smaller than those under the GP model;

and (iv) the estimates of β3 and β4 under the PH model were much smaller than

those under the GP model. The difference in the estimates of β is expected as

there were a large number of ties in the data and the best GP model was the

one with c = 185 according to the DIC measure. Also, due to the large value

of c, the difference in the estimates of β should not be too large as shown in

our simulation study. When the regression coefficients were underestimated, the

effects of the covariates could not be accurately assessed, which may lead to an

incorrect conclusion regarding the impact of important clinical factors, such as a

pathological Gleason score, on the risk of PSA failure.

In all the Bayesian computations in this section, we used 50,000 Gibbs it-

erations after a burn-in of 1,000 iterations to compute the posterior estimates,

including DICs, posterior means, posterior standard deviations, and 95% HPD

intervals. The convergence of the Gibbs sampling algorithm was checked and the

autocorrelations for all model parameters disappeared before lag 5.

8. Discussion

We have carried out an in-depth investigation of the GP model and its prop-

erties. Our results are obtained as special cases of a general multivariate wear
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Table 2. Estimates of β under the PH and GP Models for the prostate cancer
data.

Method Variable Parameter Estimate SD∗ 95% Interval†

MPLE age β1 0.003 0.008 (-0.012, 0.019)
logpsa β2 0.282 0.066 ( 0.152, 0.411)
pGS7 β3 0.461 0.178 ( 0.113, 0.809)
pGS8H β4 0.916 0.177 ( 0.570, 1.263)
pT3H β5 0.533 0.145 ( 0.248, 0.818)
Margin β6 0.532 0.121 ( 0.296, 0.769)
year of RP β7 -0.054 0.014 (-0.082, -0.026)

Bayes age β1 0.003 0.008 (-0.013, 0.019)
Based on logpsa β2 0.270 0.066 ( 0.144, 0.403)
PH Model pGS7 β3 0.468 0.179 ( 0.114, 0.818)

pGS8H β4 0.913 0.178 ( 0.569, 1.267)
pT3H β5 0.534 0.146 ( 0.249, 0.823)
Margin β6 0.527 0.121 ( 0.289, 0.762)
year of RP β7 -0.052 0.014 (-0.079, -0.024)

Bayes age β1 0.003 0.008 (-0.012, 0.019)
Based on logpsa β2 0.309 0.067 ( 0.175, 0.437)
GP Model pGS7 β3 0.507 0.177 ( 0.163, 0.854)

pGS8H β4 0.992 0.175 ( 0.639, 1.329)
pT3H β5 0.553 0.144 ( 0.278, 0.840)
Margin β6 0.566 0.120 ( 0.337, 0.806)
year of RP β7 -0.053 0.014 (-0.081, -0.025)

∗ For MPLE, the values under the SD column are the standard errors of the estimates.
† For MPLE, the 95% intervals are the 95% confidence intervals while for Bayes, those intervals

are the 95% HPD intervals.

process model. A novel DFS algorithm and a new Gibbs sampling algorithm

have been developed that allow us to generate the tied failure times from the GP

model, and to carry out posterior computations. The simulation study of Section

6 revealed some empirical properties of the GP model and the degree of biases of

the parameter estimates when fitting the PH model to the data generated from

the GP model.

One potential limitation of our analysis is its use of homogeneous Gamma

process to model the baseline wear process H. This choice allows us to obtain

the joint likelihood in a form explicit enough to achieve several goals, including

posterior sampling of parameters and model selection. To our best knowledge,

processes such as the Dirichlet and the Beta, do not yield such formulas for the

joint likelihood. Furthermore, in S2 of the Supplementary Material, we argue

that, under mild conditions, a Beta process is a homogeneous Gamma process

plus an independent compound Poisson process with bounded Lévy density. This

suggests that our sampling algorithm of failure times can be extended to Beta
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processes. It also implies that Beta and Gamma processes have similar behavior

at small jumps, while the former have more large jumps. Therefore, for data

sets that exhibit few large jumps, these two should have similar performance as

models for H. In S2, we also comment on how to extend the sampling algorithm

to other types of pure jump processes.

In our simulation study and data analysis, we used DIC to determine the

value of c when we fit the GP model to survival data with ties. Our simulation

study showed that DIC was an effective measure in determining the true value

of c. As an extension of this research, one can assume that c is an unknown

parameter. With a prior distribution for c, posterior inference needs to be carried

out. An unknown c may pose a computational challenge in sampling from its

conditional posterior distribution. Theoretically, when there is a large number of

ties, the PH model is not appropriate because under the model the probability

of tied failure times is zero. When there are no ties in failure times, as shown in

Proposition 2, the likelihood function under the GP model converges to the one

under the PH model when the fitted wear process is concentrated. In practice,

one can fit a GP model to survival data and then determine the “best” value of c

according to DIC. When c is large, the PH model might be appropriate for fitting

such survival data. Other extensions of the proposed methodology include time-

dependent covariates, multivariate failure times, and non-proportional hazards

models. These extensions are currently under investigation.

Supplementary Materials

The online supplementary material has two sections. Section S1 contains

proofs of the theoretical results of the paper. Section S2 is a discussion on

possible extension to wear processes other than the Gamma processes considered

in the paper.
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