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eSection S11: Simulation Results with a Uniformly DistriedtError Term;
eSection S12: Simulation Results with a Chi-squared Distad Error Term;

eSection S13: Simulation Results with Coefficients Depegdin the Sample Size.

S1 Proof of Theorem 1

This proof is mainly an application of Stein’s Lemma (Steif81)). Lety;, u; andii(w); be the
1" elements ofy, u andi(w), respectively. By the conditions stated in Theorem 1 anthSte
Lemma, we have
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and

(y: — 12)? . 9(572)
Ef(y) {76\2 = UQEf(y) (U 2) + U4Ef(y) T/Q . (51.2)

Using (S1.1), it can be seen that

by [ = )]

g

7?Ejy) <tracea [y _aﬁy(;ﬂ)}/aﬂ )

o 00
Ef(y) (n023_2) — Ef(y)trace{020_2 g(w) }

yT
o R 052
—Ejy) [020 Yy - u(w)}T—ay } :
(S1.3)

Using (S1.2), we obtain
ly — ul? . . 82(62)
Epy) ( 52 =no’Eg) (67%) + 0" Eyy |trace By0yT
~ ~ 052 052
= Ejy) (no”57%) + By {2040 6trace<a—yay_T)}

4 4 826.\2
—Ey {a o trace(ayayT) } : (S1.4)

In addition, it is straightforward to show that

i — m(w)|I* = lly — Bw) I + ly — pll* — 2{y — i(w)} " (y — ). (S1.5)

Now, by combining (S1.3)-(S1.5), Theorem 1 is proved.

S2 Proof of Theorem 2

Based on the proofs of Theorems 1’ and 2 in Wan, Zhang and Z0L0j2 and Assumptions
(A.1), (A.2) and (A.4), to prove Theorem 2, we need only tafyethat

95>

TPT
y P (w) 99

jg}[/)\}{ R;l(w)} = op(1). (s2.1)
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By Assumptions (A.2), (A.3), and (A.5), we have
T pT 95° -1 -1 T pT 2
sup ¢ |y P (w) - | By (w) o <&, sup ’y P (w)Ty
wEW Y wEW
=& sup ‘y {PT( )T+TTP }y‘ /2
wew
T AT 2
<& S A { PT()T +TTP(w) }] lyl/2
weWw
< &71 sup [Amax{P(w)}] AmaX(T)HyH2
wew
< ,71 su { max  Amax(Ps })\maxf 2
<6 sup §max Aac(Plo) P Amae (Dl
=1 seflll,%%s} Amax(F(s)) - nAmax(T) - nHlyl* = op(1). (82.2)

This completes the proof.

S3 Proof of Theorem 3

By the assumption that is a linear function ofX, we have

y (I, — P)y = eT(In — P)e,

wherel,, — P is a symmetric idempotent matrix with ramk— m. Soo?/{yT (I, — P)y} is

distributed as an inverse Chi-squared distribution witlame — m — 2)~

L and thus

o2 k
E = .
f(y){GQ(y,k)} n—m-—2

In addition,

-y LB

= 2k lyTZws

= 2k~ 1yT(In — P)y.

By applying (S3.1), (S3.2), and the facts that (y, k) /0y = 2k~

= 2k~1(I,, — P) to Theorem 1, we obtain Theorem 3.

(S3.1)

2k~ Hy — i(w)} ' (In — Py

— Poy)(I, — P)y
(S3.2)

Y(I,—P)yandd?a?(y, k)/ (0yoy™)
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S4 Proof of (2.4)

Let C*(w) = C*(w) — ||e||? such thatii = argmirC* (w). Write @ = argminE{L, (w)}. Itis
wew wew
straightforward to show that

Ln(w) = 5*(@): c(w)
= u}gévc*(w) — c(w)
= mf {Ln( )+ c(w)} — ¢(w)
< L( 0) + €' {I, — P(0)}p + o*tracg P(w)} — €' P(w)e — c(D),

which implies (2.4).

S5 Proof of Theorem 4

Lety = Q1/2y, i = Q1/2y, ¢ = Q~1/2¢, andQ = Q1200 ~1/2, By simple calculations,
we have
D*(w) = {7 — P(w)y)}"{§ — P(w)y)} + 2trace P(w)}
= Plw)ay Q7 = L){i — Pw)i} + {P(w)e} (7" — I,) P(w)e
—2{fi = P(w)p} " (Q" = L) P(w)e + 2¢7(Q" = L){f — P(w)ii}
—22"( Q' — ,)P(w)e — 25" PT (w)Q 'Q V2%a+ N Q1 — I,)e. (S5.1)
It follows from Assumptions (A.2) and (B.2) that

SUP Amax{P(w)} = O(1), (S5.2)
weW

From the proof of Theorem 1’ in Wan, Zhang and Zou (2010), 155S5.2), Assumptions
(B.1)-(B.2), and the fact that" (2~! — I,,)€ is unrelated tav, in order to prove (3.2), we need
only to verify that

sup [Rheterqn( w){i = Pw)i}"(Q " = I){fi = P(w)ii}]] = o,(1), (S5.3a)

wup D (R () {P(w)E} (7 = L) P(w)e]] = 0p(1), (S5.3b)
D (R ()7 = P} (17 = L) P(w)el] = op(1), (S5.3¢)
SUp [ (w)[E7 (@71 = L) (i = P)i}] = 0p(1), (S5.3d)
SUP { R (W) €7 (27 = L) P(w)2} = 0,(1), (S5.3¢)
SUP { R (w)[F7 PT ()27 Q1/23]} = 0y(1). (S5.3)

weW
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By (S5.2) and Assumptions (A.3) and (B.2), it is straightfard to show that

Rucean(w) = ||fi = P(w)fi]|* + trace P(w) P" (w)}
> max{||ii — P(w)jil|*, tracg{ P(w) P" (w)}}, (S5.4)
Rheterqn(w) = /JT{In - P(w)}TQ_l{In - P(UJ)}/J + traCE{P(U})QPT(w)Q_l}
= O(n), (S5.5)
and that

sup {Rheterqn( w)|[P(w)e]*} = op(1) + sup [Rheterqn( w)trace{ P(w) P (w)}]  (S5.6)

by the proof of Theorem 1’ in Wan, Zhang and Zou (2010).

Using (S5.5), we see that ' ..., = O(1), which together with Assumption (B.3) im-
plies that

~ Inax } |§” - Qul - 01)(1) (557)
1 n

Using (S5.7) and Assumption (B.2), we have

Amax (271 = 1) = Op( max Qi — Qu|) = 0,(1). (S5.8)
ie{l,...,n}

Thus, from (S5.4) and (S5.8), we obtain

sup [Ry b, (w)H{A = Plw)i)} " (7" = L) {7 — P(w)a}]

wew

< Amax (27" = 1) sup [Rheterqn( w){fi = P(w)@)} " {fi — P(w)i}]

weW

< )\max(ﬁ_l - In) - Op(]-)v
which is the result (S5.3a). Using (S5.6), (S5.8), and Asstion (B.4), it is seen that

SUp (R () { P(w)E} T (27" — L) P(w)e]]

wew

< max(@7 = 1) sup {Rheterqn( w)|[ P(w)e]*}

@ 1) (sup ke 0720 P(0) P (0))] + 0,1
we
= 0,(1), (S5.9)
which is the result (S5.3b). Using (S5.4), (S5.6), (S5.8) Assumption (B.4), we obtain

sup (R, (w)[{7i = P(w)a} " (7 = 1) P(w)e]*)

wew

< sup {Rheterqn( M@ = L) P(w)e]|}

< {Amax(fl‘1 —I)}? sup {Rhetemn( w)||P(w)el*} = o,(1)
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which implies the result (S5.3c). Using (S5.4), (S5.8), Asdumptions (B.2)-(B.3), it follows
that

jggv[R;iqn(w){gT(ﬁ’l — L){fi = P(w)ii)}?]

< {Amax (7 = 1)} sup {Ri g, (w) }He]?
weWw
< {)\maX(Q_l - In)}Qngh_etirqnn_ngHQ = op(1),

which implies the result (S5.3d). Similarly, from (S5.435(6), (S5.8), and Assumptions (B.2)-
(B.3), we have

Sggv[R;tfrw(w){ET(ﬁ’l — I,) P(w)e}’]
< P (@71 = 1) Pleaanl@l? Slelvpv{R;irqn(w)IIIS(w)gHQ}
= Op(l)v

which implies the result (S5.3e). Finally, using steps Eimio (S2.2), it follows from (S5.2),
(S5.7), and Assumptions (A.3), (B.2) and (B.5) that

sup { Ry, (UJ)IﬂTlﬁ(w)fl_lQ”Qal}:SHVPV{R_1 (w)[g" P(w)Q Q"2 A}
we

heterqm heterqm

weWw
= Sugv[Rhlirqn(w)|Z/T{13(w)f~2*191/2ﬁ+ ATQY2Q 1 P(w) " 1] /2
we
< A P(@) Pnas (27 Anase (02 )n 7 710 A (A) raban
= OP(1)7

which is the result (S5.3f). This completes the proof.

S6 Calculation for on' /0y

Assuming thaj, = X 3, the -2log-likelihood is
nlog 2 +log|Q(n)| + (y — XB)T Q™ (n)(y — XB).

Write 7 = (71,...,7,)". Let 3 be the ML estimator of3, U;(7}) = 9Q~(7)/d7;, and
Vik () = 0U;(m)/on, for j,k = 1,...,q. From Magnus and Neudecker (1988), we have
the following score equations:

(y— XBTQ @)X =0, (S6.1)
(y— XP)'U;(0)(y — XB) — racdU; ()7} =0,  j=1,....q.

Let K be ag x n matrix with the;j" row K; = (y — XE)TUJ-(?;), Q be ag x ¢ matrix with the
jk" element) i, = (y — XB8) Vi (7)(y — X 8), and B be ag x ¢ matrix with thejk" element
Bji, = otrace{U;(1)$2(1) }/ O
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Taking derivatives with respect gpon both sides of (S6.1), we have

ek “1A\x — 2L yTO-1(7) Y —
{ KX + Q7 )X - -XTQ ()X =0, (6.2

9T 2K T — 22 XTKT - 9T BT =,
by which, we have

~T
aai = ROIHX{XTQ(HX}XTKT — 2K7)
Yy
x[QT — BT — 2Kk X{XTQ ()X} 'XxTKT| 1,

given the above inverses exist.

S7 Discussion on Assumption (A.1) and its relationship with
the normality of e

It is seen that

Ry(w) = E{Ln(w)} = B{|i(w) — plI*} = E{||P(w)(u + ) — pl*}
= |[P(w)n— pll* + o*trace P(w) P" (w)},

which depends on the mean and variance;ofbut is unrelated to other propertiesqf So
given the mean zero and the variancg Assumption (A.1) depends on the distributionepf
only through the integet, which is determined by the first part of Assumption (A.1) eThrst
part of Assumption (A.1) is just a moment condition, whicts&isfied for anyG < oo when
e; follows normal, uniform or Chi-squared distribution. ThufsSAssumption (A.1) holds for
normale;, then it also holds for uniform or Chi-squared

In the following, we discuss the assumption

S
€79 Ry (w) = o(1). (87.1)

s=1

First, &, — oo is a necessary condition of the assumption (S7.1). As HaaséiRacine (2012)
remarked, this condition requires that all finite dimensionodels be approximations. Lgt =
maxseq1, sy RBn(w?). A sufficient condition of the assumption (S7.1)93(¢,,%1.)¢ = o(1).
For a fixed rate of,, — oo, the slower the rates & — oo andn,, — oo, the faster the rate of
S%(&21,)¢ — 0. Practically, the rates of — oo andn,, — oo can be reduced by removing
the very poor models at the outset prior to model averaging.

In fact, the assumption (S7.1) is introduced by Wan, Zhard) Zou (2010), where its
rationality was discussed in detail. Since that, this ctolihas been used in model averaging
studies such as Liu and Okui (2013).
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S8 All Simulation Results of Example 1

n=20,L, n =150,L,
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Figure S.1: Results for Example 1: risk comparisons urdgeandLs as a function of R.
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S9
S9 All Simulation Results of Example 2

n=20,a=0.5 n=250,aa=0.5
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Figure S.2: Results for Example 2: risk comparisons utgeas a function of R,
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S10 All Simulation Results of Example 3

n =20 n = 50
——-OMA ——-ovA
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~ O e

K] Q2

o o

b
0.5~~~
0.2 0.4 0.6 0.8
R2
n = 400
—-IvA EEREIVIN
—mKLMA1 —I11KLMA1
15l - MKLMA, || 1l < mKLMA, ||
x -
L 9
['4 o
0.2 0.4 0.6 0.8
R2

0.2 0.4
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Figure S.3: Results for Example 3: risk comparisons urgeas a function of R,
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---IMA
— mKLMA,
- mKLMA,

1.5r

Risk

0.2

0.4 0.6 0.8
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n =150
---JMA
_mKLMA1
18l - MKLMA, ||

Risk

0.2

0.4 0.6

0.8
R2

Figure S.4: Results for Example 3: risk comparisons utdeas a function of R.
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n =20 n =50
---JMA ---IMA
— MKLMA, — mKLMA,
1r < MKLMA, [f 1r <. mKLMA, |
=
Q2
o

Risk

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
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Figure S.5: Results for Example 3: risk comparisons utdggr, . as a function of R
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S11 Simulation Results with a Uniformly Distributed Error

S13

In this section, we repeat Examples 1-3 but using a unifodidiributed error term.
Example 1 Example 2 Example 3
oUniform(—31/2,31/2)  Uniform(—3/2,3Y/2)  exp(nX2;)'/?Uniform(—31/2,31/2)
The following figures show new results.
n=20,L, n =50, Ly
N ---AICc N AlCc
kw1 SN

1.2r

0.2 0.4 0.6 0.8
RZ
n=50,Lg
1.8
--AICc ---AlCc
-- MMA -- MMA
—KLMA —KLMA
\
\
i P N
) \
1.6F ! 1.6F K
~ ~
o o]
o o
1.4F

0.2

0.4

0.6
R2

0.2 0.4 0.6
Figure S.6: Results for Example 1 with a uniformly distrigditerror term: risk comparisons
underL,, andLz as a function of R.

0.8
R2
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n=20,a=0.5

Risk

Risk

---AICc
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\ —KLMA
.
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o
it
0.2 0.4 0.6 0.8
RZ
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1.6f—— . .
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N I —KLMA
\\ -
y ’
1.4f Vs sl N
e R .
x N7 X
2 . ]
@ Sommmll 3
1.2F X
1t q 1t
0.2 0.4 0.6
RZ

underL,, as a function of R.

0.6
RZ
Figure S.7: Results for Example 2 with a uniformly distriditerror term: risk comparisons
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n =20 n =50
- -JMA - -IMA
— MKLMA, — mKLMA,
15l . MKLMA, || 15k - mKLMA, ||

- x

K] K2

o o

1l
1 osp 77
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
R? R?
n =150 n = 400
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— MKLMA, — mKLMA,
15l . MKLMA, || 15k o mMKLMA, |
x ---" Ca X
@ o _a---T N4l
o -TTT o
1
054"
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0.2 0.4 0.6 0.8
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Figure S.8: Results for Example 3 with a uniformly distrigditerror term: risk comparisons
underL, as a function of R.
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n =20 n =50
---IMA ---IMA
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0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
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n = 150 n = 400
EEERTYTY ——-oVA
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. JUNEE «
B K2
o e o
r f_v
0.5f”

0.2

0.6

0.8
R2

0.2

0.4 0.6 0.8
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Figure S.9: Results for Example 3 with a uniformly distrigditerror term: risk comparisons
underL; as a function of R.
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n = 20 n =50
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Figure S.10: Results for Example 3 with a uniformly disttémlierror term: risk comparisons
UNderLieeq, as a function of R.
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S12 Simulation Results with a Chi-squared Distributed Erra

In this section, we repeat Examples 1-3 but using a Chi-sgludistributed error term:
Example 1

Example 2
o8 2{x*(4) — 4}

8712 {X*(4) — 4}

Example 3
exp(nXz) 28712 {x*(4) — 4}

The following figures show new results.

n=20,L, n =>50,L,
RN ---AICc A ---AICc
- = MMA N MMA
1.6r —KLMA|| 161 —KLMA
6 1.4
['4
;
;
12t 1.2t
02 04 06 08 0.2 04 06 08
R? R?
TLZQO,LB n:5O,L/3
1.8 1.8
- - AlCc ---AlCc
- - MMA - = MMA
—KLMA —KLMA
.
K
/
1.61 1.61
~ x
2 x4
o o
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0.4

0.6
R2

0.8

0.2
underL,, andLz as a function of R.

0.4

0.6
Figure S.11: Results for Example 1 with a Chi-squared dhisteid error term: risk comparisons
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n=20,a=0.5 n=250,a=0.5
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Figure S.12: Results for Example 2 with a Chi-squared disteid error term: risk comparisons
underL,, as a function of R.
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n = 400
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Figure S.13: Results for Example 3 with a Chi-squared dhisteid error term: risk comparisons
underL, as a function of R.
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n = 20 n =50
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Figure S.14: Results for Example 3 with a Chi-squared dhisteid error term: risk comparisons
underL; as a function of R.
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Figure S.15: Results for Example 3 with a Chi-squared dhisteid error term: risk comparisons
UNderLieeq, as a function of R.
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S13 Simulation Results with Coefficients Depending on the
Sample Size

In this section, we repeat Examples 1 and 3, but let the caifie depend on the sample size.
Specifically, we sef = (1,2,3,2/\/n,2/v/n,2/v/n,2/y/n)*. The following figures show new
results.
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Figure S.16: Results for Example 1 with the coefficients delpeg on the sample size: risk
comparisons undet,, andLg as a function of R.
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Figure S.17: Results for Example 3 with the coefficients delpeg on the sample size: risk
comparisons undel,, as a function of R.
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Figure S.18: Results for Example 3 with the coefficients delpeg on the sample size: risk
comparisons undels as a function of R.
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Figure S.19: Results for Example 3 with the coefficients delpegg on the sample size: risk
comparisons undeft,....,. as a function of R.
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