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•Section S6: Calculation for∂η̂T/∂y;

•Section S7: Discussion on Assumption (A.1) and its relationship with the normality ofe;

•Section S8: All Simulation Results of Example 1;
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•Section S10: All Simulation Results of Example 3;

•Section S11: Simulation Results with a Uniformly Distributed Error Term;

•Section S12: Simulation Results with a Chi-squared Distributed Error Term;

•Section S13: Simulation Results with Coefficients Depending on the Sample Size.

S1 Proof of Theorem 1

This proof is mainly an application of Stein’s Lemma (Stein (1981)). Letyi, µi andµ̂(w)i be the
ith elements ofy, µ andµ̂(w), respectively. By the conditions stated in Theorem 1 and Stein’s
Lemma, we have

Ef(y)

[
(yi − µi) {yi − µ̂(w)i}

σ̂2

]
= σ2Ef(y)

(
∂
[
{yi − µ̂(w)i}/σ̂2

]

∂yi

)
(S1.1)
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and

Ef(y)

{
(yi − µi)

2

σ̂2

}
= σ2Ef(y)(σ̂

−2) + σ4Ef(y)

{
∂2(σ̂−2)

∂y2i

}
. (S1.2)

Using (S1.1), it can be seen that

Ef(y)

[
(y − µ)T {y − µ̂(w)}

σ̂2

]
= σ2Ef(y)

(
trace

∂
[
{y − µ̂(w)}/σ̂2

]

∂yT

)

= Ef(y)(nσ
2σ̂−2)− Ef(y)trace

{
σ2σ̂−2 ∂µ̂(w)

∂yT

}

−Ef(y)

[
σ2σ̂−4{y − µ̂(w)}T ∂σ̂2

∂y

]
.

(S1.3)

Using (S1.2), we obtain

Ef(y)

(‖y − µ‖2
σ̂2

)
= nσ2Ef(y)

(
σ̂−2

)
+ σ4Ef(y)

[
trace

{
∂2(σ̂−2)

∂y∂yT

}]

= Ef(y)

(
nσ2σ̂−2

)
+ Ef(y)

{
2σ4σ̂−6trace

(
∂σ̂2

∂y

∂σ̂2

∂yT

)}

−Ef(y)

{
σ4σ̂−4trace

(
∂2σ̂2

∂y∂yT

)}
. (S1.4)

In addition, it is straightforward to show that

‖µ− µ̂(w)‖2 = ‖y − µ̂(w)‖2 + ‖y − µ‖2 − 2{y − µ̂(w)}T(y − µ). (S1.5)

Now, by combining (S1.3)-(S1.5), Theorem 1 is proved.

S2 Proof of Theorem 2

Based on the proofs of Theorems 1’ and 2 in Wan, Zhang and Zou (2010), and Assumptions
(A.1), (A.2) and (A.4), to prove Theorem 2, we need only to verify that

sup
w∈W

{∣∣∣∣y
TPT(w)

∂σ̂2

∂y

∣∣∣∣R
−1
n (w)

}
= op(1). (S2.1)



MODEL AVERAGING BASED ON KULLBACK-LEIBLER DISTANCE S3

By Assumptions (A.2), (A.3), and (A.5), we have

sup
w∈W

{∣∣∣∣y
TPT(w)

∂σ̂2

∂y

∣∣∣∣R
−1
n (w)

}
≤ ξ−1

n sup
w∈W

∣∣∣yTPT(w)T̂ y
∣∣∣

= ξ−1
n sup

w∈W

∣∣∣yT
{
PT(w)T̂ + T̂TP (w)

}
y
∣∣∣ /2

≤ ξ−1
n sup

w∈W

[
λmax

{
PT(w)T̂ + T̂TP (w)

}]
‖y‖2/2

≤ ξ−1
n sup

w∈W
[λmax{P (w)}]λmax(T̂ )‖y‖2

≤ ξ−1
n sup

w∈W

{
max

s∈{1,...,S}
λmax(P(s))

}
λmax(T̂ )‖y‖2

= ξ−1
n max

s∈{1,...,S}
λmax(P(s)) · nλmax(T̂ ) · n−1‖y‖2 = op(1). (S2.2)

This completes the proof.

S3 Proof of Theorem 3

By the assumption thatµ is a linear function ofX , we have

yT(In − P )y = eT(In − P )e,

whereIn − P is a symmetric idempotent matrix with rankn − m. Soσ2/{yT(In − P )y} is
distributed as an inverse Chi-squared distribution with mean(n−m− 2)−1, and thus

Ef(y)

{
σ2

σ̂2(y, k)

}
=

k

n−m− 2
. (S3.1)

In addition,

{y − µ̂(w)}T ∂σ̂2(y, k)

∂y
= 2k−1{y − µ̂(w)}T(In − P )y

= 2k−1yT
S∑

s=1

ws(In − P(s))(In − P )y

= 2k−1yT(In − P )y. (S3.2)

By applying (S3.1), (S3.2), and the facts that∂σ̂2(y, k)/∂y = 2k−1(In−P )y and∂2σ̂2(y, k)/(∂y∂yT)
= 2k−1(In − P ) to Theorem 1, we obtain Theorem 3.
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S4 Proof of (2.4)

Let C̃∗(w) = C∗(w) − ‖e‖2 such thatŵ = argmin
w∈W

C̃∗(w). Write w̃ = argmin
w∈W

E{Ln(w)}. It is

straightforward to show that

Ln(ŵ) = C̃∗(ŵ)− c(ŵ)

= inf
w∈W

C̃∗(w) − c(ŵ)

= inf
w∈W

{Ln(w) + c(w)} − c(ŵ)

≤ Ln(w̃) + e′{In − P (w̃)}µ+ σ2trace{P (w̃)} − e′P (w̃)e− c(ŵ),

which implies (2.4).

S5 Proof of Theorem 4

Let ỹ = Ω−1/2y, µ̃ = Ω−1/2µ, ẽ = Ω−1/2e, andΩ̃ = Ω−1/2Ω̂Ω−1/2. By simple calculations,
we have

D∗(w) = {ỹ − P̃ (w)ỹ)}T{ỹ − P̃ (w)ỹ)}+ 2trace{P̃ (w)}
+{µ̃− P̃ (w)µ̃}T(Ω̃−1 − In){µ̃− P̃ (w)µ̃}+ {P̃ (w)ẽ}T(Ω̃−1 − In)P̃ (w)ẽ

−2{µ̃− P̃ (w)µ̃}T(Ω̃−1 − In)P̃ (w)ẽ + 2ẽT(Ω̃−1 − In){µ̃− P̃ (w)µ̃}
−2ẽT(Ω̃−1 − In)P̃ (w)ẽ − 2ỹTP̃T(w)Ω̃−1Ω−1/2â+ ẽT(Ω̃−1 − In)ẽ. (S5.1)

It follows from Assumptions (A.2) and (B.2) that

sup
w∈W

λmax{P̃ (w)} = O(1). (S5.2)

From the proof of Theorem 1’ in Wan, Zhang and Zou (2010), (S5.1), (S5.2), Assumptions
(B.1)-(B.2), and the fact that̃eT(Ω̃−1 − In)ẽ is unrelated tow, in order to prove (3.2), we need
only to verify that

sup
w∈W

[R−1
hetero,n(w)|{µ̃− P̃ (w)µ̃}T(Ω̃−1 − In){µ̃− P̃ (w)µ̃}|] = op(1), (S5.3a)

sup
w∈W

[R−1
hetero,n(w)|{P̃ (w)ẽ}T(Ω̃−1 − In)P̃ (w)ẽ|] = op(1), (S5.3b)

sup
w∈W

[R−1
hetero,n(w)|{µ̃− P̃ (w)µ̃}T(Ω̃−1 − In)P̃ (w)ẽ|] = op(1), (S5.3c)

sup
w∈W

[R−1
hetero,n(w)|ẽT(Ω̃−1 − In){µ̃− P̃ (w)µ̃}|] = op(1), (S5.3d)

sup
w∈W

{R−1
hetero,n(w)|ẽT(Ω̃−1 − In)P̃ (w)ẽ|} = op(1), (S5.3e)

sup
w∈W

{R−1
hetero,n(w)|ỹTP̃T(w)Ω̃−1Ω1/2â|} = op(1). (S5.3f)
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By (S5.2) and Assumptions (A.3) and (B.2), it is straightforward to show that

Rhetero,n(w) = ‖µ̃− P̃ (w)µ̃‖2 + trace{P̃ (w)P̃T(w)}
≥ max{‖µ̃− P̃ (w)µ̃‖2, trace{P̃ (w)P̃T(w)}}, (S5.4)

Rhetero,n(w) = µT{In − P (w)}TΩ−1{In − P (w)}µ+ trace{P (w)ΩPT(w)Ω−1}
= O(n), (S5.5)

and that

sup
w∈W

{R−1
hetero,n(w)‖P̃ (w)ẽ‖2} = op(1) + sup

w∈W
[R−1

hetero,n(w)trace{P̃ (w)P̃T(w)}] (S5.6)

by the proof of Theorem 1’ in Wan, Zhang and Zou (2010).

Using (S5.5), we see thatn−1ξhetero,n = O(1), which together with Assumption (B.3) im-
plies that

max
i∈{1,...,n}

|Ω̂ii − Ωii| = op(1). (S5.7)

Using (S5.7) and Assumption (B.2), we have

λmax(Ω̃
−1 − In) = Op( max

i∈{1,...,n}
|Ω̂ii − Ωii|) = op(1). (S5.8)

Thus, from (S5.4) and (S5.8), we obtain

sup
w∈W

[R−1
hetero,n(w)|{µ̃ − P̃ (w)µ̃)}T(Ω̃−1 − In){µ̃− P̃ (w)µ̃}|]

≤ λmax(Ω̃
−1 − In) sup

w∈W
[R−1

hetero,n(w){µ̃− P̃ (w)µ̃)}T{µ̃− P̃ (w)µ̃}]

≤ λmax(Ω̃
−1 − In) = op(1),

which is the result (S5.3a). Using (S5.6), (S5.8), and Assumption (B.4), it is seen that

sup
w∈W

[R−1
hetero,n(w)|{P̃ (w)ẽ}T(Ω̃−1 − In)P̃ (w)ẽ|]

≤ λmax(Ω̃
−1 − In) sup

w∈W
{R−1

hetero,n(w)‖P̃ (w)ẽ‖2}

= λmax(Ω̃
−1 − In)

(
sup
w∈W

[R−1
hetero,n(w)trace{P̃ (w)P̃T(w)}] + op(1)

)

= op(1), (S5.9)

which is the result (S5.3b). Using (S5.4), (S5.6), (S5.8), and Assumption (B.4), we obtain

sup
w∈W

(R−2
hetero,n(w)[{µ̃− P̃ (w)µ̃}T(Ω̃−1 − In)P̃ (w)ẽ]2)

≤ sup
w∈W

{R−1
hetero,n(w)‖(Ω̃−1 − In)P̃ (w)ẽ‖2}

≤ {λmax(Ω̃
−1 − In)}2 sup

w∈W
{R−1

hetero,n(w)‖P̃ (w)ẽ‖2} = op(1),



S6 XINYU ZHANG, GUOHUA ZOU AND RAYMOND J. CARROLL

which implies the result (S5.3c). Using (S5.4), (S5.8), andAssumptions (B.2)-(B.3), it follows
that

sup
w∈W

[R−2
hetero,n(w){ẽT(Ω̃−1 − In){µ̃− P̃ (w)µ̃)}2]

≤ {λmax(Ω̃
−1 − In)}2 sup

w∈W
{R−1

hetero,n(w)}‖ẽ‖2

≤ {λmax(Ω̃
−1 − In)}2nξ−1

hetero,nn
−1‖ẽ‖2 = op(1),

which implies the result (S5.3d). Similarly, from (S5.4), (S5.6), (S5.8), and Assumptions (B.2)-
(B.3), we have

sup
w∈W

[R−2
hetero,n(w){ẽT(Ω̃−1 − In)P̃ (w)ẽ}2]

≤ {λmax(Ω̃
−1 − In)}2ξ−1

hetero,n‖ẽ‖2 sup
w∈W

{R−1
hetero,n(w)‖P̃ (w)ẽ‖2}

= op(1),

which implies the result (S5.3e). Finally, using steps similar to (S2.2), it follows from (S5.2),
(S5.7), and Assumptions (A.3), (B.2) and (B.5) that

sup
w∈W

{R−1
hetero,n(w)|ỹTP̃ (w)Ω̃−1Ω1/2â|} = sup

w∈W
{R−1

hetero,n(w)|ỹTP̃ (w)Ω̃−1Ω1/2Âỹ|}

= sup
w∈W

[R−1
hetero,n(w)|ỹT{P̃ (w)Ω̃−1Ω1/2Â+ ÂTΩ1/2Ω̃−1P̃ (w)T}ỹ|]/2

≤ λmax{P̃ (w)}λmax(Ω̃
−1)λmax(Ω

1/2)n−1‖ỹ‖2nλmax(Â)ξ
−1
hetero,n

= op(1),

which is the result (S5.3f). This completes the proof.

S6 Calculation for ∂η̂T/∂y

Assuming thatµ = Xβ, the -2log-likelihood is

n log 2π + log |Ω(η)| + (y −Xβ)TΩ−1(η)(y −Xβ).

Write η̂ = (η̂1, . . . , η̂q)
T. Let β̂ be the ML estimator ofβ, Uj(η̂) = ∂Ω−1(η̂)/∂η̂j, and

Vjk(η̂) = ∂Uj(η̂)/∂η̂k for j, k = 1, . . . , q. From Magnus and Neudecker (1988), we have
the following score equations:

{
(y −Xβ̂)TΩ−1(η̂)X = 0,

(y −Xβ̂)TUj(η̂)(y −Xβ̂)− trace{Uj(η̂)Ω(η̂)} = 0, j = 1, ..., q.
(S6.1)

LetK be aq × n matrix with thej th row Kj = (y −Xβ̂)TUj(η̂), Q be aq × q matrix with the
jkth elementQjk = (y −Xβ̂)TVjk(η̂)(y −Xβ̂), andB be aq × q matrix with thejkth element
Bjk = ∂trace{Uj(η̂)Ω(η̂)}/∂η̂k.
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Taking derivatives with respect toy on both sides of (S6.1), we have

{
∂η̂T

∂y KX +Ω−1(η̂)X − ∂β̂T

∂y XTΩ−1(η̂)X = 0,
∂η̂T

∂y QT + 2KT − 2∂β̂T

∂y XTKT − ∂η̂T

∂y BT = 0,
(S6.2)

by which, we have

∂η̂T

∂y
= [2Ω−1(η̂)X{XTΩ−1(η̂)X}−1XTKT − 2KT]

×[QT −BT − 2KX{XTΩ−1(η̂)X}−1XTKT]−1,

given the above inverses exist.

S7 Discussion on Assumption (A.1) and its relationship with
the normality of e

It is seen that

Rn(w) = E{Ln(w)} = E{‖µ̂(w) − µ‖2} = E{‖P (w)(µ+ e)− µ‖2}
= ‖P (w)µ− µ‖2 + σ2trace{P (w)PT(w)},

which depends on the mean and variance ofei, but is unrelated to other properties ofei. So
given the mean zero and the varianceσ2, Assumption (A.1) depends on the distribution ofei
only through the integerG, which is determined by the first part of Assumption (A.1). The first
part of Assumption (A.1) is just a moment condition, which issatisfied for anyG < ∞ when
ei follows normal, uniform or Chi-squared distribution. Thus, if Assumption (A.1) holds for
normalei, then it also holds for uniform or Chi-squaredei.

In the following, we discuss the assumption

Sξ−2G
n

S∑

s=1

RG
n (w

0
s) = o(1). (S7.1)

First,ξn → ∞ is a necessary condition of the assumption (S7.1). As Hansenand Racine (2012)
remarked, this condition requires that all finite dimensional models be approximations. Letηn =
maxs∈{1,...,S} Rn(w

0
s). A sufficient condition of the assumption (S7.1) isS2(ξ−2

n ηn)
G = o(1).

For a fixed rate ofξn → ∞, the slower the rates ofS → ∞ andηn → ∞, the faster the rate of
S2(ξ−2

n ηn)
G → 0. Practically, the rates ofS → ∞ andηn → ∞ can be reduced by removing

the very poor models at the outset prior to model averaging.

In fact, the assumption (S7.1) is introduced by Wan, Zhang and Zou (2010), where its
rationality was discussed in detail. Since that, this condition has been used in model averaging
studies such as Liu and Okui (2013).
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S8 All Simulation Results of Example 1
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Figure S.1: Results for Example 1: risk comparisons underLµ andLβ as a function of R2.
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S9 All Simulation Results of Example 2
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Figure S.2: Results for Example 2: risk comparisons underLµ as a function of R2.
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S10 All Simulation Results of Example 3
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Figure S.3: Results for Example 3: risk comparisons underLµ as a function of R2.
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Figure S.4: Results for Example 3: risk comparisons underLβ as a function of R2.
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Figure S.5: Results for Example 3: risk comparisons underLhetero,µ as a function of R2.
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S11 Simulation Results with a Uniformly Distributed Error
Term

In this section, we repeat Examples 1-3 but using a uniformlydistributed error term.

Example 1 Example 2 Example 3
σUniform(−31/2, 31/2) Uniform(−31/2, 31/2) exp(ηX2i)

1/2Uniform(−31/2, 31/2)

The following figures show new results.
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Figure S.6: Results for Example 1 with a uniformly distributed error term: risk comparisons
underLµ andLβ as a function of R2.
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Figure S.7: Results for Example 2 with a uniformly distributed error term: risk comparisons
underLµ as a function of R2.
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Figure S.8: Results for Example 3 with a uniformly distributed error term: risk comparisons
underLµ as a function of R2.
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Figure S.9: Results for Example 3 with a uniformly distributed error term: risk comparisons
underLβ as a function of R2.
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Figure S.10: Results for Example 3 with a uniformly distributed error term: risk comparisons
underLhetero,µ as a function of R2.
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S12 Simulation Results with a Chi-squared Distributed Error
Term

In this section, we repeat Examples 1-3 but using a Chi-squared distributed error term:

Example 1 Example 2 Example 3
σ8−1/2{χ2(4)− 4} 8−1/2{χ2(4)− 4} exp(ηX2i)

1/28−1/2{χ2(4)− 4}

The following figures show new results.
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Figure S.11: Results for Example 1 with a Chi-squared distributed error term: risk comparisons
underLµ andLβ as a function of R2.
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Figure S.12: Results for Example 2 with a Chi-squared distributed error term: risk comparisons
underLµ as a function of R2.
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Figure S.13: Results for Example 3 with a Chi-squared distributed error term: risk comparisons
underLµ as a function of R2.
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Figure S.14: Results for Example 3 with a Chi-squared distributed error term: risk comparisons
underLβ as a function of R2.
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Figure S.15: Results for Example 3 with a Chi-squared distributed error term: risk comparisons
underLhetero,µ as a function of R2.
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S13 Simulation Results with Coefficients Depending on the
Sample Size

In this section, we repeat Examples 1 and 3, but let the coefficients depend on the sample size.
Specifically, we setβ = (1, 2, 3, 2/

√
n, 2/

√
n, 2/

√
n, 2/

√
n)T. The following figures show new

results.
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Figure S.16: Results for Example 1 with the coefficients depending on the sample size: risk
comparisons underLµ andLβ as a function of R2.
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Figure S.17: Results for Example 3 with the coefficients depending on the sample size: risk
comparisons underLµ as a function of R2.
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Figure S.18: Results for Example 3 with the coefficients depending on the sample size: risk
comparisons underLβ as a function of R2.
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Figure S.19: Results for Example 3 with the coefficients depending on the sample size: risk
comparisons underLhetero,µ as a function of R2.
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