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Supplementary Material

This supplemental material aims at providing further details on the simulation re-
sults presented in Section 3 of the article. In particular, several graphics, illustrating
every step of the analysis, are included and gives an understandable overview of the
estimation on simulated data.

S1 Detailed analysis of the simulations in Section 3

In this section, we provide further details on the simulation results provided in Section 3
of the article. First recall that the data were simulated in the following way: values
for the real random variable Y were drawn from a uniform distribution in the interval
[0, 10]. e is a Gaussian process independent of Y with zero mean and covariance operator
Γ =

∑
j≥1

1
j(1+0.1) vj ⊗ vj , where (vi)i≥1 is the trigonometric basis of X = L2([0, 1]) (i.e.,

v2k−1 =
√

2 cos(2πkt), and v2k =
√

2 sin(2πkt)). More precisely, for all models, e was
simulated by using a truncation of Γ, Γ(s, t) '

∑q
j=1

1
j(1+0.1) vj(t)vj(s) by setting q = 500.

Then, X was generated by four different models or settings including linear and nonlinear
ones.

M1 a model where E(X|Y ) is a linear function of Y expressed on the error eigenfunction
basis: X = Y v1 + Y v2 + Y v5 + Y v10 + e;

M2 a model where E(X|Y ) is a nonlinear function of Y expressed on the error eigen-
function basis: X = sin(Y )v1 + log(Y + 1)v5 + e;

M3 a model where E(X|Y ) is a linear function of Y expressed not on the error eigen-
function basis but on polynomials: X = Y q1 + 5Y q2 + e, where q1 = 2t3 and
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q2 = t4. Note that such polynomials have coefficients in the Fourier basis that
decay faster than 1

j3 , and so assumption (A8) is fulfilled;

M4 a model where E(X|Y ) is a nonlinear function of Y expressed using the aforemen-
tioned polynomials: X = sin(Y )q1 + 20 log(Y + 1)q2 + e.

From these 4 models, a training and a test samples with sizes nL = 300 and
nT = 200, respectively, were generated. To apply the DBIC method, simulated dis-
cretized functions were approximated by continuous functions using a functional basis
expansion. Specifically, the discrete data were converted into continuous data (or func-
tional predictors) X by approximation through 128 B-spline basis functions of order 4.
Figure 1 shows examples of functional predictors X obtained for models M1 (one of the
linear models) and M4 (one of the nonlinear models) for three different values of y. The
underlying mean functions r(y) = E(X|Y = y) are also given. Depending on Y and
on the model, the predictors are more or less noisy but for several cases the level of
noise is large and the regression problem should be a hard task. Additional figures (for
other simulated models) can be found in Hernández et al. (2010, 2011) in which a short
simulation study of the DBIC method is presented.

The DBIC method was used according to the 3 steps described in Section 2. For the
first step, the conditional mean r(y) was estimated from the training sample by kernel
smoothing (such as in Equation (2.3)). For this, it was necessary to tune the bandwidth
parameter h. This was done through a 10-fold cross-validation for minimizing the L2-
norm between the data and the estimated mean curves in the training sample. That
is, the training sample (x1, y1), ..., (xnL

, ynL
) was randomly partitioned into 10 blocks

or folds of approximately the same size, and hopt = arg minh∈H
1
nL

∑nL

i=1 ‖x̂
(h)
i − xi‖2L2

where H is the search interval for possible values of h, and x̂
(h)
i is the estimate of the

mean r(yi) using a kernel smoothing with parameter h and the data not belonging to
the fold in which (xi, yi) is.

Figure 2 shows the results of this step for models M1 (Figure 2, (a)-(f)) and M4
(Figure 2, (g)-(l)). The estimate r̂(y)(t) of the mean is shown both as a function of t (for
some y values, the same chosen to show the predictors in Figure 1) and as a function of
y (for some t values). Together with the estimate of the mean, the true mean and the
data are also plotted. The mean is well estimated in both cases. The linear dependence
on y for the case of model M1 (Figure 2, (d)-(f)) and the nonlinear dependence on y for
model M4 (Figure 2, (j)-(l)) is well stressed out in these figures.

Once the mean is estimated, the empirical covariance of the residuals and its spec-
tral decomposition is calculated. Figure 3 plots the estimates of eigenvalues versus the
true eigenvalues, as well as the estimates of the first three eigenfunctions together with
the true ones for models M1 (Figure 3, (a)-(d)) and M4 (Figure 3, (e)-(h)). The esti-
mation of eigenvalues and eigenfunctions is also satisfactory in both models. As both
models were generated with the same error structure, the spectral decomposition to be
estimated was the same for both cases. This corroborates also that the estimated mean,
different for both cases, was correctly subtracted giving good estimates of the residu-
als and consequently good estimates of the spectral decomposition of their covariance
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(a) (b) (c)

(d) (e) (f)

Figure 1: Examples of three functional predictors generated from models M1 (Figures
(a)-(c)) and M4 (Figures (d)-(f)). These figures show the predictors X (dashed line)
and the mean curves r(y) = E(X|Y = y) (continuous line) as functions of t, for the
particular values y = 0.57 (Figures (a),(d)), y = 3.20 (Figures (b),(e)), and y = 9.83
(Figures (c),(f)).

operator.

Another hyperparameter involved in the estimation of the regression function γ̂(x)
is the number p of eigenfunctions (Equation (2.4)) used to estimate f(x|y). Thus, a
suitable number p of eigenfunctions has to be chosen. This hyperparameter was selected
also by a 10-fold cross-validation for minimizing the root mean squared error (RMSE)

criterion on the training sample. Specifically, popt = arg minp

√
1
n

∑n
i=1

(
ŷ
(p)
i − yi

)2
,

where ŷ
(p)
i is DBIC prediction of yi using the conditional density f̂ (p) calculated with p

eigenfunctions and the data not belonging to the fold in which yi is, fold(i). That is,

ŷ
(p)
i =

∑
j /∈fold(i) f̂

(p)(xi|yj)yj∑
j /∈fold(i) f̂

(p)(xi|yj)
.

For model M1 the cross-validation gives the value p = 15, which is close to the true
one (p = 10) according to the model. For model M4 the resulting value was p = 47, which
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Figure 2: Estimate of the mean r(y)(t) (discontinuous line) as a function of t for various
y values (the same as in Figure 1) for models M1 (Figures (a)-(c)) and M4 (Figures (g)-
(i)). Estimate of r(y)(t) (dashed line) as function of y for various t values (t = 0.02, t =
0.71, t = 0.99) in models M1 (Figures (d)-(f)) and M4 (Figures (j)-(l)). The true mean
r(y)(t) (continuous line) and the observed data (points) are also shown.
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Model DBIC NWK DBIC
(parametric est. of the mean)

M1 0.23 0.28 0.22
M2 1.71 1.91 X
M3 0.07 0.19 0.02
M4 0.35 0.47 X

Table 1: RMSE achieved by DBIC and NWK for the four simulated models

is larger. Unlike M1, M4 was not built by using the first eigenfunctions of the covariance
operator Γ in the expression of E(X|Y ), hence the need for more eigenfunctions.

Once the estimate γ̂(x) is obtained on the basis of the training set, the performance
of the DBIC approach was assessed by predicting the y values on the test sample. More

precisely, the RMSE was computed: RMSE =
√

1
nT

∑nT

i=1 (yi − ŷi)2, where yi denotes

the observed value of Y in the test sample and ŷi the corresponding prediction γ̂(xi).

Figure 4 shows the predictions achieved on the test sample by DBIC for models M1
(Figure (a)) and M4 (Figure (c)), which are good in both cases. In order to have a ref-
erence to compare with, the standard functional nonparametric kernel estimate (NWK)
(Ferraty and Vieu, 2006) was computed from the training sample (using a Gaussian ker-
nel and also tuning the bandwidth parameter by 10-fold cross-validation on the training
sample) and its predictions on the test set were calculated. Those predictions are also
shown in Figure 4 for model M1 (Figure (b)) and model M4 (Figure (d)).

All these steps were done for each simulated model. Table 1 presents the DBIC
RMSE and the NWK RMSE for each of the simulated models. It can be observed that
DBIC performs well in all models and outperforms the NWK estimator. The fourth
column in the table is the RMSE achieved by DBIC but using a parametric estimation
of the mean: instead of estimating the mean using kernel smoothing, the mean was esti-
mated by linear regression (least squares estimates) for models M1 and M3 in which the
means are linear functions of Y . It can be observed that the RMSE resulting from such
a parametric estimates are smaller that those obtained by kernel smoothing. This illus-
trates that the DBIC approach has the flexibility to incorporate prior knowledge about
the mean, if available, and that this additional information can improve the performance.
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Figure 3: Estimates of the eigenvalues of e versus the true ones for models M1 (Figure
a) and M4 (Figure e). Estimates of the first three eigenfunctions of e (dashed lines) and
the true first three eigenfunctions of e (continuous lines) in models M1 (Figures (b)-(d))
and M4 (Figures (f)-(h)).



FUNCTIONAL DENSITY-BASED INVERSE CALIBRATION S7

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

True Y

Pr
ed

ic
te

d
Y

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

True Y

Pr
ed

ic
te

d
Y

(a) (b)

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

True Y

Pr
ed

ic
te

d
Y

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

True Y

Pr
ed

ic
te

d
Y

(c) (d)

Figure 4: Observed Y values vs. predicted Y values using DBIC for models M1 (Figure
(a)) and M4 (Figure (c)), and using NWK for models M1 (Figure (b)) and M4 (Figure
(d)).
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