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A Technical proofs of the results in Section 2

A.1 Proof of Proposition 2.1

The expressions (2.13)-(2.15) can be obtained by applying the results of Buonaguidi and Muliere (2013, Sec.
5.2) or can be derived by using Ito’s formula and (2.12):

f(πt) =f(π) +

∫ t

0

f ′(πs−) dπs +
∑

0≤s≤t

(

∆f(πs)− f ′(πs−)∆πs
)

=f(π)−
∫ t

0

log

(

α0

α1

)

f ′(πs− )πs−(1− πs−) ds+

∫ t

0

∫ 1

0

[f(πs− + z)− f(πs−)]µ
π(dz, ds)

=f(π)−
∫ t

0

log

(

α0

α1

)

f ′(πs− )πs−(1− πs−) ds+

∫ t

0

∫ 1

0

[f(πs− + z)− f(πs−)] v
π(dz) ds

+

∫ t

0

∫ 1

0

[f(πs− + z)− f(πs−)] (µ
π(dz, ds)− vπ(dz) ds) , (A.1)

where µπ and vπ are the jumping measure and the associated compensator of (πt)t≥0. From (2.12) one may
notice that the magnitude of its jumps is

∆πt =
πt−(1− πt−)

(

e(α0−α1)x − 1
)

1 + πt−
(

e(α0−α1)x − 1
) , (A.2)

so that

πt− +∆πt =
πt−e

−α1x

(1− πt−)e−α0x + πt−e−α1x
. (A.3)

Hence, the replacement in (A.1) of (πs− + z) with (A.3) and the integration over (0,∞) with respect to µX

and its compensator (1 − π)v0 + πv1, being vi(dx) = x−1e−αix1(0,∞)(dx), i = 0, 1, complete the proof.
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A.2 Proof of Proposition 2.2

Let π1, π2 ∈ [0, 1] and λ ∈ [0, 1]. From (2.3), it is immediate to notice that Pλπ1+(1−λ)π2
= λPπ1

+(1−λ)Pπ2
.

Hence,

V
(

λπ1 + (1− λ)π2
)

= inf
τ
Eλπ1+(1−λ)π2

[τ + ga,b(πτ )]

= inf
τ

{

λEπ1
[τ + ga,b(πτ )] + (1− λ)Eπ2

[τ + ga,b(πτ )]
}

≥ λ inf
τ
Eπ1

[τ + ga,b(πτ )] + (1 − λ) inf
τ
Eπ2

[τ + ga,b(πτ )] (A.4)

= λV (π1) + (1− λ)V (π2).

A.3 Proof of Proposition 2.3

Since on (A,B) we have V (π) < ga,b(π), for any ǫ > 0 such that A+ ǫ < c, it results

V (A+ ǫ)− V (A)

ǫ
≤ a(A+ ǫ)− aA

ǫ
= a, (A.5)

so that V ′(A+) ≤ a, where the right-hand derivative exists because of the concavity of π 7→ V (π).

In order to show that the reverse inequality holds, fix ǫ > 0 so that A+ ǫ < c and consider the stopping
time τ⋆A+ǫ, that, according to the arguments of Subsection 2.1, is optimal for V (A+ǫ). We recall that τ⋆π+ǫ is
the first exit time from (A,B) of the process (πt)t≥0, starting at π0 = π + ǫ. Then, from (2.3) and similarly
to Gapeev and Peskir (2004), we have

V (A+ ǫ)− V (A)

≥ EA+ǫ

[

τ⋆A+ǫ + ga,b(πτ⋆

A+ǫ
)
]

− EA

[

τ⋆A+ǫ + ga,b(πτ⋆

A+ǫ
)
]

=
1
∑

i=0

Ei [Si(A+ ǫ)− Si(A)] , (A.6)

where

Si(π) =
1 + (−1)i(1 − 2π)

2

(

τ⋆A+ǫ + a
πe

Yτ⋆
A+ǫ

1 + π(e
Yτ⋆

A+ǫ − 1)
∧ b 1− π

1 + π(e
Yτ⋆

A+ǫ − 1)

)

. (A.7)

Then, according to the mean value theorem, there exist ξi ∈ (A,A + ǫ), i = 0, 1, such that

1
∑

i=0

Ei [Si(A+ ǫ)− Si(A)] = ǫ
1
∑

i=0

Ei [S
′
i(ξi)] , (A.8)

being

S′
i(π) = (−1)i−1

(

τ⋆A+ǫ + a
πe

Yτ⋆
A+ǫ

1 + π(e
Yτ⋆

A+ǫ − 1)
∧ b 1− π

1 + π(e
Yτ⋆

A+ǫ − 1)

)

+
1 + (−1)i(1− 2π)

2

(

a1{

πτ⋆
A+e

<c
} − b1{

πτ⋆
A+e

>c
}

)

e
Yτ⋆

A+ǫ

[

1 + π(e
Yτ⋆

A+ǫ − 1)
]2 . (A.9)



SEQUENTIAL TESTING OF A GAMMA PROCESS 3

From the definition of τ⋆π+ǫ and simple calculations, one has

τ⋆A+ǫ = inf{t ≥ 0 : πt /∈ (A,B), π0 = A+ ǫ}

≤ inf

{

t ≥ 0 : Yt ≤ log

(

A

1−A

1− (A+ ǫ)

A+ ǫ

)}

=: γǫ. (A.10)

According to Sato (1999, Th. 43.20, p. 323),

Pi

[

lim
t↓0

t−1Yt = − log

(

α0

α1

)]

= 1, i = 0, 1, (A.11)

meaning that the starting point 0 of Y = (Yt)t≥0 is regular for (−∞, 0) (that is, with probability 1, Y ,
starting at 0, enters (−∞, 0) immediately). From (A.10) and (A.11), it results γǫ ↓ 0 Pi-a.s. as ǫ ↓ 0,
i = 0, 1. Therefore, τ⋆A+ǫ ↓ 0 and Yτ⋆

A+ǫ
→ 0 as ǫ ↓ 0 Pi-a.s., i = 0, 1. Hence, from (A.9)

S′
i(ξi) → (−1)i−1aA+

1 + (−1)i(1 − 2A)

2
a, Pi-a.s., i = 0, 1, as ǫ ↓ 0. (A.12)

Since S′
i(ξi) + (−1)iτ⋆A+ǫ is obviously bounded, for i = 0, 1, from (A.6), (A.8), (A.12), Ei[τ

⋆
A+ǫ] → 0 as ǫ ↓ 0,

i = 0, 1, and the bounded convergence theorem we have

V ′(A+) = lim
ǫ↓0

V (A+ ǫ)− V (A)

ǫ
≥ lim

ǫ↓0

1
∑

i=0

Ei [S
′
i(ξi)] = a, (A.13)

which, combined with (A.5), completes the proof.

A.4 Proof of Proposition 2.4

Define f(y) = V (π;B), with π = ey/(1 + ey); it is not difficult to show that f solves

f ′(y) = − 1

λ
− b

λ

eγy

1 + ey

∫ ∞

Bo

e−γz

z − y
dz + f(y)

eγy

(1 + ey)λ

∫ ∞

Bo

(1 + ez)e−γz

z − y
dz

− eγy

(1 + ey)λ

∫ Bo

y

[f(z)− f(y)]
(1 + ez)e−γz

z − y
dz, y⋆ ≤ y < Bo, (A.14)

f(Bo) =
b

1 + eBo
, (A.15)

where y⋆ is any arbitrary finite number smaller than Bo, Bo = log (B/(1−B)), γ = α0/(α0 − α1) and
λ = log (α1/α0). The representation (A.14)-(A.15) is equivalent to (2.24)-(2.25), but has the advantage of
directly appearing as a linear Volterra integro-differential equation of the second kind (meaning that one
limit of integration is variable and the unknown function f also occurs outside the integral). We observe
that (A.14) seems to be outside the scope of any existing theory on integro-differential equations, because
one has to consider the difference f(z) − f(y) in the last integral (and not just f(z) like in the canonical
representation (B.1)), in order to make it finite. This is caused by the lack of integrability of the map
z 7→ (1 + ez)e−γz/(z − y) on (y,Bo), which, in turn, is a consequence of the Lévy measure of a gamma
process. Then, we proceed as follows: first we analyze “regular versions” of (A.14)-(A.15), for which the
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existence and uniqueness of solutions can be proved by resorting to standard theory; then, we verify that
the limit of these solutions is indeed a solution of (A.14)-(A.15).

Let 0 < ǫ ≤ 1 and denote by fǫ(y) the function solving the following “regular” problem:

f ′
ǫ(y) = g(y)+hǫ(y)fǫ(y) +

∫ Bo

y

kǫ(y, z)fǫ(z) dz, y⋆ ≤ y < Bo, (A.16)

fǫ(B
o) =

b

1 + eBo
, (A.17)

where

g(y) = − 1

λ
− b

λ

eγy

1 + ey

∫ ∞

Bo

e−γz

z − y
dz, (A.18)

hǫ(y) =
eγy

(1 + ey)λ

[

∫ Bo

y

(1 + ez)e−γz

(z − y)1−ǫ
dz +

∫ ∞

Bo

(1 + ez)e−γz

z − y
dz

]

, (A.19)

kǫ(y, z) = − eγy

(1 + ey)λ

(1 + ez)e−γz

(z − y)1−ǫ
. (A.20)

Expressing (A.16)-(A.17) as a system of integral equations

wǫ(y) =g(y) + hǫ(y)fǫ(y) +

∫ Bo

y

kǫ(y, z)fǫ(z) dz, (A.21)

fǫ(y) =
b

1 + eBo
−
∫ Bo

y

wǫ(z) dz, (A.22)

or, more compactly,

Fǫ(y) = Gǫ(y) +

∫ Bo

y

Kǫ(y, z)Fǫ(z) dz, (A.23)

where

Fǫ(y) =

[

wǫ(y)
fǫ(y)

]

, Gǫ(y) =

[

g(y) + hǫ(y)b/
(

1 + eB
o)

b/
(

1 + eB
o)

]

, Kǫ(y, z) =

[

−hǫ(y) kǫ(y, z)
−1 0

]

, (A.24)

and using the matrix norm ||Kǫ(y, z)|| = max{hǫ(y) + |kǫ(y, z)|, 1}, the following facts are easily verified:
i) Gǫ(y) is a continuous function of y, in the sense that its components are all continuous; ii) for every
continuous vector function s and all y ≤ n1 ≤ n2 ≤ Bo,

∫ n2

n1
Kǫ(y, z)s(z) dz is a continuous function of

y; iii) every component of Kǫ(y, z) is absolutely integrable with respect to z, for y⋆ ≤ y < Bo ; iv) ∃
y⋆ = y0 < y1 < . . . < yn = Bo such that, for all i = 0, . . . , n − 1,

∫min{y,yi+1}

yi

||Kǫ(y, z)|| dz ≤ p < 1,

where p is independent of y and i; v) for y⋆ ≤ y ≤ Bo, limδ↓0

∫ y

y−δ ||Kǫ(y − δ, z)|| dz = 0. Then, according

to Linz (1985, Th. 3.2, p. 32), we can conclude that for any 0 < ǫ ≤ 1, there exists only one continuous
solution Fǫ(y) to (A.23), that is, the integro-differential equation (A.16)-(A.17) has a unique continuously
differentiable solution fǫ.

A direct analysis based on the existence and uniqueness of fǫ, 0 < ǫ ≤ 1, shows that {fǫ} and {f ′
ǫ} are

Cauchy sequences and therefore are uniform convergent on [y⋆, Bo]. Then

f(y) := lim
ǫ↓0

fǫ(y), f ′(y) := lim
ǫ↓0

f ′
ǫ(y), y⋆ ≤ y ≤ Bo, (A.25)
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exist and we have that f is continuously differentiable with derivative f ′. Further, since

lim
ǫ↓0

fǫ(z)− fǫ(y)

(z − y)1−ǫ
=
f(z)− f(y)

(z − y)
and

∣

∣

∣

∣

fǫ(z)− fǫ(y)

(z − y)1−ǫ

∣

∣

∣

∣

≤ Cy (A.26)

for any z ∈ [y,Bo] and 0 < ǫ ≤ 1, where Cy is a constant depending on y, from the bounded convergence
theorem we get

f ′(y) = lim
ǫ↓0

f ′
ǫ(y) = − 1

λ
− b

λ

eγy

1 + ey

∫ ∞

Bo

e−γz

z − y
dz + lim

ǫ↓0
fǫ(y)

eγy

(1 + ey)λ

∫ ∞

Bo

(1 + ez)e−γz

z − y
dz

− eγy

(1 + ey)λ
lim
ǫ↓0

∫ Bo

y

[fǫ(z)− fǫ(y)]
(1 + ez)e−γz

(z − y)1−ǫ
dz

= − 1

λ
− b

λ

eγy

1 + ey

∫ ∞

Bo

e−γz

z − y
dz + f(y)

eγy

(1 + ey)λ

∫ ∞

Bo

(1 + ez)e−γz

z − y
dz

− eγy

(1 + ey)λ

∫ Bo

y

[f(z)− f(y)]
(1 + ez)e−γz

z − y
dz, y⋆ ≤ y < Bo. (A.27)

Hence, f from (A.25) is a continuously differentiable solution of (A.14)-(A.15), that is, (2.24)-(2.25) admits
a continuously differentiable solution V (π;B), π ∈ IB . The probabilistic argument provided at the end of
the proof of Theorem 2.1 below finally shows that V (π;B) is unique.

A.5 Proof of Proposition 2.5

The existence and uniqueness of the map π 7→ V (π;B), π ∈ IB, c < B < 1, has been previously stated. The
necessity and sufficiency of (2.27) for having a unique pair A⋆ and B⋆ solving (2.29), and therefore a unique
solution of the free-boundary problem (2.17)-(2.22), arise from the following reasoning.

A direct verification based on the arguments of Section 3 (or the more formal proof given by Peskir and
Shiryaev (2000, Remark 2.2, p. 850)) shows that the maps π 7→ V (π;B′) and π 7→ V (π;B′′), B′ < B′′, do
not intersect on the interval (0, B′] (see Figure 3). Condition (2.27) guarantees that for B > c, close enough
to c, π 7→ V (π;B) crosses π 7→ aπ at some π < c. Then moving B from c to 1, it is easily seen that there
exists a unique pair A⋆ and B⋆ satisfying (2.29). In other words, there exists a unique pair A⋆ and B⋆ at
which V , provided by (2.28), is consistent with (2.20)-(2.22).

A.6 Proof of Theorem 2.1

The second statement of the theorem is obvious and more arguments can be found in Peskir and Shiryaev
(2000, pp. 849-850). According to Buonaguidi and Muliere (2013, Th 5.1, p. 58), for proving the first part
of the theorem we only need to check that (LV )(π) ≥ −1, for π ∈ [0, 1], where L is given in (2.14). By
construction, this condition is satisfied on the interval (A⋆, B⋆). For π ∈ (B⋆, 1], on which V (π) = b(1− π),
a simple application of the Frullani’s integral (2.8) shows that (LV )(π) = 0. When π = A⋆, the smooth
and continuous fit conditions (2.20) and (2.21) imply (LV )(A⋆) = −1. Finally, one can easily show that
(LV )(A⋆−) = −1 that, along with ∂(LV )(π)/∂π ≤ 0 for π ∈ [0, A⋆), completes the proof.

We remark that the following probabilistic argument can be used to prove that for any B > c the map
π 7→ V (π;B), π ∈ IB , solving (2.24)-(2.25), is unique. Let g(π) = (mπ + q) ∧ b(1 − π), where π 7→ mπ + q
is the line hitting smoothly π 7→ V (π,B) at some Z < B. Consider now the optimal stopping problem (2.6)
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with g(π) in place of ga,b(π) and denote by V (π) the correspondent value function. Define V ⋆(π) = V (π;B),
for π ∈ (Z,B), being V (π;B) a solution to (2.24)-(2.25), and V ⋆(π) = g(π), for π ∈ [0, Z] ∪ [B, 1]. Then,
the same arguments of Theorem 2.1 imply that V (π) = V ⋆(π), for π ∈ [0, 1]. Since Z is arbitrary, the claim
is verified.

B Preliminaries on the collocation method

In Section 3 a numerical scheme, aiming at computing the solution of the free-boundary problem character-
izing the sequential testing of a gamma process, is described. Here, we introduce the basic elements on the
collocation method and Chebyshev polynomials which our algorithm relies on.

B.1 Collocation method for a linear Volterra integro-differential Equation

Let T be a linear Volterra integro-differential operator acting on a function f belonging to its domain of
definition as

(Tf)(x) = f ′(x) − g(x)− h(x)f(x) −
∫ x

A

k(x, z)f(z) dz, x ∈ I = [A,B] ⊂ R, (B.1)

where g(x), h(x) and k(x, z), x ∈ I and A ≤ z ≤ x, are known functions. Consider now the functional
equation

(Tf)(x) = 0, (B.2)

along with the boundary condition
f(A) = p, (B.3)

where p is a fixed number. It is assumed that the boundary value problem (B.2)-(B.3) admits a unique
solution f on I that we want to determine. Often this task cannot be analytically accomplished, so that
we need numerical techniques allowing us to approximate f as accurately as desired: one of them is the so
called collocation method (see, for example, Brunner (2004) or Kress (1998, Sec. 12.4)).

Let us briefly explain its main idea. Let Φ = {φi}i≥0 be a known basis for f and denote by fn an
approximation of f obtained as linear combination of the first n+ 1 basis functions:

f(x) ≈ fn(x) =

n
∑

i=0

wiφi(x), x ∈ I, (B.4)

so that

f ′(x) ≈ f ′
n(x) =

n
∑

i=0

wiφ
′
i(x), x ∈ I. (B.5)

Choosing n points, known as collocation nodes, xi ∈ I, i = 1, .., n, the problem (B.2)-(B.3) boils down to
computing the coefficients wi by solving the following system of n+ 1 linear equations:

(Tfn)(xi) = 0, i = 1, .., n, (B.6)

fn(A) = p. (B.7)

Two problems naturally arise: the choice of an appropriate basis for f and of the truncation limit n.
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B.2 The Chebyshev polynomials

In addition to the uniqueness of f for the problem (B.2)-(B.3), assume that f is continuous on I. Then,
according to the Waierstrass approximation theorem, f can be uniformly approximated on I by polynomials.
One could be tempted to use as Φ the family {xi}i≥0: its drawback is the lack of the orthogonality property.

Let us recall that a family of functions {ψi}i≥0 is said to be orthogonal on I with respect to the weighting
function η(x) if

∫

I

ψi(x)ψj(x)η(x) dx =

{

0, i 6= j

λj , i = j
. (B.8)

The idea is that the information set of an element of a family of orthogonal functions does not overlap
with the one expressed by another member of the family. Therefore, if we choose as basis for f a family
of orthogonal polynomials, the performances in the numerical approximation of f are improved, due to a
better identification of the coefficients wi in (B.4).

A well known family of orthogonal polynomials is the family of Chebyshev polynomials: their detailed
description can be found in Hamming (1986, Sec. 2.28 and 2.29) and Lanczos (1988, Chap. 7); here, we
illustrate their main properties, which explain why they represent one of the most important family of
polynomials (and, maybe, the most important one) in approximation theory.

The Chebyshev polynomials {Ti}i≥0 are defined by

Tn(x) = cos[n(arccos(x))], n ≥ 0, x ∈ [−1, 1]. (B.9)

The trigonometric identity
cos(n+ 1)θ + cos(n− 1)θ = 2 cos θ cosnθ (B.10)

and the substitution θ = arccos(x) in (B.10) lead to the recurrence relationship

Tn(x) = 2xTn−1(x) − Tn−2(x), n ≥ 2. (B.11)

Since T0(x) = 1 and T1(x) = x, x ∈ [−1, 1], from (B.11) it is easily seen that {Ti}i≥0 is a family of
polynomials. It presents some remarkable features: 1) Chebyshev polynomials are orthogonal on [−1, 1]
with respect to the weighting function η(x) = (1− x2)−1/2:

∫ 1

−1

Tm(x)Tn(x)√
1− x2

dx =

∫ π

0

cosmθ cosnθ dθ =











0, m 6= n
π
2 , m = n 6= 0

π, m = n = 0

; (B.12)

2) the zeros of the n-th degree polynomial Tn are given by

xj = cos

((

j − 1

2

)

π

n

)

, j = 1, .., n; (B.13)

3) for n ≥ 0, derivatives are easy to compute; for instance:

T ′
n(x) =

n sin[n arccos(x)]

sin[arccos(x)]
, T ′′

n (x) =
nx sin[n arccos(x)]
(

sin[arccos(x)]
)3 − n2Tn(x)

(

sin[arccos(x)]
)2 ; (B.14)
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4) the shifted Chebyshev polynomials on the interval I = [A,B], {T I
i }i≥0, along with their first and second

derivatives, {T ′I
i }i≥0 and {T ′′I

i }i≥0 , are given, for n ≥ 0 and x ∈ I, by

T I
n(x) = Tn

(

2
x−A

B −A
− 1

)

, (B.15)

T
′I
n (x) =

2

B −A
T ′
n

(

2
x−A

B −A
− 1

)

, T
′′I
n (x) =

4

(B −A)2
T ′′
n

(

2
x−A

B −A
− 1

)

; (B.16)

5) Chebyshev expansions are usually one of the most rapidly convergent expansions for functions (see, e.g.,
Boyd and Petschek (2014)).

Properties 1-5 appropriately justify the use of Chebyshev polynomials as basis for f ; in particular,
according to the fifth property, which does not hold only in isolated cases, “low degree” polynomials often
lead to satisfactory approximations; in turn, this reflects in a saving of time during numerical computations.

B.3 Accuracy of the Solution

Once a basis for the function f in the problem (B.2)-(B.3) has been chosen, we should determine the length
n of the expansion in (B.4).

The truncated series (B.4), whose coefficients are obtained as solution of (B.6)-(B.7), approximately
solves (B.2), in the sense that if we replace (B.4) and (B.5) in (B.2), then (Tfn)(x) ≈ 0, x ∈ I. This suggests
we could increase n until

sup
x∈I

|(Tfn)(x)| < ǫ (B.17)

for a fixed ǫ > 0. Of course, since it is not practically possible to evaluate (Tfn)(x) for any x ∈ I, we can
consider a set of equally spaced nodes in I (not the collocation nodes, where (Tfn)(x) is almost exactly zero)
to assess the quality of the computed solution. Alternatively, defining

δn = sup
x∈I

|fn(x) − fn−1(x)|, n ≥ 1, (B.18)

we might increase n until δn < δ, for a specified δ > 0.

We recall that when f is approximated by fn =
∑n

i=0 wiT
I
i , the distance supx∈I |f(x) − fn(x)| is

minimized if the collocation nodes are the zeros of T I
n given by

xIj =
(B −A)(xj + 1)

2
+A, j = 1, .., n, (B.19)

where xj is given in (B.13). We observe that the zeros of T I
n can be used as collocation nodes only if I is

known: this does not occur in free-boundary problems, where A and B must be determined. This problem
is handled in Section 3.


