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Supplementary Material

A Technical proofs of the results in Section 2

A.1 Proof of Proposition 2.1

The expressions (2.13)-(2.15) can be obtained by applying the results of Buonaguidi and Muliere (2013, Sec.
5.2) or can be derived by using Ito’s formula and (2.12):
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where ™ and v™ are the jumping measure and the associated compensator of (7;);>0. From (2.12) one may
notice that the magnitude of its jumps is
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Hence, the replacement in (A.1) of (m,- + 2) with (A.3) and the integration over (0, 00) with respect to u*X
and its compensator (1 — 7)vg + 7y, being v;(dzx) = a:_le_aﬂl(o)oo)(dx), i = 0,1, complete the proof.
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A.2 Proof of Proposition 2.2

Let 7y, my € [0,1] and X € [0,1]. From (2.3), it is immediate to notice that Py, y(1—x)r, = APr, +(1=A)Pr,.
Hence,

V(Am + (1= Nm) = iITlf Exry+(1=N)mo [T+ Gap(7r)]
= inf {ABx, [r + g (m)] + (1= N Exy [ + gap(7)] |
> A igf By [T+ gap(mr)] + (1= A) igf Er, [T+ gap(7-)] (A.4)
— AV () + (1= AV ().

A.3 Proof of Proposition 2.3
Since on (A4, B) we have V() < gqu(7), for any € > 0 such that A+ € < ¢, it results

V(A+e) —V(A) - a(Ate)—ad (A.5)

€ €

so that V'(A+) < a, where the right-hand derivative exists because of the concavity of = — V(7).

In order to show that the reverse inequality holds, fix € > 0 so that A + ¢ < ¢ and consider the stopping
time 77, that, according to the arguments of Subsection 2.1, is optimal for V(A+¢). We recall that 7, _ is
the first exit time from (A, B) of the process (m;)¢>0, starting at m9 = 7 + €. Then, from (2.3) and similarly
to Gapeev and Peskir (2004), we have
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Then, according to the mean value theorem, there exist §; € (A, A +¢€), i = 0,1, such that
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From the definition of 77, and simple calculations, one has

Thre =inf{t >0:7m & (A, B), 1o = A+ €}

ginf{tZO:Y}glog(lfAl_A(i—:e))}::76. (A.10)

According to Sato (1999, Th. 43.20, p. 323),

p; [hmtlYt = —log (@)] =1, i=0,1, (A.11)
tl0 (651

meaning that the starting point 0 of ¥ = (Y});>0 is regular for (—o0,0) (that is, with probability 1, Y,
starting at 0, enters (—oo,0) immediately). From (A.10) and (A.11), it results 7. | 0 P;-a.s. as € } 0,
i = 0,1. Therefore, 71, . | 0 and Yrs, .~ 0ase 40 Pi-a.s., i =0, 1. Hence, from (A.9)
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Since S}(&;) + (—1)'74 is obviously bounded, for i = 0,1, from (A.6), (A.8), (A.12), E;j[r4 ] —0ase |0,
i =0, 1, and the bounded convergence theorem we have
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1

> E; [SI(&)] = a, A.13
> 6%1; [Si(&)]l =a (A.13)
which, combined with (A.5), completes the proof.

A.4 Proof of Proposition 2.4
Define f(y) = V(m; B), with m = e¥/(1 + €Y); it is not difficult to show that f solves
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where y* is any arbitrary finite number smaller than B°, B° = log(B/(1 — B)), v = ap/(a0 — a1) and
A = log (a1 /). The representation (A.14)-(A.15) is equivalent to (2.24)-(2.25), but has the advantage of
directly appearing as a linear Volterra integro-differential equation of the second kind (meaning that one
limit of integration is variable and the unknown function f also occurs outside the integral). We observe
that (A.14) seems to be outside the scope of any existing theory on integro-differential equations, because
one has to consider the difference f(z) — f(y) in the last integral (and not just f(z) like in the canonical
representation (B.1)), in order to make it finite. This is caused by the lack of integrability of the map
z = (1 +e*)e 7%/(z —y) on (y,B°), which, in turn, is a consequence of the Lévy measure of a gamma
process. Then, we proceed as follows: first we analyze “regular versions” of (A.14)-(A.15), for which the
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existence and uniqueness of solutions can be proved by resorting to standard theory; then, we verify that
the limit of these solutions is indeed a solution of (A.14)-(A.15).

Let 0 < € <1 and denote by f.(y) the function solving the following “regular” problem:

B°

fiw) = g()+he(y) fe(y) +/ ke(y,2)fe(2)dz, y* <y < B°, (A.16)
on b
fe(B?) = 11 B (A.17)
where
9(y) = —% - ;ﬁiy /: ):__Wy dz, (A.18)
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B e (14 e*)e %
ke(y,z) = — Tremy (o (A.20)
Expressing (A.16)-(A.17) as a system of integral equations
Bo
wely) =90) + LW+ [ kL) d, (A21)
Be
fely) = H% —/y we(z) dz, (A.22)
or, more compactly, i
Fe(y) = Ge(y) +/ K(y,2)Fc(2)dz, (A.23)
where |
_ {wely) _9(y) + he(y)b/ 14 P _ [ —he(y)  kely, 2)
Fe(y) - [fe(;j)] ’ GE(:U) - |:g Y b/(1y+ eg") ):| ’ Ke(y,z) - |: _1y ?(J) ’ (A24)

and using the matrix norm ||K(y, z)|| = max{h(y) + |ke(y, 2)|,1}, the following facts are easily verified:
i) G.(y) is a continuous function of y, in the sense that its components are all continuous; ii) for every
continuous vector function s and all y < n; < ny < B°, f:f K. (y,z)s(z)dz is a continuous function of
y; 1ii) every component of K.(y,z) is absolutely integrable with respect to z, for y* < y < B° ; iv) 3
Yy =yo < y1 < ... < yp, = B°such that, for all i = 0,...,n — 1, fgin{y’y”l} | Kc(y,2)||dz < p < 1,
where p is independent of y and ; v) for y* <y < B, limso f:_5 ||K€(y — 9, z)||dz = 0. Then, according
to Linz (1985, Th. 3.2, p. 32), we can conclude that for any 0 < e < 1, there exists only one continuous
solution F(y) to (A.23), that is, the integro-differential equation (A.16)-(A.17) has a unique continuously
differentiable solution f..

A direct analysis based on the existence and uniqueness of f., 0 < e < 1, shows that {f.} and {f/} are
Cauchy sequences and therefore are uniform convergent on [y*, B°]. Then

fly) = lim few), [f'(y) = lin fly), v <y<B, (A.25)
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exist and we have that f is continuously differentiable with derivative f’. Further, since

iy L) Jey) _ FE =)

o (z—y)t=e (z—vy)

fe(z) = fe(y) <a, (A.26)
=y |57
for any z € [y, B°] and 0 < e < 1, where C), is a constant depending on y, from the bounded convergence
theorem we get
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Hence, f from (A.25) is a continuously differentiable solution of (A.14)-(A.15), that is, (2.24)-(2.25) admits
a continuously differentiable solution V(m; B), m € Ip. The probabilistic argument provided at the end of
the proof of Theorem 2.1 below finally shows that V(; B) is unique.

A.5 Proof of Proposition 2.5

The existence and uniqueness of the map 7 +— V(m; B), w € Ip, ¢ < B < 1, has been previously stated. The
necessity and sufficiency of (2.27) for having a unique pair A* and B* solving (2.29), and therefore a unique
solution of the free-boundary problem (2.17)-(2.22), arise from the following reasoning.

A direct verification based on the arguments of Section 3 (or the more formal proof given by Peskir and
Shiryaev (2000, Remark 2.2, p. 850)) shows that the maps 7 — V(m; B’) and 7 — V(7w; B”), B < B”, do
not intersect on the interval (0, B’] (see Figure 3). Condition (2.27) guarantees that for B > ¢, close enough
to ¢, ™+ V(m; B) crosses m — arm at some m < ¢. Then moving B from c to 1, it is easily seen that there
exists a unique pair A* and B* satisfying (2.29). In other words, there exists a unique pair A* and B* at
which V, provided by (2.28), is consistent with (2.20)-(2.22).

A.6 Proof of Theorem 2.1

The second statement of the theorem is obvious and more arguments can be found in Peskir and Shiryaev
(2000, pp. 849-850). According to Buonaguidi and Muliere (2013, Th 5.1, p. 58), for proving the first part
of the theorem we only need to check that (LV)(w) > —1, for 7 € [0, 1], where L is given in (2.14). By
construction, this condition is satisfied on the interval (A*, B*). For = € (B*, 1], on which V() = b(1 — 7),
a simple application of the Frullani’s integral (2.8) shows that (LV)(w) = 0. When m = A*, the smooth
and continuous fit conditions (2.20) and (2.21) imply (LV)(A*) = —1. Finally, one can easily show that
(LV)(A*—) = —1 that, along with O(LV)(7)/0n <0 for = € [0, A*), completes the proof.

We remark that the following probabilistic argument can be used to prove that for any B > ¢ the map
7w V(m; B), m € Ip, solving (2.24)-(2.25), is unique. Let g(m) = (mm + q) A b(1 — ), where 7 — m7 + ¢
is the line hitting smoothly 7 — V' (7, B) at some Z < B. Consider now the optimal stopping problem (2.6)
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with g(7) in place of g, »(7) and denote by V' (7) the correspondent value function. Define V*(7) = V(r; B),
for m € (Z, B), being V(m; B) a solution to (2.24)-(2.25), and V*(7) = g(r), for 7 € [0,Z] U [B,1]. Then,
the same arguments of Theorem 2.1 imply that V(7) = V*(x), for 7 € [0,1]. Since Z is arbitrary, the claim
is verified.

B Preliminaries on the collocation method

In Section 3 a numerical scheme, aiming at computing the solution of the free-boundary problem character-
izing the sequential testing of a gamma process, is described. Here, we introduce the basic elements on the
collocation method and Chebyshev polynomials which our algorithm relies on.

B.1 Collocation method for a linear Volterra integro-differential Equation

Let T be a linear Volterra integro-differential operator acting on a function f belonging to its domain of
definition as

x

(Tf)(z) = f'(z) — glx) — h(z)f(x) —/A k(z,2)f(z)dz, ze€l=][A B]CR, (B.1)
where g(z), h(z) and k(z,z), ¢ € I and A < z < z, are known functions. Consider now the functional
equation

(Tf)(z) =0, (B.2)
along with the boundary condition

f(A) =p, (B.3)

where p is a fixed number. It is assumed that the boundary value problem (B.2)-(B.3) admits a unique
solution f on I that we want to determine. Often this task cannot be analytically accomplished, so that
we need numerical techniques allowing us to approximate f as accurately as desired: one of them is the so
called collocation method (see, for example, Brunner (2004) or Kress (1998, Sec. 12.4)).

Let us briefly explain its main idea. Let ® = {¢;};>0 be a known basis for f and denote by f, an
approximation of f obtained as linear combination of the first n + 1 basis functions:

i=0

so that .
fl(z) = fr(e) = widi(z), @€l (B.5)

i=0

Choosing n points, known as collocation nodes, x; € I, i = 1,..,n, the problem (B.2)-(B.3) boils down to
computing the coeflicients w; by solving the following system of n + 1 linear equations:

(Tfp)(xi) =0, i=1,..,n, (B.6)

Two problems naturally arise: the choice of an appropriate basis for f and of the truncation limit n.
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B.2 The Chebyshev polynomials

In addition to the uniqueness of f for the problem (B.2)-(B.3), assume that f is continuous on I. Then,
according to the Waierstrass approximation theorem, f can be uniformly approximated on I by polynomials.
One could be tempted to use as ® the family {x?};>¢: its drawback is the lack of the orthogonality property.

Let us recall that a family of functions {¢; };>0 is said to be orthogonal on I with respect to the weighting
function n(x) if
0, i F ]

. B.8
A, 1= (B8

/1 u(@)s (@)n(z) do = {

The idea is that the information set of an element of a family of orthogonal functions does not overlap
with the one expressed by another member of the family. Therefore, if we choose as basis for f a family
of orthogonal polynomials, the performances in the numerical approximation of f are improved, due to a
better identification of the coefficients w; in (B.4).

A well known family of orthogonal polynomials is the family of Chebyshev polynomials: their detailed
description can be found in Hamming (1986, Sec. 2.28 and 2.29) and Lanczos (1988, Chap. 7); here, we
illustrate their main properties, which explain why they represent one of the most important family of
polynomials (and, maybe, the most important one) in approximation theory.

The Chebyshev polynomials {T;};>¢ are defined by
T, (z) = cos[n(arccos(z))], n>0, ze€[-1,1]. (B.9)

The trigonometric identity
cos(n + 1)0 + cos(n — 1)8 = 2 cos @ cos nd (B.10)

and the substitution § = arccos(z) in (B.10) lead to the recurrence relationship
To(x) =22Th—1(x) — Th2(x), n>2. (B.11)

Since To(z) = 1 and Ti(x) = =, z € [—1,1], from (B.11) it is easily seen that {T;};>¢ is a family of
polynomials. It presents some remarkable features: 1) Chebyshev polynomials are orthogonal on [—1,1]
with respect to the weighting function n(z) = (1 — z2)~1/2:

“O
I

1 s
/ M de = / cosmb cosnb df =
-1 1— 22 0

Vi ; (B.12)

m#n
, m=n#
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e

0
0

2) the zeros of the n-th degree polynomial T;, are given by

1
xj—cos(<j—§>%), j=1,.,n (B.13)

3) for n > 0, derivatives are easy to compute; for instance:

() — nsin[n arccos(z)] Mgy —
Tolw) = sin[arccos(z)] T(=)

n sin[n arccos(z)] n?T, () i (B.14)
(sinfarccos(z)]) ° (sinfarccos(z)]) ?
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4) the shifted Chebyshev polynomials on the interval I = [A, B], {T!}.;>0, along with their first and second
derivatives, {T;'};>0 and {T} '};¢ , are given, for n > 0 and z € I, by

T!H(z) =T, (221‘2 - 1) : (B.15)
’ 2 I—A " 4 I—A
I _ ! _ 1 — " _ .
T,/ (1) = 5= "<2B—A 1>, T (2) (B_A)QTn <2B_A 1), (B.16)

5) Chebyshev expansions are usually one of the most rapidly convergent expansions for functions (see, e.g.,
Boyd and Petschek (2014)).

Properties 1-5 appropriately justify the use of Chebyshev polynomials as basis for f; in particular,
according to the fifth property, which does not hold only in isolated cases, “low degree” polynomials often
lead to satisfactory approximations; in turn, this reflects in a saving of time during numerical computations.

B.3 Accuracy of the Solution

Once a basis for the function f in the problem (B.2)-(B.3) has been chosen, we should determine the length
n of the expansion in (B.4).

The truncated series (B.4), whose coefficients are obtained as solution of (B.6)-(B.7), approximately
solves (B.2), in the sense that if we replace (B.4) and (B.5) in (B.2), then (Tf,)(z) ~ 0, z € I. This suggests
we could increase n until

sup [(Tfn)(@)] <€ (B.17)

for a fixed € > 0. Of course, since it is not practically possible to evaluate (Tf,)(z) for any = € I, we can
consider a set of equally spaced nodes in I (not the collocation nodes, where (Tf,)(x) is almost exactly zero)
to assess the quality of the computed solution. Alternatively, defining

on = SU.]ZI) [fn(@) = fnoa(2)], mn>1, (B.18)
TE

we might increase n until J,, < J, for a specified § > 0.

We recall that when f is approximated by f, = Y. w;T/, the distance sup,c; |f(z) — fo(z)| is
minimized if the collocation nodes are the zeros of T given by
(B=A)(z; +1) .
x§:++A, j=1,.,n, (B.19)
where z; is given in (B.13). We observe that the zeros of T)! can be used as collocation nodes only if 7 is
known: this does not occur in free-boundary problems, where A and B must be determined. This problem
is handled in Section 3.



