A COLLOCATION METHOD FOR THE SEQUENTIAL TESTING OF A GAMMA PROCESS

Bruno Buonaguidi and Pietro Muliere
L. Bocconi University, Milan. Italy

Supplementary Material

A Technical proofs of the results in Section 2

A. 1 Proof of Proposition 2.1

The expressions (2.13)-(2.15) can be obtained by applying the results of Buonaguidi and Muliere (2013, Sec. 5.2) or can be derived by using Ito's formula and (2.12):

$$
\begin{align*}
f\left(\pi_{t}\right)= & f(\pi)+\int_{0}^{t} f^{\prime}\left(\pi_{s^{-}}\right) d \pi_{s}+\sum_{0 \leq s \leq t}\left(\Delta f\left(\pi_{s}\right)-f^{\prime}\left(\pi_{s^{-}}\right) \Delta \pi_{s}\right) \\
= & f(\pi)-\int_{0}^{t} \log \left(\frac{\alpha_{0}}{\alpha_{1}}\right) f^{\prime}\left(\pi_{s^{-}}\right) \pi_{s-}\left(1-\pi_{s^{-}}\right) d s+\int_{0}^{t} \int_{0}^{1}\left[f\left(\pi_{s^{-}}+z\right)-f\left(\pi_{s^{-}}\right)\right] \mu^{\pi}(d z, d s) \\
= & f(\pi)-\int_{0}^{t} \log \left(\frac{\alpha_{0}}{\alpha_{1}}\right) f^{\prime}\left(\pi_{s^{-}}\right) \pi_{s-}\left(1-\pi_{s^{-}}\right) d s+\int_{0}^{t} \int_{0}^{1}\left[f\left(\pi_{s^{-}}+z\right)-f\left(\pi_{s^{-}}\right)\right] v^{\pi}(d z) d s \\
& +\int_{0}^{t} \int_{0}^{1}\left[f\left(\pi_{s^{-}}+z\right)-f\left(\pi_{s^{-}}\right)\right]\left(\mu^{\pi}(d z, d s)-v^{\pi}(d z) d s\right) \tag{A.1}
\end{align*}
$$

where μ^{π} and v^{π} are the jumping measure and the associated compensator of $\left(\pi_{t}\right)_{t \geq 0}$. From (2.12) one may notice that the magnitude of its jumps is

$$
\begin{equation*}
\Delta \pi_{t}=\frac{\pi_{t^{-}}\left(1-\pi_{t^{-}}\right)\left(e^{\left(\alpha_{0}-\alpha_{1}\right) x}-1\right)}{1+\pi_{t^{-}}\left(e^{\left(\alpha_{0}-\alpha_{1}\right) x}-1\right)} \tag{A.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
\pi_{t^{-}}+\Delta \pi_{t}=\frac{\pi_{t^{-}} e^{-\alpha_{1} x}}{\left(1-\pi_{t^{-}}\right) e^{-\alpha_{0} x}+\pi_{t^{-}} e^{-\alpha_{1} x}} \tag{A.3}
\end{equation*}
$$

Hence, the replacement in (A.1) of $\left(\pi_{s^{-}}+z\right)$ with (A.3) and the integration over $(0, \infty)$ with respect to μ^{X} and its compensator $(1-\pi) v_{0}+\pi v_{1}$, being $v_{i}(d x)=x^{-1} e^{-\alpha_{i} x} \mathbf{1}_{(0, \infty)}(d x), i=0,1$, complete the proof.

A. 2 Proof of Proposition 2.2

Let $\pi_{1}, \pi_{2} \in[0,1]$ and $\lambda \in[0,1]$. From (2.3), it is immediate to notice that $P_{\lambda \pi_{1}+(1-\lambda) \pi_{2}}=\lambda P_{\pi_{1}}+(1-\lambda) P_{\pi_{2}}$. Hence,

$$
\begin{align*}
V\left(\lambda \pi_{1}+(1-\lambda) \pi_{2}\right) & =\inf _{\tau} E_{\lambda \pi_{1}+(1-\lambda) \pi_{2}}\left[\tau+g_{a, b}\left(\pi_{\tau}\right)\right] \\
& =\inf _{\tau}\left\{\lambda E_{\pi_{1}}\left[\tau+g_{a, b}\left(\pi_{\tau}\right)\right]+(1-\lambda) E_{\pi_{2}}\left[\tau+g_{a, b}\left(\pi_{\tau}\right)\right]\right\} \\
& \geq \inf _{\tau} E_{\pi_{1}}\left[\tau+g_{a, b}\left(\pi_{\tau}\right)\right]+(1-\lambda) \inf _{\tau} E_{\pi_{2}}\left[\tau+g_{a, b}\left(\pi_{\tau}\right)\right] \tag{A.4}\\
& =\lambda V\left(\pi_{1}\right)+(1-\lambda) V\left(\pi_{2}\right)
\end{align*}
$$

A. 3 Proof of Proposition 2.3

Since on (A, B) we have $V(\pi)<g_{a, b}(\pi)$, for any $\epsilon>0$ such that $A+\epsilon<c$, it results

$$
\begin{equation*}
\frac{V(A+\epsilon)-V(A)}{\epsilon} \leq \frac{a(A+\epsilon)-a A}{\epsilon}=a \tag{A.5}
\end{equation*}
$$

so that $V^{\prime}(A+) \leq a$, where the right-hand derivative exists because of the concavity of $\pi \mapsto V(\pi)$.
In order to show that the reverse inequality holds, fix $\epsilon>0$ so that $A+\epsilon<c$ and consider the stopping time $\tau_{A+\epsilon}^{\star}$, that, according to the arguments of Subsection 2.1, is optimal for $V(A+\epsilon)$. We recall that $\tau_{\pi+\epsilon}^{\star}$ is the first exit time from (A, B) of the process $\left(\pi_{t}\right)_{t \geq 0}$, starting at $\pi_{0}=\pi+\epsilon$. Then, from (2.3) and similarly to Gapeev and Peskir (2004), we have

$$
V(A+\epsilon)-V(A)
$$

$$
\begin{equation*}
\geq E_{A+\epsilon}\left[\tau_{A+\epsilon}^{\star}+g_{a, b}\left(\pi_{\tau_{A+\epsilon}^{\star}}\right)\right]-E_{A}\left[\tau_{A+\epsilon}^{\star}+g_{a, b}\left(\pi_{\tau_{A+\epsilon}^{\star}}\right)\right]=\sum_{i=0}^{1} E_{i}\left[S_{i}(A+\epsilon)-S_{i}(A)\right] \tag{A.6}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{i}(\pi)=\frac{1+(-1)^{i}(1-2 \pi)}{2}\left(\tau_{A+\epsilon}^{\star}+a \frac{\pi e^{Y_{\tau_{A}^{\star}+\epsilon}}}{1+\pi\left(e^{Y_{\tau_{A}^{\star}+\epsilon}}-1\right)} \wedge b \frac{1-\pi}{1+\pi\left(e^{Y_{\tau_{A}^{\star}+\epsilon}}-1\right)}\right) . \tag{A.7}
\end{equation*}
$$

Then, according to the mean value theorem, there exist $\xi_{i} \in(A, A+\epsilon), i=0,1$, such that

$$
\begin{equation*}
\sum_{i=0}^{1} E_{i}\left[S_{i}(A+\epsilon)-S_{i}(A)\right]=\epsilon \sum_{i=0}^{1} E_{i}\left[S_{i}^{\prime}\left(\xi_{i}\right)\right] \tag{A.8}
\end{equation*}
$$

being

$$
\begin{align*}
S_{i}^{\prime}(\pi) & =(-1)^{i-1}\left(\tau_{A+\epsilon}^{\star}+a \frac{\pi e^{Y_{\tau_{A}^{\star}+\epsilon}}}{1+\pi\left(e^{{\tau_{A}^{\star}+\epsilon}^{\star}}-1\right)} \wedge b \frac{1-\pi}{1+\pi\left(e^{Y_{\tau_{A}^{\star}+\epsilon}}-1\right)}\right) \\
& +\frac{1+(-1)^{i}(1-2 \pi)}{2}\left(a \mathbf{1}_{\left\{\pi_{\tau_{A+e}^{\star}}<c\right\}}-b \mathbf{1}_{\left\{\pi_{\tau_{A+e}^{\star}}>c\right\}}\right) \frac{e^{Y_{\tau_{A}^{\star}+\epsilon}}}{\left[1+\pi\left(e^{Y_{\tau_{A}^{\star}+\epsilon}}-1\right)\right]^{2}} \tag{A.9}
\end{align*}
$$

From the definition of $\tau_{\pi+\epsilon}^{\star}$ and simple calculations, one has

$$
\begin{align*}
\tau_{A+\epsilon}^{\star} & =\inf \left\{t \geq 0: \pi_{t} \notin(A, B), \pi_{0}=A+\epsilon\right\} \\
& \leq \inf \left\{t \geq 0: Y_{t} \leq \log \left(\frac{A}{1-A} \frac{1-(A+\epsilon)}{A+\epsilon}\right)\right\}=: \gamma_{\epsilon} . \tag{A.10}
\end{align*}
$$

According to Sato (1999, Th. 43.20, p. 323),

$$
\begin{equation*}
P_{i}\left[\lim _{t \downarrow 0} t^{-1} Y_{t}=-\log \left(\frac{\alpha_{0}}{\alpha_{1}}\right)\right]=1, \quad i=0,1 \tag{A.11}
\end{equation*}
$$

meaning that the starting point 0 of $Y=\left(Y_{t}\right)_{t \geq 0}$ is regular for $(-\infty, 0)$ (that is, with probability $1, Y$, starting at 0 , enters $(-\infty, 0)$ immediately). From (A.10) and (A.11), it results $\gamma_{\epsilon} \downarrow 0 P_{i}$-a.s. as $\epsilon \downarrow 0$, $i=0,1$. Therefore, $\tau_{A+\epsilon}^{\star} \downarrow 0$ and $Y_{\tau_{A+\epsilon}^{\star}} \rightarrow 0$ as $\epsilon \downarrow 0 P_{i}$-a.s., $i=0$, 1 . Hence, from (A.9)

$$
\begin{equation*}
S_{i}^{\prime}\left(\xi_{i}\right) \rightarrow(-1)^{i-1} a A+\frac{1+(-1)^{i}(1-2 A)}{2} a, \quad P_{i} \text {-a.s., } i=0,1, \text { as } \epsilon \downarrow 0 \tag{A.12}
\end{equation*}
$$

Since $S_{i}^{\prime}\left(\xi_{i}\right)+(-1)^{i} \tau_{A+\epsilon}^{\star}$ is obviously bounded, for $i=0$, 1 , from (A.6), (A.8), (A.12), $E_{i}\left[\tau_{A+\epsilon}^{\star}\right] \rightarrow 0$ as $\epsilon \downarrow 0$, $i=0,1$, and the bounded convergence theorem we have

$$
\begin{equation*}
V^{\prime}(A+)=\lim _{\epsilon \downarrow 0} \frac{V(A+\epsilon)-V(A)}{\epsilon} \geq \lim _{\epsilon \downarrow 0} \sum_{i=0}^{1} E_{i}\left[S_{i}^{\prime}\left(\xi_{i}\right)\right]=a \tag{A.13}
\end{equation*}
$$

which, combined with (A.5), completes the proof.

A. 4 Proof of Proposition 2.4

Define $f(y)=V(\pi ; B)$, with $\pi=e^{y} /\left(1+e^{y}\right)$; it is not difficult to show that f solves

$$
\begin{gather*}
f^{\prime}(y)=-\frac{1}{\lambda}-\frac{b}{\lambda} \frac{e^{\gamma y}}{1+e^{y}} \int_{B^{o}}^{\infty} \frac{e^{-\gamma z}}{z-y} d z+f(y) \frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \int_{B^{o}}^{\infty} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z \\
-\frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \int_{y}^{B^{o}}[f(z)-f(y)] \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z, \quad y^{\star} \leq y<B^{o} \tag{A.14}\\
f\left(B^{o}\right)=\frac{b}{1+e^{B^{o}}} \tag{A.15}
\end{gather*}
$$

where y^{\star} is any arbitrary finite number smaller than $B^{o}, B^{o}=\log (B /(1-B)), \gamma=\alpha_{0} /\left(\alpha_{0}-\alpha_{1}\right)$ and $\lambda=\log \left(\alpha_{1} / \alpha_{0}\right)$. The representation (A.14)-(A.15) is equivalent to (2.24)-(2.25), but has the advantage of directly appearing as a linear Volterra integro-differential equation of the second kind (meaning that one limit of integration is variable and the unknown function f also occurs outside the integral). We observe that (A.14) seems to be outside the scope of any existing theory on integro-differential equations, because one has to consider the difference $f(z)-f(y)$ in the last integral (and not just $f(z)$ like in the canonical representation (B.1)), in order to make it finite. This is caused by the lack of integrability of the map $z \mapsto\left(1+e^{z}\right) e^{-\gamma z} /(z-y)$ on $\left(y, B^{o}\right)$, which, in turn, is a consequence of the Lévy measure of a gamma process. Then, we proceed as follows: first we analyze "regular versions" of (A.14)-(A.15), for which the
existence and uniqueness of solutions can be proved by resorting to standard theory; then, we verify that the limit of these solutions is indeed a solution of (A.14)-(A.15).

Let $0<\epsilon \leq 1$ and denote by $f_{\epsilon}(y)$ the function solving the following "regular" problem:

$$
\begin{gather*}
f_{\epsilon}^{\prime}(y)=g(y)+h_{\epsilon}(y) f_{\epsilon}(y)+\int_{y}^{B^{o}} k_{\epsilon}(y, z) f_{\epsilon}(z) d z, \quad y^{\star} \leq y<B^{o} \tag{A.16}\\
f_{\epsilon}\left(B^{o}\right)=\frac{b}{1+e^{B^{o}}} \tag{A.17}
\end{gather*}
$$

where

$$
\begin{gather*}
g(y)=-\frac{1}{\lambda}-\frac{b}{\lambda} \frac{e^{\gamma y}}{1+e^{y}} \int_{B^{o}}^{\infty} \frac{e^{-\gamma z}}{z-y} d z, \tag{A.18}\\
h_{\epsilon}(y)=\frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda}\left[\int_{y}^{B^{o}} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{(z-y)^{1-\epsilon}} d z+\int_{B^{o}}^{\infty} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z\right], \tag{A.19}\\
k_{\epsilon}(y, z)=-\frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{(z-y)^{1-\epsilon}} . \tag{A.20}
\end{gather*}
$$

Expressing (A.16)-(A.17) as a system of integral equations

$$
\begin{gather*}
w_{\epsilon}(y)=g(y)+h_{\epsilon}(y) f_{\epsilon}(y)+\int_{y}^{B^{o}} k_{\epsilon}(y, z) f_{\epsilon}(z) d z \tag{A.21}\\
f_{\epsilon}(y)=\frac{b}{1+e^{B^{o}}}-\int_{y}^{B^{o}} w_{\epsilon}(z) d z \tag{A.22}
\end{gather*}
$$

or, more compactly,

$$
\begin{equation*}
F_{\epsilon}(y)=G_{\epsilon}(y)+\int_{y}^{B^{o}} K_{\epsilon}(y, z) F_{\epsilon}(z) d z \tag{A.23}
\end{equation*}
$$

where

$$
F_{\epsilon}(y)=\left[\begin{array}{c}
w_{\epsilon}(y) \tag{A.24}\\
f_{\epsilon}(y)
\end{array}\right], \quad G_{\epsilon}(y)=\left[\begin{array}{c}
g(y)+h_{\epsilon}(y) b /\left(1+e^{B^{o}}\right) \\
b /\left(1+e^{B^{o}}\right)
\end{array}\right], \quad K_{\epsilon}(y, z)=\left[\begin{array}{cc}
-h_{\epsilon}(y) & k_{\epsilon}(y, z) \\
-1 & 0
\end{array}\right],
$$

and using the matrix norm $\left\|K_{\epsilon}(y, z)\right\|=\max \left\{h_{\epsilon}(y)+\left|k_{\epsilon}(y, z)\right|, 1\right\}$, the following facts are easily verified: i) $G_{\epsilon}(y)$ is a continuous function of y, in the sense that its components are all continuous; ii) for every continuous vector function s and all $y \leq n_{1} \leq n_{2} \leq B^{o}, \int_{n_{1}}^{n_{2}} K_{\epsilon}(y, z) s(z) d z$ is a continuous function of y; iii) every component of $K_{\epsilon}(y, z)$ is absolutely integrable with respect to z, for $y^{\star} \leq y<B^{o}$; iv) \exists $y^{\star}=y_{0}<y_{1}<\ldots<y_{n}=B^{o}$ such that, for all $i=0, \ldots, n-1, \int_{y_{i}}^{\min \left\{y, y_{i+1}\right\}}\left\|K_{\epsilon}(y, z)\right\| d z \leq p<1$, where p is independent of y and i; v) for $y^{\star} \leq y \leq B^{o}, \lim _{\delta \downarrow 0} \int_{y-\delta}^{y}\left\|K_{\epsilon}(y-\delta, z)\right\| d z=0$. Then, according to Linz (1985, Th. 3.2, p. 32), we can conclude that for any $0<\epsilon \leq 1$, there exists only one continuous solution $F_{\epsilon}(y)$ to (A.23), that is, the integro-differential equation (A.16)-(A.17) has a unique continuously differentiable solution f_{ϵ}.

A direct analysis based on the existence and uniqueness of $f_{\epsilon}, 0<\epsilon \leq 1$, shows that $\left\{f_{\epsilon}\right\}$ and $\left\{f_{\epsilon}^{\prime}\right\}$ are Cauchy sequences and therefore are uniform convergent on $\left[y^{\star}, B^{o}\right]$. Then

$$
\begin{equation*}
f(y):=\lim _{\epsilon \downarrow 0} f_{\epsilon}(y), \quad f^{\prime}(y):=\lim _{\epsilon \downarrow 0} f_{\epsilon}^{\prime}(y), \quad y^{\star} \leq y \leq B^{o} \tag{A.25}
\end{equation*}
$$

exist and we have that f is continuously differentiable with derivative f^{\prime}. Further, since

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} \frac{f_{\epsilon}(z)-f_{\epsilon}(y)}{(z-y)^{1-\epsilon}}=\frac{f(z)-f(y)}{(z-y)} \quad \text { and } \quad\left|\frac{f_{\epsilon}(z)-f_{\epsilon}(y)}{(z-y)^{1-\epsilon}}\right| \leq C_{y} \tag{A.26}
\end{equation*}
$$

for any $z \in\left[y, B^{o}\right]$ and $0<\epsilon \leq 1$, where C_{y} is a constant depending on y, from the bounded convergence theorem we get

$$
\begin{align*}
& f^{\prime}(y)=\lim _{\epsilon \downarrow 0} f_{\epsilon}^{\prime}(y)=-\frac{1}{\lambda}-\frac{b}{\lambda} \frac{e^{\gamma y}}{1+e^{y}} \int_{B^{o}}^{\infty} \frac{e^{-\gamma z}}{z-y} d z+\lim _{\epsilon \downarrow 0} f_{\epsilon}(y) \frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \int_{B^{o}}^{\infty} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z \\
&-\frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \lim _{\epsilon \downarrow 0} \int_{y}^{B^{o}}\left[f_{\epsilon}(z)-f_{\epsilon}(y)\right] \frac{\left(1+e^{z}\right) e^{-\gamma z}}{(z-y)^{1-\epsilon}} d z \\
&=-\frac{1}{\lambda}-\frac{b}{\lambda} \frac{e^{\gamma y}}{1+e^{y}} \int_{B^{o}}^{\infty} \frac{e^{-\gamma z}}{z-y} d z+f(y) \frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \int_{B^{o}}^{\infty} \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z \\
&-\frac{e^{\gamma y}}{\left(1+e^{y}\right) \lambda} \int_{y}^{B^{o}}[f(z)-f(y)] \frac{\left(1+e^{z}\right) e^{-\gamma z}}{z-y} d z, \quad y^{\star} \leq y<B^{o} . \tag{A.27}
\end{align*}
$$

Hence, f from (A.25) is a continuously differentiable solution of (A.14)-(A.15), that is, (2.24)-(2.25) admits a continuously differentiable solution $V(\pi ; B), \pi \in I_{B}$. The probabilistic argument provided at the end of the proof of Theorem 2.1 below finally shows that $V(\pi ; B)$ is unique.

A. 5 Proof of Proposition 2.5

The existence and uniqueness of the map $\pi \mapsto V(\pi ; B), \pi \in I_{B}, c<B<1$, has been previously stated. The necessity and sufficiency of (2.27) for having a unique pair A^{\star} and B^{\star} solving (2.29), and therefore a unique solution of the free-boundary problem (2.17)-(2.22), arise from the following reasoning.

A direct verification based on the arguments of Section 3 (or the more formal proof given by Peskir and Shiryaev (2000, Remark 2.2, p. 850)) shows that the maps $\pi \mapsto V\left(\pi ; B^{\prime}\right)$ and $\pi \mapsto V\left(\pi ; B^{\prime \prime}\right), B^{\prime}<B^{\prime \prime}$, do not intersect on the interval $\left(0, B^{\prime}\right]$ (see Figure 3). Condition (2.27) guarantees that for $B>c$, close enough to $c, \pi \mapsto V(\pi ; B)$ crosses $\pi \mapsto a \pi$ at some $\pi<c$. Then moving B from c to 1 , it is easily seen that there exists a unique pair A^{\star} and B^{\star} satisfying (2.29). In other words, there exists a unique pair A^{\star} and B^{\star} at which V, provided by (2.28), is consistent with (2.20)-(2.22).

A. 6 Proof of Theorem 2.1

The second statement of the theorem is obvious and more arguments can be found in Peskir and Shiryaev (2000, pp. 849-850). According to Buonaguidi and Muliere (2013, Th 5.1, p. 58), for proving the first part of the theorem we only need to check that $(\mathbb{L} V)(\pi) \geq-1$, for $\pi \in[0,1]$, where \mathbb{L} is given in (2.14). By construction, this condition is satisfied on the interval $\left(A^{\star}, B^{\star}\right)$. For $\pi \in\left(B^{\star}, 1\right]$, on which $V(\pi)=b(1-\pi)$, a simple application of the Frullani's integral (2.8) shows that $(\mathbb{L} V)(\pi)=0$. When $\pi=A^{\star}$, the smooth and continuous fit conditions (2.20) and (2.21) imply $(\mathbb{L} V)\left(A^{\star}\right)=-1$. Finally, one can easily show that $(\mathbb{L} V)\left(A^{\star}-\right)=-1$ that, along with $\partial(\mathbb{L} V)(\pi) / \partial \pi \leq 0$ for $\pi \in\left[0, A^{\star}\right)$, completes the proof.

We remark that the following probabilistic argument can be used to prove that for any $B>c$ the map $\pi \mapsto V(\pi ; B), \pi \in I_{B}$, solving (2.24)-(2.25), is unique. Let $g(\pi)=(m \pi+q) \wedge b(1-\pi)$, where $\pi \mapsto m \pi+q$ is the line hitting smoothly $\pi \mapsto V(\pi, B)$ at some $Z<B$. Consider now the optimal stopping problem (2.6)
with $g(\pi)$ in place of $g_{a, b}(\pi)$ and denote by $V(\pi)$ the correspondent value function. Define $V^{\star}(\pi)=V(\pi ; B)$, for $\pi \in(Z, B)$, being $V(\pi ; B)$ a solution to (2.24)-(2.25), and $V^{\star}(\pi)=g(\pi)$, for $\pi \in[0, Z] \cup[B, 1]$. Then, the same arguments of Theorem 2.1 imply that $V(\pi)=V^{\star}(\pi)$, for $\pi \in[0,1]$. Since Z is arbitrary, the claim is verified.

B Preliminaries on the collocation method

In Section 3 a numerical scheme, aiming at computing the solution of the free-boundary problem characterizing the sequential testing of a gamma process, is described. Here, we introduce the basic elements on the collocation method and Chebyshev polynomials which our algorithm relies on.

B. 1 Collocation method for a linear Volterra integro-differential Equation

Let \mathbb{T} be a linear Volterra integro-differential operator acting on a function f belonging to its domain of definition as

$$
\begin{equation*}
(\mathbb{T} f)(x)=f^{\prime}(x)-g(x)-h(x) f(x)-\int_{A}^{x} k(x, z) f(z) d z, \quad x \in I=[A, B] \subset \mathbb{R} \tag{B.1}
\end{equation*}
$$

where $g(x), h(x)$ and $k(x, z), x \in I$ and $A \leq z \leq x$, are known functions. Consider now the functional equation

$$
\begin{equation*}
(\mathbb{T} f)(x)=0, \tag{B.2}
\end{equation*}
$$

along with the boundary condition

$$
\begin{equation*}
f(A)=p \tag{B.3}
\end{equation*}
$$

where p is a fixed number. It is assumed that the boundary value problem (B.2)-(B.3) admits a unique solution f on I that we want to determine. Often this task cannot be analytically accomplished, so that we need numerical techniques allowing us to approximate f as accurately as desired: one of them is the so called collocation method (see, for example, Brunner (2004) or Kress (1998, Sec. 12.4)).

Let us briefly explain its main idea. Let $\Phi=\left\{\phi_{i}\right\}_{i \geq 0}$ be a known basis for f and denote by f_{n} an approximation of f obtained as linear combination of the first $n+1$ basis functions:

$$
\begin{equation*}
f(x) \approx f_{n}(x)=\sum_{i=0}^{n} w_{i} \phi_{i}(x), \quad x \in I \tag{B.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
f^{\prime}(x) \approx f_{n}^{\prime}(x)=\sum_{i=0}^{n} w_{i} \phi_{i}^{\prime}(x), \quad x \in I \tag{B.5}
\end{equation*}
$$

Choosing n points, known as collocation nodes, $x_{i} \in I, i=1, . ., n$, the problem (B.2)-(B.3) boils down to computing the coefficients w_{i} by solving the following system of $n+1$ linear equations:

$$
\begin{align*}
& \left(\mathbb{T} f_{n}\right)\left(x_{i}\right)=0, \quad i=1, . ., n \tag{B.6}\\
& \quad f_{n}(A)=p \tag{B.7}
\end{align*}
$$

Two problems naturally arise: the choice of an appropriate basis for f and of the truncation limit n.

B. 2 The Chebyshev polynomials

In addition to the uniqueness of f for the problem (B.2)-(B.3), assume that f is continuous on I. Then, according to the Waierstrass approximation theorem, f can be uniformly approximated on I by polynomials. One could be tempted to use as Φ the family $\left\{x^{i}\right\}_{i \geq 0}$: its drawback is the lack of the orthogonality property.

Let us recall that a family of functions $\left\{\psi_{i}\right\}_{i \geq 0}$ is said to be orthogonal on I with respect to the weighting function $\eta(x)$ if

$$
\int_{I} \psi_{i}(x) \psi_{j}(x) \eta(x) d x= \begin{cases}0, & i \neq j \tag{B.8}\\ \lambda_{j}, & i=j\end{cases}
$$

The idea is that the information set of an element of a family of orthogonal functions does not overlap with the one expressed by another member of the family. Therefore, if we choose as basis for f a family of orthogonal polynomials, the performances in the numerical approximation of f are improved, due to a better identification of the coefficients w_{i} in (B.4).

A well known family of orthogonal polynomials is the family of Chebyshev polynomials: their detailed description can be found in Hamming (1986, Sec. 2.28 and 2.29) and Lanczos (1988, Chap. 7); here, we illustrate their main properties, which explain why they represent one of the most important family of polynomials (and, maybe, the most important one) in approximation theory.

The Chebyshev polynomials $\left\{T_{i}\right\}_{i \geq 0}$ are defined by

$$
\begin{equation*}
T_{n}(x)=\cos [n(\arccos (x))], \quad n \geq 0, \quad x \in[-1,1] . \tag{B.9}
\end{equation*}
$$

The trigonometric identity

$$
\begin{equation*}
\cos (n+1) \theta+\cos (n-1) \theta=2 \cos \theta \cos n \theta \tag{B.10}
\end{equation*}
$$

and the substitution $\theta=\arccos (x)$ in (B.10) lead to the recurrence relationship

$$
\begin{equation*}
T_{n}(x)=2 x T_{n-1}(x)-T_{n-2}(x), \quad n \geq 2 \tag{B.11}
\end{equation*}
$$

Since $T_{0}(x)=1$ and $T_{1}(x)=x, x \in[-1,1]$, from (B.11) it is easily seen that $\left\{T_{i}\right\}_{i \geq 0}$ is a family of polynomials. It presents some remarkable features: 1) Chebyshev polynomials are orthogonal on $[-1,1]$ with respect to the weighting function $\eta(x)=\left(1-x^{2}\right)^{-1 / 2}$:

$$
\int_{-1}^{1} \frac{T_{m}(x) T_{n}(x)}{\sqrt{1-x^{2}}} d x=\int_{0}^{\pi} \cos m \theta \cos n \theta d \theta= \begin{cases}0, & m \neq n \tag{B.12}\\ \frac{\pi}{2}, & m=n \neq 0 \\ \pi, & m=n=0\end{cases}
$$

2) the zeros of the n-th degree polynomial T_{n} are given by

$$
\begin{equation*}
x_{j}=\cos \left(\left(j-\frac{1}{2}\right) \frac{\pi}{n}\right), \quad j=1, . ., n ; \tag{B.13}
\end{equation*}
$$

3) for $n \geq 0$, derivatives are easy to compute; for instance:

$$
\begin{equation*}
T_{n}^{\prime}(x)=\frac{n \sin [n \arccos (x)]}{\sin [\arccos (x)]}, \quad T_{n}^{\prime \prime}(x)=\frac{n x \sin [n \arccos (x)]}{(\sin [\arccos (x)])^{3}}-\frac{n^{2} T_{n}(x)}{(\sin [\arccos (x)])^{2}} \tag{B.14}
\end{equation*}
$$

4) the shifted Chebyshev polynomials on the interval $I=[A, B],\left\{T_{i}^{I}\right\}_{i \geq 0}$, along with their first and second derivatives, $\left\{T_{i}^{\prime I}\right\}_{i \geq 0}$ and $\left\{T_{i}^{\prime \prime I}\right\}_{i \geq 0}$, are given, for $n \geq 0$ and $x \in I$, by

$$
\begin{gather*}
T_{n}^{I}(x)=T_{n}\left(2 \frac{x-A}{B-A}-1\right) \tag{B.15}\\
T_{n}^{\prime I}(x)=\frac{2}{B-A} T_{n}^{\prime}\left(2 \frac{x-A}{B-A}-1\right), \quad T_{n}^{\prime \prime}{ }^{I}(x)=\frac{4}{(B-A)^{2}} T_{n}^{\prime \prime}\left(2 \frac{x-A}{B-A}-1\right) ; \tag{B.16}
\end{gather*}
$$

5) Chebyshev expansions are usually one of the most rapidly convergent expansions for functions (see, e.g., Boyd and Petschek (2014)).

Properties 1-5 appropriately justify the use of Chebyshev polynomials as basis for f; in particular, according to the fifth property, which does not hold only in isolated cases, "low degree" polynomials often lead to satisfactory approximations; in turn, this reflects in a saving of time during numerical computations.

B. 3 Accuracy of the Solution

Once a basis for the function f in the problem (B.2)-(B.3) has been chosen, we should determine the length n of the expansion in (B.4).

The truncated series (B.4), whose coefficients are obtained as solution of (B.6)-(B.7), approximately solves (B.2), in the sense that if we replace (B.4) and (B.5) in (B.2), then $\left(\mathbb{T} f_{n}\right)(x) \approx 0, x \in I$. This suggests we could increase n until

$$
\begin{equation*}
\sup _{x \in I}\left|\left(\mathbb{T} f_{n}\right)(x)\right|<\epsilon \tag{B.17}
\end{equation*}
$$

for a fixed $\epsilon>0$. Of course, since it is not practically possible to evaluate $\left(\mathbb{T} f_{n}\right)(x)$ for any $x \in I$, we can consider a set of equally spaced nodes in I (not the collocation nodes, where ($\left.\mathbb{T} f_{n}\right)(x)$ is almost exactly zero) to assess the quality of the computed solution. Alternatively, defining

$$
\begin{equation*}
\delta_{n}=\sup _{x \in I}\left|f_{n}(x)-f_{n-1}(x)\right|, \quad n \geq 1 \tag{B.18}
\end{equation*}
$$

we might increase n until $\delta_{n}<\delta$, for a specified $\delta>0$.
We recall that when f is approximated by $f_{n}=\sum_{i=0}^{n} w_{i} T_{i}^{I}$, the distance $\sup _{x \in I}\left|f(x)-f_{n}(x)\right|$ is minimized if the collocation nodes are the zeros of T_{n}^{I} given by

$$
\begin{equation*}
x_{j}^{I}=\frac{(B-A)\left(x_{j}+1\right)}{2}+A, \quad j=1, . ., n \tag{B.19}
\end{equation*}
$$

where x_{j} is given in (B.13). We observe that the zeros of T_{n}^{I} can be used as collocation nodes only if I is known: this does not occur in free-boundary problems, where A and B must be determined. This problem is handled in Section 3.

