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S.1: Two technical lemmas Let ||a|| denote the Euclidean norm for a vector a and

||f ||∞ the supremum norm for a function f . Let P−→ denote convergence in probability.

Furthermore, we use . to indicate that the function on its left-hand side is bounded by a

positive constant times the the function on its right-hand side. For any θ1 = (β>1 , g1)> ∈
Θ and θ2 = (β>2 , g2)> ∈ Θ, define a semi-metric ρ(θ1, θ2) by,

ρ(θ1, θ2) = ||β1 − β2||+
∫ τ

0
|g1(t)− g2(t)|d t.

Let N[ ](ε,F , ρ) and N(ε,F , ρ) be the bracketing number and covering number with

respect to ρ(·, ·) of a function class F , which is defined, e.g. in van der Vaart and

Wellner (1996); van der Vaart (1998).

Lemma 1. Assume F is the set of all monotone polynomial splines with order d and is

a q-dimensional linear space. Then for any η > 0 and ε < η,

logN[ ](ε,F , ρ) . q log(
η

ε
).

Proof. See Lemma A1 of Lu et al. (2009).

Lemma 2. Suppose f is a monotone nonincreasing function with bounded r-th deriva-

tive. Then there exists a monotone nonincreasing spline function fn with order d ≥ r+1
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and knot sequence 0 = ξ1 = . . . = ξd < ξd+1 < · · · < ξκn < ξκn+1 = . . . = ξκn+d =

τ , such that

||f − fn|| = O(κ−rn ),

Proof. Similar to Lemma A1 of Lu et al. (2007).

S.2: Proof of Theorem 1 First, we show that

sup
θ∈Θ
|`n(θ)− E`(θ,W )| P−→ 0.

Define a function class G = {g(t) : g(t) is a nonincreasing and bounded function}. By

Theorem 2.7.5 in van der Vaart and Wellner (1996), we have

logN[ ](ε,G, ρ1) .
1

ε
, (S2.1)

where ρ1(g1, g2) =
∫ τ

0 |g1(s) − g2(s)| d s, for any g1, g2 ∈ G. Define two function

classes

F1 = {`(β, g,W ); β ∈ B, for any fixed g ∈ G},

F2 = {`(β, g,W ); g ∈ G, for any fixed β ∈ B}.

By conditions C2 and C3, both F1 and F2 have integrable envelope functions. Since

for any fixed g, `(β, g) is Lipschitz with respect to β, we have N[ ](ε,F1, || · ||) . (1
ε )
p.

Similarly, together with (S2.1), we have logN[ ](ε,F2, ρ1) . 1
ε .

Hence, for the function class F∗ = {`(θ,W ) : θ ∈ Θ}, the bracketing number

satisfies logN[ ](ε,F∗, ρ) . 1
ε . By the Glivenko-Cantelli theorem, we have

sup
θ∈Θ
|`n(θ)− E`(θ,W )| P−→ 0. (S2.2)

Since g0 ∈ Fr, by Lemma 2 there exists a g0n ∈ Fnr such that supt∈[0,τ ] |g0(t) −
g0n(t)| = O(κ−rn ). Let θ0n = (β>0 , g0n)>. Then clearly,

ρ(θ0, θ0n) −→ 0. (S2.3)

Note that Θn ⊂ Θ, by (S2.2), we obtain

sup
θ∈Θn

|`n(θ)− E`(θ,W )| P−→ 0. (S2.4)
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Clearly, Θn is compact with respect to ρ(·, ·), and `n(θ) is continuous in θ ∈ Θn. Since

θ0 is the unique maximizer ofE`(θ,W ) on Θ, we have that θ0n is the unique maximizer

of E`(θ,W ) on Θn. These facts and (S2.4) yield

ρ(θ̂n, θ0n)
P−→ 0. (S2.5)

Finally, combining (S2.3) and (S2.5), we have ρ(θ̂n, θ0)
P−→ 0.

S.3: Proof of Theorem 2 Let g0n = arg ming∈Fnr ‖g0 − g‖∞ and θ0n = (β>0 , g0n)>.

Then by Lemma 2, we have ‖g0 − g0n‖ = O(κ−rn ), and therefore

ρ(θ0n, θ0) = ρ1(g0, g0n) = O(κ−rn ). (S3.1)

We next show that ρ(θ̂n, θ0n) = Op
(
(κnn )

1
2

)
. Let δ be a fixed positive constant.

Consider a class of functions

Mn,δ = {`(θ,W )− `(θ0n,W ); ρ(θ, θ0n) ≤ δ, θ ∈ Θn}.

Define two function classes:

M1 = {`(β, g0n,W )− `(β0, g0n,W ); ||β − β0|| ≤ δ, β ∈ B},

M2 = {`(β0, g,W )− `(β0, g0n,W );

∫ τ

0
|g(t)− g0n(t)|d t ≤ δ, g ∈ Fnr }.

Because `(β, g,W ) is Lipschitz with respect to β, the bracketing number of the function

classM1 with any fixed g0n satisfiesN[ ](ε,M1, ‖·‖) .
(
δ
ε

)p
. Similarly, with any fixed

β ∈ B, for the function class M2 we have N[ ](ε,M2, ρ1) .
(
δ
ε

)κn . Then it follows

that

N[ ](ε,Mn,δ, ρ) ≤ N[ ]

(ε
2
,M1, ‖ · ‖

)
N[ ]

(ε
2
,M2, ρ1

)
.

Therefore, the entropy of the function classMn,δ satisfies

logN[ ](ε,Mn,δ, ρ) . κn log
(δ
ε

)
.

Hence, the bracketing integral J[ ](δ,Mn,δ, ρ) (defined e.g. in van der Vaart and Well-

ner, 1996, p. 324) of the function classMn,δ satisfies

J[ ](δ,Mn,δ, ρ) =

∫ δ

0
[1 + logN[ ](ε,Mn,δ, ρ)]1/2 d ε

≤
∫ δ

0
[1 +Aκn log

δ

ε
]1/2 d ε

. κn
1/2δ.
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By Lemma 3.4.2 in van der Vaart and Wellner (1996), we have that

E
(

sup
δ
2
<ρ(θ,θ0n)≤δ

∣∣(`n(θ)− `n(θ0n))− E(`n(θ)− `n(θ0n))
∣∣)

≤ 1√
n
J[ ](δ,Mn,δ, ρ)(1 +

J[ ](δ,Mn,δ, ρ)

δ2
√
n

A3)

.
1√
n
κn

1
2 δ(1 + κn

1
2 δ/δ2√nA3)

= (κn/n)
1
2 δ(1 + (κn/n)

1
2 /δA3) = O

(
(
κn
n

)
1
2 δ
)
.

Also note by Taylor’s expansion that,

sup
δ/2<ρ(θ,θ0n)≤δ,θ∈Θn

E(`(θ,W ))− E(`(θ0n,W )) . −δ2.

Now, apply Theorem 3.4.1 in van der Vaart and Wellner (1996) with φn(δ) = δ · κ1/2
n ,

δn ≡ 0 and rn = (n/κn)1/2, and we have

ρ(θ̂n, θ0n) = O
(
(
κn
n

)1/2
)
.

This, together with (S3.1), yields that ρ(θ̂n, θ0) = Op
(
(κnn )1/2 +κ−rn

)
, which concludes

the proof of Theorem 2.

S.4: Proof of Theorem 3 The proof of the asymptotic normality proceeds as follows.

The least-favorable direction for β is first obtained, and then we use a Taylor expansion

for the score function of β and g along an approximately least-favorable direction.

From the expression of the logliklihood (eq. (2.4) in the paper), the score function

for β and the score operator for g are respectively,

`β = −XC +

∫ C

0

X

X>β +
∫ t

0 g(t− s) dN(s)
dN(t)

`g[h] = −
∫ C

0

∫ t

0
h(t− s) dN(s) d t+

∫ C

0

∫ t
0 h(t− s) dN(s)

X>β +
∫ t

0 g(t− s) dN(s)
dN(t).

Step 1.
For semiparametric models, the least-favorable submodel is the submodel that achieves

the infimum of the information over all submodels (Bickel et al., 1993; van der Vaart,

1998). First, we show that the least-favorable submodel exists.

Note that `g[·] is a linear operator from Fr to L2(Pθ0), where Pθ0 is the true proba-

bility distribution of W , and that the closed linear space spanned by the score functions
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for g is,{
−
∫ C

0

∫ t

0
h(t− s) dN(s) d t+

∫ C

0

∫ t
0 h(t− s) dN(s)

X>β +
∫ t

0 g(t− s) dN(s)
dN(t); h ∈ Fr

}
.

The dual operator `∗g : L2(Pθ0) → Fr, satisfies that for any h ∈ Fr and measurable

function u(W ),

E[`g[h](W )u(W )] =

∫ τ

0
`∗g[u](t)h(t) d t.

To find the least-favorable direction for β is equivalent to solve the following equa-

tion,

`∗g[`g[h]] = `∗g`β. (S4.1)

Since equation (S4.1) is a Fredholm-type equation, the existence of the solution is equiv-

alent to showing that the equation `∗g[`g[h]] = 0 has a trivial solution. Note that if

`∗g
[
`g[h]

]
= 0, then E[`g[h]2] = 0, that is `g[h] = 0. It is clear that h = 0. Therefore,

the least-favorable direction for β exists. Actually, the least-favorable direction for β is

the projection of the score function `β on the linear closed space spanned by the score

function `g[h].

Step 2.
Denote the least-favorable direction for β as h∗(t). We choose an approximate submodel

(β̂n+εb, ĝn+εĥn),where ĥn is the spline approximation for the least-favorable function

h∗(t) ∈ Fr (so ||ĥn(t)− h∗(t)|| = O(κ−rn )).

Since the estimator (β̂n, ĝn) maximizes the log likelihood function along this sub-

model, then

Pn
[
`β(β̂n, ĝn) + `g(β̂n, ĝn)[ĥn]

]
= 0.

By the Lipschitz property, the function class{
`β(β, g) + `g(β, g)[h]; ||β − β0|| .

(κn
n

)−1/2
, ||g − g0|| . κ−rn , ||h− h∗|| . κ−rn

}
,(S4.2)

is a Donsker class. Therefore, we have

sup

||β−β0||.
(
κn
n

)−1/2
,||g−g0||.κ−rn ,||h−h∗||.κ−rn

∣∣∣∣∣∣√n(Pn − P )
(
`β(β, g) + `g(β, g)[h]

− [`β(β0, g0) + `g(β0, g0)[h∗]]
)∣∣∣∣∣∣ = op(1). (S4.3)
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Combining (S4.2) and (S4.3), we have that

√
nPn

(
`β(β0, g0) + `g(β0, g0)[h∗]

)
+ op(1) = −

√
nP
(
`β(β̂n, ĝn) + `g(β̂n, ĝn)[ĥn]

)
.

Then, after Taylor expansion of the right hand side of last equation, we have

√
nPn

(
`β(β0, g0) + `g(β0, g0)[h∗]

)
+ op(1) = −

√
nP
(
`ββ(β0, g0) + `βg(β0, g0)[h∗]

)
(β̂n − β0)

−
√
nP
{
`βg(β0, g0)[ĝn − g0] + `gg(β0, g0)[h∗, ĝn − g0]

}
+
√
nO(||β̂ − β0||2 + ||ĝn − g0||2 + ||ĥn − h∗||2), (S4.4)

where `βg(β0, g0)[ĝn−g] is the derivative of `β along the path β = β0, g = g0+ε(ĝn−g)

and `gg(β0, g0)[h∗, ĝn − g0] is the derivative of `g[h∗] along the path β = β0, g =

g0 + ε(ĝn − g). Since h∗ is the least-favorable direction for β, we have that

P
{
`βg(β0, g0)[ĝn − g] + `gg(β0, g0)[h∗, ĝn − g0]

}
= 0.

Moreover, by the assumed conditions that κ2
n/n −→ 0 and nκ−4r

n −→ 0 as n → ∞,
and the convergence rate of (β̂>n , ĝn)>, the third term of the right hand side of (S4.4) is

op(1). Therefore, (S4.4) becomes

√
nP
{
`ββ(β0, g0) + `βg(β0, g0)[h∗]

}
(β̂n − β0)

= −
√
nPn

(
`β(β0, g0) + `g(β0, g0)[h∗]

)
+ op(1). (S4.5)

Step 3.
We are going to show that the matrix P

{
`ββ(β0, g0) + `βg(β0, g0)[h∗]

}
is nonsingular.

It suffices to show that for a vector a, if

a>P
{
`ββ(β0, g0) + `βg(β0, g0)[h∗]

}
a = 0, (S4.6)

then a = 0. Since h∗ is the least-favorable direction for β, (S4.6) becomes

P
[
a>`β(β0, g0) + a>`g(β0, g0)[h∗]

]2
= 0.

Then, a>`β(β0, g0) + a>`g(β0, g0)[h∗] = 0. We can conclude that a>(X +
∫ t

0 h
∗(t −

s) dN(s)) = 0. By C4, we have a = 0. Hence, the derivative matrix is nonsingular.

By equation (S4.5), we have that

√
n(β̂n−β0) = −

{
P
[
`ββ(β0, g0)+`βg(β0, g0)[h∗]

]}−1√
nPn

(
`β(β0, g0)+`g(β0, g0)[h∗]

)
+op(1).
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Hence,
√
n(β̂n − β0) converges to a normal distribution. The influence function is

−
{
P
[
`ββ(β0, g0) + `βg(β0, g0)[h∗]

]}−1{
`β(β0, g0) + `g(β0, g0)[h∗]

}
,

and thus the estimator β̂n is semiparametrically efficient.

To show the consistency of the variance estimator Σ̂β , the key is to show the infor-

mation operator I, given by

I

[(
b1

h1

)
,

(
b2

h2

)]
= −

(
b>1 P`ββb2 + b>1 P`βg[h2] + b>2 P`βg[h1] + P`g,g[h1, h2]

)
,

is uniformly consistently estimated by
(
ι(·)>, πBn(·)>

)
In
(
ι(·)>, πBn(·)>

)>
, where

ι is the identity map, πBn is the operator that determines the vector of coefficients

of the MBS approximation to a function, so that gn(t) = Bn(t)>πBn(g), and In =

−Pn

(
`ββ `βg[Bn]

`βg[Bn]> `gg[Bn, Bn],

)
is the observed information matrix. The details are

omitted due to similarity to those of the consistency proof for the variance estimator in

Zeng and Lin (2006).
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