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Abstract: We consider a semi-parametric self-exciting point process regression model

where the excitation function is assumed to be smooth and decreasing but other-

wise unspecified, and the baseline intensity is assumed to be a linear function of

the regressors. We propose an estimation method for this model based on mono-

tone splines. The estimator for the regression coefficients is shown to be consistent,

asymptotically normal, and semi-parametrically efficient. The consistency of the

estimator for the nonparametric excitation function is also established. The numer-

ical performance of the estimators was found to be satisfactory through simulation

studies. We illustrate the application of the model to a bladder cancer data set.
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1. Introduction

Recurrent event data arise frequently in such areas as seismology and medical

statistics. As examples, a specific geographic location can experience earthquakes

repeatedly over time, and patients with a certain medical condition might expe-

rience the same condition repeatedly over a period of time. Recurrent event data

can come in different forms. One is as a single, typically rather long, string of

event recurrence times, and possibly also other information of each occurrence of

the event. An example of here is a sequence of earthquakes in a certain geograph-

ical region that records the time of each earthquake together with coordinates

and depth of the epicenter, and a magnitude measure. Recurrent event data

can consist of multiple, typically short, strings of event recurrence times with

some strings of specific covariates. Thus, to evaluate the efficacy of treatments

of a certain medical condition, the recurrence times of the condition might be

recorded on a sample of patients together with the treatment administered and
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other potentially relevant characteristics of the patient. In these forms of recur-

rent event data, a commonly encountered feature is temporal clustering of the

events. Proper modeling of the event clustering phenomenon is important to

prediction of future recurrence times and to the assessment of the influence of

external explanatory variables on the recurrence rate.

The self-exciting process (Hawkes (1971)), also known as the Hawkes process,

has proved to be a useful model for recurrent event data with the event clustering

feature. This model is a point process model whose intensity process depends

on previous events of the point process itself. The occurrence of an event is

assumed to cause the intensity process to jump upwards by a certain amount

and then gradually revert toward a baseline level of event intensity. This simple

assumption about the evolution of the intensity process makes sense in many

contexts and often agrees well with the data. It has been applied in seismology

(Ogata (1988)), neuroscience (Chornoboy, Schramm, and Karr (1988)), social

science (Crane and Sornette (2008)), marketing research (Kopperschmidt and

Stute (2009)), finance (Embrechts, Liniger, and Lin (2011); Errais, Giesecke, and

Goldberg (2010)), and criminology (Mohler et al. (2011)).

In the applications of the self-exciting process, the excitation effect associated

with an individual event is typically assumed to decay over time and eventually

approach zero. The residual excitation effect of an event as a function of time

elapsed since the occurrence of the event is referred to as the excitation function.

In applications, popular choices of the excitation function include exponential de-

cay (Embrechts, Liniger, and Lin (2011); Errais, Giesecke, and Goldberg (2010);

Kopperschmidt and Stute (2009)) and polynomial decay (Crane and Sornette

(2008); Mohler et al. (2011); Ogata (1988)). In some applications the choice of

the parametric form the excitation function is supported by empirical evidence,

in others the choice is based on ad hoc arguments. For data exploration, it is

more desirable to let the data speak for itself. A purpose of this paper is to con-

sider the estimation of the self-exciting process model with an excitation function

that is assumed to be decreasing and smooth but otherwise unspecified.

There have been works on inference of the parametric self-exciting process

model. Ogata (1978) established the consistency and asymptotic normality of

the maximum likelihood estimator of the stationary self-exciting process model.

Chornoboy, Schramm, and Karr (1988) established the consistency and asymp-

totic normality of the maximum likelihood estimator of the multivariate exten-

sion of the self-exciting process model, or the mutually exciting model. Rathbun

(1996) showed the consistency and asymptotic normality of the maximum like-

lihood estimator of the spatio-temporal self-exciting process model. In these

works the asymptotic inference is developed for long time spans, and stationarity

or some similar stability condition is typically required of the model. More re-

cently, Chen and Hall (2013) showed the consistency and asymptotic normality
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of the maximum likelihood estimator of a non-stationary self-exciting process in

the infill asymptotic sense.

There have also been works devoted to semi- and non-parametric self-exciting

process models. Zhuang, Ogata, and Vere-Jones (2002) proposed iterative es-

timation algorithms for a semi-parametric marked spatial-temporal self-exciting

process model in which the background intensity is a nonparametric spatial func-

tion and the excitation function is parametric, and applied the estimation algo-

rithms to earthquake data. Marsan and Lengliné (2008) proposed an algorithm

to declustering earthquakes based on a semi-parametric marked spatio-temporal

self-exciting process model in which the background intensity is a constant but

the excitation function is a non-parametric function of space, time and event

mark. Mohler et al. (2011) modelled crime data using a non-parametric spatial-

temporal self-exciting process where the background intensity is the product of a

nonparametric function of time and a nonparametric function of space, and the

excitation function is a nonparametric function of time and space, and proposed

an iterative kernel-type estimation procedure for the nonparametric functions.

Although Marsan and Lengliné and Mohler et al. assessed the finite sample per-

formance of their respective estimators via simulation, theoretical properties of

these estimators were not investigated. Works on semi-parametric inference for

related models that have an implicit self-exciting feature include those of Cox

(1972); Lin and Fine (2009); Oakes and Cui (1994) on the modulated renewal

process model and its semi-parametric inference, and those of Engle and Rus-

sell (1998); Bauwens and Giot (2000); Zhang, Russell, and Tsay (2001); Hautsch

(2002); Engle and Lunde (2003), and many other authors on the ACD (autore-

gressive conditional duration) type models.

These works mostly focus on modelling a single long string of events recorded

over a wide time window. In this paper we consider a semi-parametric Hawkes

self-exciting process regression model which is suitable for the modelling of recur-

rent event data in the multiple-string form that often arises in biostatistics and

medical studies. With recurrent event data in this form, an important question

is to assess the potential effects of the covariate variables on the event recurrent

rate. Therefore we consider an extension of the self-exciting process to include

a regression component to account for contributions of the covariate variables

on the risk of event recurrence. To maintain interpretability of the model, we

assume the regression component is a linear function of the covariates. Therefore

the model we consider is semi-parametric. We propose estimators for the para-

metric and non-parametric parts of the model and study the asymptotic behavior

of the estimators. The proposed estimators are based on a monotone B-spline

approximation (de Boor (2001); Schumaker (2007)) of the excitation function.

The estimator of the parametric part of the model is shown to be consistent,
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asymptotically normally distributed, and asymptotically optimal in the sense of

achieving semi-parametric efficiency (Bickel et al. (1993); van der Vaart (1998)).

The estimator of the nonparametric part of the model is shown to be consistent,

with non-parametrically optimal rate of convergence in the sense of Stone (1980).

The rest of the paper is organized as follows. In Section 2 we recall the

Hawkes self-exciting process and its semi-parametric extension, and present the

proposed estimators for the parametric and the nonparametric parts of the model.

The asymptotic properties of the estimators are given in Section 3. The numerical

performance of the estimators is assessed using simulations in Section 4, and an

application is made to a data set from cancer research in Section 5. Section 6

concludes with discussion. All proofs are contained in the supplementary file.

2. The Model, the Data, and the Estimation Method

2.1. A semi-parametric self-exciting regression model for recurrent

event data

The self-exciting process proposed by Hawkes (1971) is a simple point process

N with an intensity process λ depending on past events of the point process. The

intensity at time t is given by

λ(t) = µ+
∑
ti<t

g(t− ti) = µ+

∫
[0,t)

g(t− s) dN(s),

where µ > 0 is the baseline intensity, t1 < t2 < · · · denote the points, or event

times, of the point process, and g(·) > 0 is the excitation function. For stationar-

ity, it is assumed that
∫∞
0 g(t) d t < 1. With this specification, the occurrence of

an event makes the intensity process jump instantly by the amount g(0), giving

an increased chance of another event occurring in a short time.

In applications, two popular choices of the excitation function are the expo-

nential decay function g(t) = ae−bt, t ≥ 0, with parameters a, b > 0, and the

polynomial decay function g(t) = K(t + c)−p, t ≥ 0, with parameters K, c > 0

and p > 1. With the corresponding constraints on the parameters, these forms

of the excitation function are decreasing; it seems reasonable to assume that the

residual excitation effect due to an individual event diminishes toward zero over

time. More specific assumptions about the excitation function are not always

justified. To reduce the risk of model misspecification, it is desirable to leave the

form of the excitation function unspecified and estimate it non-parametrically

based on the observed data. Here the excitation function g(·) is assumed to be a

smooth and bounded decreasing function, otherwise unspecified.

We are interested in the regression problem which assesses the influence of

some exogenous variables on the intensity of the self-exciting process. For ease of
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interpretation, we assume the influence of the explanatory variables, or suitable

transformations of them, on the intensity is linear. Let X ∈ Rp be the vector of

covariates. The intensity process of the self-exciting process regression model is

given by

λ(t) = X⊤β +

∫ t

0
g(t− s) dN(s), (2.1)

where β ∈ Rp is the vector of regression coefficients. We assume that the self-

exciting process N is only observable up to a random censoring time C. Given

the covariates X, the censoring variable C is assumed to be independent of the

point process N . Our interest in the excitation function g(·) is restricted to an

interval [0, τ ], so P (C ≤ τ) = 1 and P (C > τ − ϵ) > 0 for all ϵ > 0.

The parameter space B for the regression coefficient is taken to be a bounded

convex set in Rp. If K is the upper bound of g(0) and g(·) is r times continuously

differentiable for some r, the parameter space for g is the space Fr of all r times

continuously differentiable and decreasing functions on [0, τ ] with values in [0,K].

The full parameter space of the model is then Θ = B × Fr.

The data that we use to identify the model consists of n independently ob-

tained right-censored sample paths of N , together with the associated covariates

and the censoring time:

{Wi ≡ (X⊤
i , Ci, Ni(t), 0 ≤ t ≤ Ci)

⊤; i = 1, . . . , n}. (2.2)

We also assume the (X⊤
i , Ci)

⊤ follow a common design distribution, so that the

Wi are independent and identically distributed (i.i.d.). Since the sample path of

Ni is a jump function with jump sizes equal to 1, it is completely determined

by the jump times or the event times ti1 < ti2 < · · · < tini , where ni = Ni(Ci).

Therefore, the data can be equivalently represented as {(X⊤
i , Ci, ni, ti1, . . . , tini)

⊤;

i = 1, . . . , n}.
If fX,C is the joint design density of the covariate vector and the censoring

variable, relative to some reference measure ν on Rp ×R+, then the density of a

generic data point W = (X⊤, C,N)⊤ is

fθ(W ) = fX,C(X,C) exp

[ ∫ C

0
log

{
X⊤β +

∫ t

0
g(t− s) dN(s)

}
dN(t)

−
∫ C

0

{
X⊤β +

∫ t

0
g(t− s) dN(s)− 1

}
d t

]
, (2.3)

where the reference measure is ν ⊗ σ, σ being the distribution of the Poisson

process on [0, τ ] with unit rate (see e.g. Daley and Vere-Jones (2003, Chapter
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7)). The log likelihood for the parameter (β, g) based on the generic data point
W is up to an additive constant,

ℓ(θ) ≡ ℓ(θ,W ) =

∫ C

0
log

{
X⊤β +

∫ t

0
g(t− s) dN(s)

}
dN(t)

−
∫ C

0

{
X⊤β +

∫ t

0
g(t− s) dN(s)

}
d t. (2.4)

Remark 1. For numerical computation, an alternative form of the log likelihood
is useful:

ℓ(θ) =

N(C)∑
i=1

log
{
X⊤β +

i−1∑
j=1

g(ti − tj)
}
−X⊤βC −

N(C)∑
i=1

∫ C−ti

0
g(s) d s,

where ti, i = 1, . . . , N(C) denote the jump times of N up to time C.

2.2. A monotone B-spline based sieve estimator

The estimation of semi-parametric models is generally more difficult than the
estimation of parametric or nonparametric models. A number of methods have
been proposed to deal with the nonparametric component in semi-parametric
models: penalized least squares (Engle et al. (1986); Green (1985)); penalized
likelihood (Green (1987)), kernel smoothing (Speckman (1988); Zeger and Dig-
gle (1994)), profile likelihood (Nielsen et al. (1992); Huang (1996)), the local
polynomial method (Huggins et al. (2007)), piecewise polynomial approximation
(Chen and Jin (2006)), the sieve likelihood method (Huang and Rossini (1997);
Xue, Lam, and Li (2004)), the nonparametric maximum likelihood method (Zeng
and Lin (2006)), pseudo-likelihood method (Wellner and Zhang (2007)), penal-
ized P-splines (Hazelton and Turlach (2011)), and the B-spline approximation-
based method (Chen and Tong (2010); Lu, Zhang, and Huang (2007, 2009)).
Due to their flexibility for incorporating shape constraints and their remarkable
numerical stability (Mammen et al. (2001); Schumaker (2007, §4.9)), B-splines
are a natural method of choice for shape-constrained curve estimation. We use
B-splines to deal with the monotonicity constraint placed on the excitation func-
tion.

Fix a positive integer d ≥ r + 1. Let κn > d be an integer, depending on
the sample size n, such that κn → ∞ as n → ∞. Let ξn be a sequence of length
κn + d such that 0 = ξ1 = · · · = ξd < ξd+1 < · · · < ξκn+1 = · · · = ξκn+d = τ , with

∆(ξn) = max{ξi+1 − ξi; i = 1, . . . , κn + d− 1} → 0, as n → ∞.

Let B(t) = (B1(t), . . . Bκn(t))
⊤ denote the order d B-spline basis functions asso-

ciated with the knot sequence ξ. Set

Fn
r = {B(t)⊤γ; γ ∈ Rκn ,K ≥ γ1 ≥ · · · ≥ γκn ≥ 0},Θn = B × Fn

r .
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By the variation diminishing property of B-splines (Schumaker (2007, §4.9)),
B(t)⊤γ is a positive and decreasing function of t since γ = (γ1, . . . , γκn) is a

positive and decreasing sequence, and therefore Fn
r ⊂ Fr and Θn ⊂ Θ. By the

Jackson-type theorem for B-splines (de Boor (2001, Theorem XII.6)), we have∪
nΘn = Θo.

Let Pn denote the empirical probability measure corresponding to a sample

of size n, and let

ℓn(θ) = Pnℓ(θ) =
1

n

n∑
i=1

ℓ(θ,Wi),

Then our estimator for the parameter θ = (β⊤, g)⊤ is taken as a maximizer of

the likelihood function over Θn,

θ̂n = (β̂⊤
n , ĝn)

⊤ = argmax
θ∈Θn

ℓn(θ).

By construction it is clear that the estimator is of the sieve type (Grenander

(1981)), with {Θn;n = 1, 2, . . .} being a sieve for the parameter space Θ. This

estimator is nonparametric in nature because the dimension of the sieve space

depends on the sample size and grows to infinity when the sample size tends to

infinity. However, from the computational point of view, the estimator is para-

metric because the sieve space Θn is finite-dimensional. Moreover, the optimal

dimension of the sieve space is significantly smaller than the sample size. With

the optimal choice of dimension, the optimization problem required to evaluate

the estimator can often be done using standard optimization routines available

from any modern software package. Optimizations in this paper were done in R

R Core Team (2013) using the optim routine.

Remark 2. With the knot sequence ξ1 = · · · = ξd < · · · < ξκ+1 = · · · = ξκ+d,

the set of order d (≥ 1) basis functions Bi(t) ≡ Bd
i (t), i = 1, . . . , κ is defined

recursively via the recurrence,

Bk
i (t) =

t− ξi
ξi+k−1 − ξi

Bk−1
i (t) +

ξi+k − t

ξi+k − ξi+1
Bk−1

i+1 (t), k = d, d− 1, . . . , 2,

and the initial condition,

B1
i (t) =

{
I {t ∈ [ξi, ξi+1)} , i ̸= κ, i ∈ {1, . . . , κ+ d− 1},
I {t ∈ [ξi, ξi+1]} , i = κ,

where I {·} = 1 when {·} is true and = 0 otherwise.
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Remark 3. To compute the log-likelihood function, one needs to compute inte-

grals of the form
∫ t
0 g(s) d s for t ∈ [0, τ ] (c.f., Remark 1). Numerical integration

might be required for this purpose. The B-spline method has the advantage that

numerical integration can be avoided, since when g is approximated by the order

d B-spline Bd(t)⊤γ, the integral
∫ t
0 g(s) d s is simply an order d+ 1 B-spline (de

Boor (2001, p. 128)),∫ t

0

κ∑
i=1

γiB
d
i (s) d s =

κ∑
i=1

{ i∑
j=1

γj(ξj+d − ξj)

k

}
Bd+1

i (t), t ∈ [ξ1, ξκ+1] ≡ [0, τ ],

where the extra knot value ξκ+d+1 needed in the definition of Bd+1
κ can be an

arbitrary value ≥ ξκ+d.

Remark 4. To make sure the estimated excitation function ĝ(t) = B(t)⊤γ̂ is

positive and decreasing, one only needs to make sure that the estimates γ̂ =

(γ̂1, . . . , γ̂κn) are a positive and decreasing sequence. To guarantee this, one

can reparametrize γ in terms of the logarithms of their successive differences,

γ′i = log(γi − γi+1), with γκn+1 = 0. This simple treatment effectively eliminates

the need for constrained numerical optimization, and has worked very well in our

numerical studies.

3. Asymptotic Properties of the Estimator

In this section, under some regularity conditions on the model and the choice

of the knot sequence in the definition of the estimator, we show that the es-

timator of the regression coefficient is consistent, asymptotically normal, and

semi-parametrically efficient, and that the estimator of the excitation function is

consistent with optimal rate of convergence. We begin with the regularity con-

ditions. In the sequel, θ0 = (β⊤
0 , g0)

⊤ denotes the true value of the parameter,

and || · || denotes the Euclidean norm.

C1 β0 is an interior point of B.

C2 For any β ∈ B, there exists an ϵ > 0 such that X⊤β ≥ ϵ almost surely.

C3 There exists a constant M > 0 such that ||X|| ≤ M almost surely.

C4 If for any β1, β2 ∈ B and g1, g2 ∈ Fr,

X⊤β1 +

∫ t

0
g1(t− s) dN(s) ≡ X⊤β2 +

∫ t

0
g2(t− s) dN(s)

almost surely, then β1 = β2 and g1 = g2.
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C5 With ∆(ξ) = maxd≤i≤κn |ξi+1 − ξi| and δ(ξ) = mind≤i≤κn |ξi+1 − ξi|, the

sequence of knots ξn satisfies ∆(ξn) = O(n−q) for some q ∈ (0, 1/2) and

∆(ξn)/δ(ξn) is bounded.

Remark 5. C1 is commonly assumed in semi-parametric estimation problems.

C2 guarantees the positivity of the intensity process. C3 is typically satisfied in

practical applications. C4 is an identifiability condition. C5 is used to balance

the model bias induced by the finite-dimensional approximation to the infinite-

dimensional parameter, and is similar to what is assumed by Lu, Zhang, and

Huang (2009) and Zhou, Shen, and Wolfe (1998) in studying the asymptotic

properties of B-spline based estimators.

Theorem 1 (Consistency). Under C1−C5, the estimator θ̂n is consistent,

||β̂n − β0||+
∫ τ

0

∣∣ĝn(s)− g0(s)
∣∣d s P−→ 0.

Theorem 2 (Rate of convergence). In addition to C1−C5 and the condition that

κn → ∞ as n → ∞, suppose that limn→∞ κn/n = 0. Then∣∣∣∣β̂n − β0
∣∣∣∣+ ∫ τ

0

∣∣ĝn(s)− g0(s)
∣∣ d s = Op

(
(
κn
n
)1/2 + κ−r

n

)
.

Remark 6. If we choose κn = n1/(2r+1) in Theorem 2 up to a positive con-

stant, then it follows that
∫ τ
0

∣∣ĝn(s) − g0(s)
∣∣ d s = Op(n

−r/(2r+1)). The rate of

convergence for the nonparametric component, n−r/(2r+1), is the asymptotically

optimal rate (Stone (1980)).

Theorem 3 (Asymptotic normality). Assume the conditions of Theorem 2, and

that limn→∞ κ2n/n = 0 and limn→∞ nκ−4r
n = 0. Then

√
n(β̂n − β0)

D→ N(0,Σβ),

where Σβ is positive definite, and the estimator β̂n is semi-parametrically effi-

cient. Moreover, Σβ is consistently estimated by Σ̂β = AI−1
n A⊤, where In is the

observed information matrix, and A = Ap×(p+κn) = (Ip, 0) is the identity matrix

of size p padded with zeros.

The proof of these results can be found in the supplementary file.

4. Simulation Studies

Our simulation model was

λi(t) = X⊤
i β +

∫ t

0
g(t− s) dNi(s), t ∈ [0, τ ], i = 1, . . . , n,
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where β = (β0, β1, β2)
⊤ = (0.5, 1, 2)⊤, g(t) = ae−bt = 4e−8t, Xi = (1, Xi1, Xi2)

⊤,

i = 1, . . . , n were i.i.d. with Xi1 ∼ Uniform[0, 1], Xi2 ∼ Bernoulli(0.5), Ci ≡ τ =

1, and n = 100, 200, or 400. We simulated data from this model and subsequently

estimated the parameter using the monotone B-spline (MBS) method described

in Section 2.2. The fully parametric maximum likelihood (ML) method was also

used for the purpose of comparison. The order d of the B-spline was set to 3.

The interior knots of the B-spline were evenly placed in [0, 1]: (ξd, . . . , ξκn+1) =

(0, 1/m, . . . ,m/m), where m = κn − d + 1 were chosen, in line with C5 and

Remark 6, to be integers near n1/3, where n is the sample size. To assess the

sensitivity of the estimator to the order and the number of knots of the B-spline,

we let d vary in the set {2, 3, 4} and m vary in the set {1, 2, . . . , 30}. With each

combination of sample size and estimation method, the process of data simulation

and parameter estimation was repeated 1,000 times. For each sample size, the

covariates were simulated once and held constant across the 1,000 simulated data

sets.

Table 1 shows a summary of the estimates of the regression parameters using

the fully parametric method and the MBS method with several different order

and knot sequence choices, for sample sizes n = 100, n = 200, and n = 400,

respectively. To save space, the results with d = 2, which were similar to those

with d = 3 and 4, are not shown. From the results we note that the parametric

method and MBS method gave essentially unbiased estimates of the regression

coefficients. The standard error (SE) of the estimators of the regression co-

efficients decreases with increasing sample size n roughly at the root-n rate as

expected. The SE of the MBS method is also very close to that of the parametric

method. These observations support the theory on the rate of convergence and

semiparametric efficiency of the MBS estimator established earlier. The average

of the standard error estimates (SEE) is also close to the true/empirical standard

error, with the discrepancy between them narrowing as the sample size increases,

both in the parametric method and in the MBS method. This provides empirical

evidence of the consistency of the variance estimator for the estimator of the

regression coefficients. The coverage probabilities (CPs) of the 95% confidence

intervals based on different sample sizes are all above 91%, and approach the

nominal rate of 95% as the sample size increases. The CPs based on the para-

metric and the MBS methods are close to each other, giving further evidence of

the semiparametric efficiency of the MBS method. It is also clear that the bias,

SE, and SEE of the MBS estimator and the CP of the corresponding confidence

interval are nearly identical with different combinations of d and m, which sug-

gests that the MBS estimator of the parametric part is, to some extent, robust

to the choice of the order and knot sequence in the MBS approximation to the

excitation function. Further evidence of the robustness of the MBS estimator
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Table 1. Estimates of the regression coefficients with simulated data (sample
size n = 100, 200, or 400), using the fully parametric method (PAR) and
the monotone B-spline method [MBS(d,m)] with order d and equally spaced
interior knots {ξd, . . . , ξκn+1} = {i/m; i = 0, . . . ,m}. Note: Bias and SE
stand for the bias and standard error of the estimator respectively, SEE
for the average of the standard error estimates, and CP for the coverage
probability of the 95% confidence interval.

β0 = 0.5 β1 = 1.0 β2 = 2.0
n 100 200 400 100 200 400 100 200 400

PAR Bias 0.002 0.002 0.006 0.022 0.007 -0.004 0.004 0.012 -0.005
SE 0.265 0.177 0.132 0.563 0.330 0.240 0.354 0.266 0.177
SEE 0.247 0.170 0.130 0.537 0.327 0.236 0.345 0.248 0.170
CP 0.914 0.930 0.950 0.937 0.942 0.949 0.938 0.937 0.947

MBS(3,5) Bias -0.002 -0.002 0.004 0.014 0.001 -0.008 -0.010 0.001 -0.012
SE 0.264 0.176 0.132 0.560 0.328 0.239 0.352 0.265 0.176
SEE 0.247 0.170 0.130 0.536 0.327 0.236 0.345 0.248 0.171
CP 0.914 0.932 0.951 0.929 0.944 0.950 0.939 0.939 0.947

MBS(3,6) Bias -0.002 -0.002 0.004 0.013 0.001 -0.008 -0.011 0.000 -0.012
SE 0.264 0.176 0.132 0.559 0.328 0.239 0.352 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.327 0.236 0.345 0.248 0.171
CP 0.920 0.930 0.950 0.941 0.942 0.950 0.940 0.939 0.950

MBS(3,7) Bias -0.002 -0.002 0.004 0.013 0.001 -0.008 -0.011 0.000 -0.012
SE 0.264 0.176 0.132 0.560 0.328 0.239 0.352 0.265 0.176
SEE 0.248 0.169 0.130 0.538 0.327 0.236 0.347 0.248 0.171
CP 0.915 0.930 0.949 0.934 0.940 0.948 0.944 0.937 0.945

MBS(4,4) Bias -0.002 -0.001 0.004 0.014 0.002 -0.008 -0.010 0.001 -0.011
SE 0.264 0.176 0.132 0.559 0.328 0.239 0.352 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.327 0.236 0.345 0.248 0.171
CP 0.916 0.932 0.951 0.933 0.941 0.949 0.940 0.938 0.947

MBS(4,5) Bias -0.002 -0.002 0.004 0.013 0.002 -0.008 -0.010 0.001 -0.012
SE 0.264 0.176 0.132 0.559 0.329 0.239 0.352 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.327 0.236 0.345 0.248 0.171
CP 0.912 0.930 0.952 0.936 0.943 0.952 0.942 0.942 0.948

MBS(4,6) Bias -0.002 -0.002 0.004 0.014 0.001 -0.008 -0.010 0.000 -0.012
SE 0.264 0.176 0.132 0.560 0.328 0.239 0.352 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.326 0.236 0.345 0.248 0.171
CP 0.922 0.930 0.951 0.934 0.937 0.952 0.945 0.939 0.949

of the regression coefficients to the choice of d and m is revealed by comparing

the average mean square errors (MSE) of the MBS estimators of the regression

coefficients with different values of d, m. The left panel of Figure 1 is a graph of

the average MSE as a function of m ∈ {1, 2, . . . , 30}, for each d ∈ {2, 3, 4}, and
n ∈ {100, 200, 400}, from which we note that when m ≥ 3 the MSE is virtually

constant in m. It also suggests that for m ≥ 2, when the sample size n increases,
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Figure 1. The average MSE of the MBS regression coefficient estimator(left
panel), and the MIAE of the excitation function estimator(right panel), with
values of the order d of the MBS in {2, 3, 4} and the number m of equal sized
interior knot intervals of the MBS in {1, 2, . . . , 30}, for sample sizes n = 100,
200 and 400.

the MSE decreases roughly at rate n, as predicted by the asymptotic theory. The

order d of the MBS has little influence on the MSE when m ≥ 2, although the

value d = 3 seems to have a slightly better overall performance than d = 2 and

d = 4.

Figure 2 shows the point-wise 95% confidence limits and the median of the

estimates of the excitation function, using the parametric and MBS methods

with several combinations of d and m. The figure suggests that the parametric

method estimated the excitation function unbiasedly, and the MBS estimator

of the excitation function is biased in general. However, the bias of the MBS

estimator tends to be negligible when the order of the B-spline is 3 or 4. The

point-wise variance of the estimator seems to increase slightly as d or m increases.

In all cases, the 95% point-wise confidence bands seem to cover the true excitation

function entirely, suggesting satisfactory performance of the MBS estimator of

the excitation function. To assess the influence of d and m on the performance

of the MBS excitation function estimator, we calculated the mean integrated

absolute error (MIAE) of the estimator based on values of d ∈ {2, 3, 4} and m ∈
{1, 2, . . . , 30}. The results were shown in the right panel of Figure 1, from which
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Figure 2. The excitation function (central solid curve) and the point-wise
2.5th, 50th, and 97.5th percentiles of the 1,000 estimates based on simu-
lated data sets of size n = 100 (dashed), n = 200 (dotted), and n = 400
(dot-dashed) respectively, using the fully parametric method (PAR) and the
monotone B-spline method [MBS(d,m)] with order d and equally spaced
interior knots {i/m; i = 0, . . . ,m}.

we note that, for m ≥ 6, the influence of d on the MIAE is hardly appreciable;

for smaller values of m, d = 2 leads to bigger MIAE than d = 3 or d = 4, or

both. In all but the case of m = 1, the minimum MIAE is achieved by d = 4.

With d = 4, the m value minimizing the MIAE is 2 when n = 100 or 200, and is

3 when n = 400.

We have seen that the performance of the MBS estimator depends on the

choice of the order d and the number m of interior knot intervals used in the MBS
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Table 2. Summary of the regression coefficient estimates using the
MBS(d,m) estimator with m = m̂AIC.

d = 2 Bias -0.002 0.000 0.006 0.015 0.001 -0.009 -0.011 0.000 -0.013
SE 0.264 0.176 0.133 0.560 0.329 0.240 0.352 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.327 0.236 0.344 0.248 0.171
CP 0.912 0.932 0.949 0.936 0.943 0.949 0.937 0.938 0.943

d = 3 Bias -0.001 -0.002 0.005 0.013 -0.002 -0.012 -0.012 -0.006 -0.02
SE 0.264 0.176 0.132 0.558 0.327 0.238 0.352 0.264 0.175
SEE 0.247 0.170 0.130 0.535 0.326 0.235 0.344 0.247 0.170
CP 0.915 0.933 0.951 0.933 0.943 0.949 0.938 0.941 0.942

d = 4 Bias -0.001 -0.001 0.005 0.015 0.002 -0.008 -0.010 0.000 -0.012
SE 0.264 0.176 0.133 0.560 0.329 0.240 0.351 0.265 0.176
SEE 0.247 0.169 0.130 0.536 0.327 0.236 0.344 0.248 0.171
CP 0.918 0.931 0.949 0.932 0.943 0.948 0.938 0.939 0.944

approximation to the excitation function. For applications, it is desirable to have

a data-driven approach to selection of these tuning parameters. We propose to

select the values of d and m by minimizing the Akaike Information Criterion

(Akaike (1974, AIC)),

−2ℓmax + 2(m+ d− 1),

where ℓmax is the maximized log-likelihood value when the excitation function

is restricted to the space of monotone B-splines of order d with interior knots

{0, τ/m, . . . , τ}. Since the influence of d on the performance of the MBS estima-

tors tends to be limited compared with the influence of m, it is reasonable to fix

the value of d according to the preferred smoothness of the estimated excitation

function, and select the value of m by minimizing the AIC. A summary of the

optimal m values selected by minimizing the AIC, denoted by m̂AIC, for different

values of d and sample size n is shown in Figure 3. From this figure we note that

the m̂AIC values seem to be distributed around mMIAE, the m value minimiz-

ing the MIAE for given d and sample size n, shown in the figure as well. This

suggests the AIC based selector of the smoothing parameter m has satisfactory

numerical performance.

The summary of the MBS regression coefficient estimates with m selected

by the AIC is shown in Table 2, from which we note the bias and SE of the

estimator, the SEE, and the CP of the 95% confidence intervals are all close

to those based on the MBS estimator with fixed m value, and close to those

based on the parametric ML estimator (MLE) as well. This suggests that the

effect of using the m value selected by the AIC instead of a fixed m value on

the inference about the regression coefficients using the MBS estimator is largely

negligible. The point-wise 2.5th, 50th and 97.5th percentiles of the estimates of
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Figure 3. Distribution of the optimal m values selected using the AIC.

the excitation function based on the MBS estimator with varying d ∈ {2, 3, 4} and
m = m̂MIAE are shown in Figure 4, together with those based on the parametric

MLE. We note that the empirical 95% confidence bands, though point-wise and

not simultaneous, all contain the true curve g(t) entirely. It seems clear that

the MBS estimator with d = 2 has the worst overall performance, while that

with d = 4 has the best, which is also confirmed by calculating the MIAE of

the MBS estimators with different values of d and n. Therefore, the choice of

d = 4, which amounts to cubic spline approximation to the excitation function,

is recommended as a rule of thumb in applications.

5. A Data Example

We illustrate our model and estimation method with a data set arising in
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Figure 4. The true excitation function g(t) (central solid curve) in the sim-
ulation model and the 2.5th, 50th, and 97.5th percentiles of the MBS(d,m)
estimates of the excitation function with different order d and the number m
of equal-sized interior knot intervals selected by the AIC, and with simulated
data sets of sizes n = 100 (dashed), n = 200 (dotted) and n = 400 (dot-
dashed). The results of using the parametric maximum likelihood estimator
is also included for ease of comparison.

bladder cancer study. The data was reported by Byar (1980) and has been

frequently used to illustrate statistical methods for recurrent event data analysis,

e.g. Wei, Lin, and Weissfeld (1989), Zeng and Lin (2006), Wellner and Zhang

(2007), and Lu, Zhang, and Huang (2009). The data consists of the bladder

tumor recurrence times of 118 Stage-I bladder cancer patients. On entry of the

study, all bladder cancer tumors were surgically removed through transurethral

resection, and the patients were randomly assigned to one of three groups –

placebo, pyridoxine, and thiotepa. Any new tumors discovered at subsequent

recurrence times were surgically removed. The recurrence times were recorded

as months since entry of the study. For each patient, the number of initial tumors

and the size of the largest tumor were also available. The patients were right

censored at the earlier of the time of death due to bladder cancer or other causes

and the end of study period. The maximum follow-up time was 64 months. The

observed number of tumor recurrences ranges from 0 to 9.

We fitted three self-exciting point process regression models to the data –

the first two fully parametric with the excitation function forced to be a constant
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Figure 5. Estimates of the excitation function g for the bladder cancer
data by the parametric method with an exponential form for g and by the
MBS(d,m) method with d = 4 and m selected by the AIC. The 95% (point-
wise) confidence bands based on the MBS estimator were obtained by para-
metric bootstrap.

and an exponential function, respectively, and the other semi-parametric with the

excitation function assumed to be positive and monotone decreasing. With the

constant excitation function, the model becomes a parametric additive risk model

(Aalen (1980, 1989); Lin and Ying (1994)) with cumulative number of previous

events as a time-varying covariate. When estimating the semi-parametric model

with the proposed MBS estimator, we used d = 4 and equally spaced interior

knots i/m×64, i = 0, . . . ,m, withm = 1 selected by the AIC. For comparison, we

also fitted a point process regression model without the excitation effect, which

is equivalent to Poisson regression. The estimated regression coefficients and

the excitations function are shown in Table 3 and Figure 5, respectively. The

standard errors estimates in Table 3 were obtained by inverting the observed

information matrix. They were nearly identical to the standard errors obtained

using a bootstrap method (not reported) to be discussed below.

From Table 3, by all four models the suppressing effect of the thiotepa on the

tumor recurrence intensity is statistically significant at level 0.05, and the number

of tumors present at entry of the study is a highly significant risk factor for tumor

recurrence. These results are consistent with the analysis of others, e.g. Zeng

and Lin (2006), Wellner and Zhang (2007), and Lu, Zhang, and Huang (2009).

By the self-exciting process models the effect is less conclusive, with p-values

equal to 0.021, 0.047, and 0.025 respectively. This suggests that the self-exciting
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Table 3. Estimated regression coefficients under different models, where
Poisson Reg. is short for the Poisson regression model, and SEP(con),
SEP(exp), and SEP(nonpar) for the self-exciting process regression mod-
els with the constant, exponential, and nonparametric excitation functions
respectively.

Parameter Estimate Std. Error z value Pr(> |z|)
Poisson Reg. (Intercept) 0.035 0.0093 3.75 1.8e-4 ***

pyridoxine 7.9e-4 0.0094 0.084 0.93
thiotepa -0.027 0.0077 -3.45 5.6e-4 ***
number 0.014 0.0029 4.84 1.3e-6 ***
size -0.0018 0.0021 -0.86 0.34

SEI(con) (Intercept) 0.021 0.0084 2.45 0.014 *
pyridoxine -0.0065 0.0084 -0.77 0.44
thiotepa -0.017 0.0072 -2.31 0.021 *
number 0.010 0.0027 3.62 3.0e-4 ***
size -9.6e-5 0.0018 -0.05 0.96

SEI(exp) (Intercept) 0.019 0.0081 2.4 0.016 *
pyridoxine -0.002 0.0085 -0.24 0.81
thiotepa -0.014 0.0069 -1.98 0.047 *
number 0.0088 0.0026 3.4 8.0e-4 ***
size -0.3e-4 0.0017 -0.18 0.86

SEI(nonpar) (Intercept) 0.0190 0.0083 2.29 0.022 *
pyridoxine -0.0070 0.0082 -0.85 0.39
thiotepa -0.0157 0.0070 -2.24 0.025 *
number 0.0096 0.0027 3.56 4.0e-4 ***
size 0.0001 0.0018 0.055 0.96

models are less likely to produce falsely significant results. The minimum minus

log likelihood value of the Poisson regression model is 732.43, and those of the

self-exciting model with constant and exponential excitation functions are 713.08

and 710.33 respectively. The change of the log-likelihood value from the model

without self-excitation term to the models with self-excitation term is highly

significant by the χ2-test, which supports the existence of the self-excitation effect

among bladder tumor occurrences. The change of the log-likelihood from the

self-excitation model with constant excitation function to that with exponential

excitation function at the cost of one extra parameter is also significant with a

P-value of 0.019 by the χ2-test, suggesting that the excitation effect decays over

time.

Figure 5 shows the ML and the MBS estimates of the excitation function g

in the self-exciting intensity models with g assumed to be an exponential decay

function and an unspecified decay function, respectively. Point-wise confidence

bands based on the MBS estimator were obtained using a parametric bootstrap

method. In the bootstrap, 200 bootstrap samples were generated from the self-
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exciting process regression model with the regression coefficients and the excita-

tion function fixed at the MBS estimates obtained earlier, and the covariates and

censoring times the same as those in the original data set. The MBS estimator

with m selected by the AIC and d = 4 was then applied on each bootstrap sample

to obtain the bootstrap versions of the MBS estimator of g. The point-wise 2.5th

and 97.5th percentiles were taken as the lower and upper limits of the point-wise

confidence bands for g. We also obtained the bootstrap standard errors for the

estimators of the regression coefficients, which were very close to the standard

errors reported in Table 3; they were omitted to save space. Figure 5 reveals

that the MBS estimator-based confidence band contains the exponential form

parametric estimate of g, suggesting the decay of the excitation effect could be

modelled by an exponential function.

To assess the sensitivity of the analysis to the choice of the number of knots

in the monotone B-spline, we inspected the estimates of the regression coefficients

with the number m of interior knot intervals varying in the range 1 to 20; they

were nearly identical to the results with m = 1. In particular, the treatment

effect of thiotepa remained significant for all these m values. This agrees with

the numerical evidence of the robustness of the method observed in our simulation

studies.

To assess the goodness of fit of the considered models to the data, we also

calculated the point process residuals r̂ij = Λ̂i(tij)− Λ̂i(ti,j−1), j = 1, . . . , ni +1,

i = 1, . . . , n, where Λ̂i(t) =
∫ t
0 λ̂i(s) d s =

∫ t
0{X

⊤
i β̂ +

∫ s
0 ĝ(s − u) dNi(u)}d s,

ti,0 ≡ 0, ti,ni+1 ≡ Ci, and ni ≡ Ni(Ci). If a self-exciting intensity model fits

the data well, then the corresponding residuals should be close to a sample of

independently right-censored unit rate exponential variables, with the r̂i,ni+1

corresponding to the censored observations. One can then graphically check the

goodness of fit by comparing the Nelson-Aalen cumulative hazard estimator of

the residual with that of the unit rate exponential variable, H(t) = t (Ander-

sen et al. (1993, p. 182)). The Nelson-Aalen residual plots of the four models

considered are shown in Figure 6. It shows that the Nelson-Aalen plot of the

semiparametric model is the closest to the diagonal line, while those of the Pois-

son regression model and of the parametric self-exciting process model with a

constant excitation function respective deviate from the diagonal rather obvi-

ously. Meanwhile, that of the parametric self-exciting process model with an

exponential excitation function is close to the diagonal line and fairly similar

to that of the semiparametric model. This is further evidence that a parametric

model with parametric excitation function produces an acceptable fit to the blad-

der cancer data, suggesting that the excitation effect of the occurrence (and the

ensuing removal) of a bladder tumor on future tumor occurrence decays roughly

exponentially.
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Figure 6. Nelson-Aalen plots of the residuals of the four models — Poisson
regression model, the parametric self-exciting intensity point process models
with constant excitation function (SEPP-Con), and with exponential ex-
citation function (SEPP-Exp), and the semiparmetric self-exciting process
model with a montone excitation function estimated using the MBS method
(SEPP-MBS).

6. Discussion

In this paper we considered a semi-parametric extension of the Hawkes self-
exciting point process with the excitation function only assumed to be decreasing.
An estimator for the model based on monotone B-splines was proposed, and
its large sample properties and asymptotic optimality were established. The
numerical performance of the estimator was shown to be satisfactory on some
simulated data and on a data set arising from bladder cancer studies.

Because of the explicit modeling of the serial correlation among the recur-
rence times of the events, the proposed model can alleviate the risk of false
positives associated with Poisson regression. The B-spline-based estimator for
the nonparametric excitation function can help the data analyst to find a suitable
parametric form for the excitation function.

There are interesting questions about the model that remain. For instance,
a formal nonparametric statistical test for the existence of the self-excitation
effect is clearly a question of practical and theoretical interest. A test of specific
parametric forms for the excitation function against nonparametric alternatives
would also be desirable.

Our choice of a linear function of covariates for the baseline intensity model
is motivated more by parsimony and interpretability than by flexibility of the
model. If more delicate features of the data, such as time-varying covariate ef-
fects, are suspected, then our model can be extended to allow for time-varying
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regression coefficients, as considered by Zucker and Karr (1990) and Murphy and

Sen (1991), among many others, in the context of the Cox proportional hazards

model. Another approach to model the time-varying effect is to use the transfor-

mation model, where a transformation such as the Box-Cox transformation of the

intensity process, rather than the intensity itself, is modelled by the right-hand

side of (2.1). This approach has been adopted by Zeng and Lin (2006) and Zeng

and Lin (2007) in the context of the Cox proportional intensities model. Infer-

ences for the extensions of our model along these directions are also interesting

questions.
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