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Supplementary Material

We present here the proofs of Theorem 1 and 2 of the main document. Section S1
establishes the notation that will be used throughout the document. Section S2 pro-
vides a concentration inequality on random matrices that will be used in the rest of the
document. We develop the proofs of Theorems 1 and 2 in Section S3 and S4, respectively.

S1 Notation and reminder

Let us first recall some standard notations on matricial norms. For any square matrix
M, its spectral radius p(M) will refer to the largest absolute value of the elements of its
spectrum:

M) = .
p(M) aelgg@)\al

Moreover, || M|, is the Euclidean endomorphism norm and is given by:
Il := /p(* M M),

where M is the transpose of M. Note that for self-adjoint matrices, | M|, = p(M). At
last, the Frobenius norm of M is given by:

M| := (Tr(*MM))"?,

where Tr(M) is the trace of the matrix M.

S2 Hoeffding-type Inequality for random bounded ma-
trices

For the sake of completeness, we refer to Theorem 1.3 of Tropp (2012). =< denotes the
semi-definite order on self-adjoint matrices, which is defined for all self-adjoint matrices
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My and M> of size q as:
M, < M, iff Vu € R?, tuMlu < tUMQU.

Theorem 1 (Hoeffding’s matrix concentration inequality: bounded case). Consider a
finite sequence (Xi)1<k<n of independent random self-adjoint matrices with dimension
d, and let (Ar)1<k<n be a deterministic sequence of self-adjoint matrices. Assume that:

Vi<k<n EXpz=0 and X} =<A; as.
Then, for all t > 0:

P (Amaz (Z ch) > t> < de /37 where  o® =p (Z Ai) .
k=1

k=1

In our work, a more precise concentration inequality such as the Bernstein one (see
Theorem 6.1 of Tropp (2012)) is useless since we do not consider any asymptotic on L
(the number of basis functions for each variables X;). Such an asymptotic setting is far
beyond the scope of this paper and we leave this problem open for a future study.

S3 Proof of Theorem 1

Consider any subset v = (u1,...,ut) € S} with ¢ > 1 and note that if u = {i}, i.e. t =1,
the Initialization of Algorithm 1 is such that:

égiﬂh = ¢;a v li S [1 . LL

[t =] =0

Therefore, we obviously have that sup je[1.]
l;€[1:L]

Now, for t = 2, let u = {4, j}, with i # j € [1: p], and l;; = (li, ;) € [1 L)?, and
recall that ¢Z,- is defined as:

L

& (wi,25) = 0} (1) x ¢ (= +ZAM”¢k w) 4+ Y Ny, $h(25) + Cyy,s

k=1

where (C,;, (A4, e (/\i,lij)k) are given as the solutions of:

(¢1),-61) =0, Vhke[l:L]

<lu ¢l) =0, VYkell:L] (S3.1)
(11,:1) = 0.

When removing Cj,;, the resolution of (S3.1) leads to the resolution of a linear
system of the type: N
A €\l = plis (S3.2)
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with Alij =t ()\’i7lij o )\iL,lij )\Jll,lij o Ai,[ij) and

(], x ¢] %)

(01,01) - (9, 41) TR
. <¢)lL x gj7¢L>

iy B¥ B .
tBJ B <¢zi>< g]7¢{>

(@1, 00) - (oL, 00)

(@}, x ¢1.,67)

Consider now ¢;’_
,

n, that is decomposed on the dictionary as follows:
G-

np . . L ~. . L ~ . ~
;z:i;’rh (‘Ii’ ‘IJ) = ¢;i (Iz) X (bij (SC]) + Zk:l )\}f’lij’nl ¢;€ (Iz) + Zk:l Aivlijvnl ¢‘Z’ (:CJ) + CZ;,

where (C’l"i;, (5\}”””1) ks (S\i L n, )k) are given as solutions of the following random equal-
ities:

(O, n Gidmn =0, Yk €L L]
<Azzj,nl7¢?9>"1 =0, Vke[l:1] (53.3)
< ;zj»n171>”1 =0.

When removing C’Z;, the resolution of (S3.3) can also lead to the resolution of a
linear system of the type:

AP = Dl ($3.4)

ny
~lis A L 2~ a AL Al

where A’VHJ =" ()\7i7lij7n1 e )\zll7lij7n1)\{,lij-,n1 o )\]L,lij,’fn) and A:ljl (Tesp. D"f) are ob-
tained from A% (resp. DY) by substituting the theoretical inner product with its
empirical version.

Remark 1. Remark that each A% depends on (i,j) as well as Alii and DY depend on
(i,7) and l;j, but we will deliberately omit these indexes in the sequel for the sake of con-
venience (when no confusion is possible). For example, when a couple (i,7) is considered,
we will frequently use the notation A, X, D,C, AL, Xy, instead of Aid Nl Dlij,C’Lij,)\};’lij
and )‘i,Lij' This will be also the case for the estimators An“}\nl,ﬁm,énl,%’m and
3

k,ni”

The following useful lemma then compares the two matrices A,,, and A.

Lemma 1. Under Assumption (Hp), and for any & given by (HZ), we have:

= Op(n_g/Q).

2

sup ‘H/lnl —A

1<4,j<pn
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= p(flnl —A), since Anl —

2

Proof. First, consider a couple (, ) and note that

’Am —A

)

A, — A

2
we use the result of Tropp (2012) (see Theorem 1), which gives concentration inequalities
for the largest eigenvalue of self-adjoint matrices (see Section 6.2).

A is self-adjoint. To obtain a concentration inequality on the matricial norm ‘

Remark that A, — A can be written as follows:

A | o o
Anl — A= nil ;GT,ij3 @T‘,ij = <t®,zr'7 @g‘]) y Vr € [1 . nl],

where, for all k,m € [1: L], (©2%2); , = 21 (7)) ﬁfl(x;) — IE[gbZl (X:,)9%2(X;,)] with
i1,12 € {i,j}. Since the observations (x"),=1.... n, are independent, ©1 ;;,---,0,, ;; is
a sequence of independent, random, centered, and self-adjoint matrices. Moreover, for
all u € R*all r € [1:nyq]:

2 2
w7 yu = Orjull; < llull; 10017

where

2
10313 < (2L)? (maxy mepiz) (Oris)k,ml)

2

(2L)? maxk,me[{l:L% |6 (a7 )iz (a7) — E[o)! (Xil)éi’f%(Xiz)])
i1,i2€{1,5

< 16L°M* by (H}).

IA

We then deduce that each element of the sum satisfies X7,; < 16L*M 41,2, where 12
designates the identity matrix of size L2.

Applying the Hoeffding-type Inequality stated as Theorem 1.3 of Tropp (2012) to

our sequence 01 i, ,Op, i, with 02 = 16n1 L2M*, we obtain that:
ni
1 _(mn?
V>0 Plp|—) 0n;|>t| <2Le w2,
1 r=1 ’

Now considering the whole set of estimators A,,,, we obtain:

1 & (n11)2
Yt >0 P( sup p (Zem—j) > t) < 2Lple” sot
n1 —

1<4,j<pn =1
We take t = yn~¢/2, where v > 0, and 0 < £ < 1 is given in (HZ). Then, the following
inequality holds:
. nyl=éy2
P < sup p (Anl - A) > 7n5/2> < 2Lpie_1238L21314. (53.5)
1<4,j<pn
Since n; = n/2, and p, = (?r (exp(Cn'~¢%)) by Assumption (H2), the right-hand side
n—-—+0o0o

of the previous inequality becomes arbitrarily small for n sufficiently large and v > 0
large enough. The end of the proof follows using Inequality (S3.5). O
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Similarly, we can show that the estimated quantity ﬁnl is not far from the theoret-
ical D, with high probability.

Lemma 2. Under Assumptions (Hy), and for any & given by (H2), one has
= Op(nig/Q).

2

sup HDn1 - D
4,5,Lij

Proof. First consider one couple (i, 7). We aim to apply another concentration inequality
on HDnl - D

. Remark that HDm — DH can be written as:

2 2

[o.. -

L i V) i i i 3 2
) = (Ek—1 (<¢zl X ¢lj7¢k>n1 - <¢ll X ¢lja¢k>> +

, S , 2\ /2
Sy ({64 x o1 00 — o1, x o 0D)”)
Yohon | SrL O ()] ()i (xi) — (81, % 0, di) | +
Sy | S 6 (@) (a5 (") — (@, < 6], o).

Now, Bernstein’s Inequality (see Birgé and Massart (1998) for instance) implies that, for
all v > 0,

P (n§/ | D,

IN

> )
2

P (0§ S0iy |35 S0 o @) (@)aia)) - (0], x o], 6})| > 7/2)
i )

<
+ (“ﬁzlmzﬂ,m)(xwmn%%x%¢@>W2
<

,Yan £
4L exp 8—M6+M3’y/6n 7 |

which gives:

2, 1-¢
N, —£/2 2,2 1 7
P <ls]ulp] HDn1 DH2 > yn) ) < 4L x L*p; exp ( S IE L M37/6n1—5/2)' (53.6)

Now, since n; = n/2, Assumption (H?) implies that the right-hand side of Inequality
(S3.6) can also become arbitrarily small for n sufficiently large, which concludes the
proof. O

The next lemma then compares the estimated 5\”1 with A.

Lemma 3. Under Assumptions (Hy) with ¥ < £/2, we have:
(n?=¢/2).

sup ‘

4,5, ij

ny

Proof. Fix any couple (i,7), A and A, satisfy Equations (S3.2) and (S3.4). Hence,

AAp, —A) —AX,, = -D=D, —D—D,,

(Dnl - D) Anlj"fh

~ A(j‘nl - A) (Dn1 - ) (A A"l)A n1

N An, — A = A (A- A, |+ A YD, — D),
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since the matrix A is positive definite. It follows that:
Ay — A=A A=A, A =N + AT A - A, )X+ A™Y(D,, — D),

and

(1 AN A Am)) (An, —A) = A" YA = A, )X+ A~Y(D,,, — D), (93.7)

Remark that H’flm — Al = Op(n=¢/?) by Lemma 1. Hence, with a high probability

2
and for n large enough I — A~1(A — A,,) is invertible, and Inequality (S3.7) can be
rewritten as:

Any — A= (1 — AN A - /1n1))71 (A—l(A — Ap A+ A YDy, — D)) .

We then deduce that:

(EYREDY = (I—A—l(A_Am))’1
x ([|a-ta - An] ] 1AL + | A2 (Dn, - D) )
—1 (S3.8)
< |l(1- a7 4y))
< (At 4 = Ao | 1AL+ 40, | = D)

A uniform bound for |||A*1|||2 (over all the couples (7,j)) can be easily obtained
since A (and obviously A~!) is Hermitian.

a0\ —1
< o ((4) )

Simple algebra then yields:

() ) () ) = T conta

k=1:2L

where Com(A%) is the cofactor matrix associated to A%. Now, recall the classical
inequality (that can be found in Bullen (1998)): for any symetric definite positive matrix
squared S of size @ X @:

Q
det(S) < [ ISeel.
=1

This last inequality applied to the determinant involved in C’om(Ai/j ,)k,k associated with
(H) implies:
Vk e [1:2L] ‘com(Ai'ﬂ")k,k] < (ML



L,-BOOSTING ON FANOVA FOR DEPENDENT INPUTS

We then deduce from (Hf)’ﬂ) that a constant C' > 0 exists such that:

max 2LM - vz
(4,9)E[L:pn]? Ger(Ais’
ZC’*lLM‘LL*Qn% .t(A : (83.9)

A=l <

Similarly, if we denote A,, = A — Anl, we have:

p((1-a71a,,)7")

1
= max _
a€Sp(A=1A,,) |1 — af

-1

H’ (1 _ATN(A- Am))

2

using the fact that A— A, is self-adjoint. We have seen that p(A~') < 201 LMA4E-2p?
and Lemma 1 yields p (A,,) = Op(n~¢/?). As a consequence, we have

< p(A Y)p(A,,) = Op(n?~¢/?).
aespﬁga_’i%)la\_p( )p (An,y) p(n )

Finally, it should be observed that:

1 1—[1—a
max — 1= max —_—
aeSp(A-1A,,) |1 — af a€Sp(A-14,,) |1 —af

We know that for n large enough, each absolute value of a € Sp(A~'A,,) becomes
smaller than 1/2 with a probability tending to one. Hence, with probability tending to
one, we have:

1—11-q
1= af

|ov| -1
m < 29(AIA,).
- ozESp(AaBiAnl) 1—a~ i )

max
a€Sp(A~1A,)

Since p(A™'A,,,) = Op(n?~¢/?), we deduce that:

“ —1
(1 AN A Am)) <14 2LMA20710p(n?=4/2). (93.10)

sup
4,5,bij

2

To conclude the proof, we can now apply the same argument as the one used in
Lemmas 1 and 2 with Bernstein’s Inequality, using Equations (S3.9), (S3.10) and the
assumption on the uniform bound [[A]|, < A over all the couples (i,j) for the norm

o :

2
The last lemma finally compares the constant C™ with C.
Lemma 4. Under Assumptions (Hy), we have:

sup ‘C’”l - C” = Op(n~¢?).

,5,Lij

S7
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Proof. For any couple (4, 5), remark that constants C™ and C satisfy:

—(¢}, x ¢..1) and C™ = —(¢}, % ¢ 1),
If we designate
Aijiy = Zasl 2] (") — B(¢f, (X:)e] (X)),

we can again apply Bernstein’s Inequality on (¢j (xi’”)d){j (;7))r=1,-. m,. From (HE),
these independent random variables are bounded by M? and:

P sup A ;| > m P < Z P (|Ai,j,lij > 7”1_5/2)
bibig 4,5,bij
2,1-¢
< Z 2exp T
ey 2M4—|—M2’y/3n
<

2, 1-¢
2L2pnexp L T .
2M4+M2w/3n

Under Assumption (HZ), the right-hand side of this inequality can be arbitrarly
small for n large enough, which ends the proof. O

To finish the proof of Theorem 1, remark that:

l“,m _¢l” = sz OV N)%"‘Zk e k.ni )‘i)ﬁﬁi"‘(énl_c)u
L
< DG — X ¢k+Z b — Moh[ +|Cm = .
k=1
I
Moreover,
9 . N\ 2
" = f(Zk Ly = A+ 2k (M, Ai)dﬂc) Px..x; (i, 75)dxidz;
L 2 L 2
= /(Z( Z,nl—ki)%) Pxi(xz‘)dfﬂﬂr/(zo\im —Ai)%) px;(zj)dz;
k=1 k=1
11 12
L L
/(Z fonn = Ak) ¢k> (Z fny — 1>pxi,xj($i’33j)d$id9@j-
1 k=1

I3
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Using the inequality 2ab < a? + b2, we deduce that Iy < I} + I, and:

L L \i Y i\ Al i
I = kazlAZmzl(Ak,nl - /\k)()‘m,nl - Am)gbk(xl)gbm(wl)pxl (ml)d‘rl
= Zle()\};’nl — )2 by orthonormality.

The same equality is satisfied for Iy: Io = Zle(j\i = )\i)Q.

Consequently, we obtain:

7ij i j L (3 i L (33 j Ang
|8, =08 = /2 [Sha Gl = 207 + Zhea M, = M2] + |Cm = €|
N O ')
2
(S3.11)
The end of the proof follows with Lemmas 3 and 4.
|

S4 Proof of Theorem 2

We recall first that (,) designates the theoretical inner product based on the law Px (and
Il is the derived Hilbertian norm). A careful inspection of the Gram-Schmidt procedure
used to build the HOFD shows that:

M* = sgp o, (Xu)|| . < oo,

oo

provided that (H}) holds.

We can now observe that the EHOFD is obtained through the first sample @7 which
determines the first empirical inner product (, ),,, although the L2-boosting depends on
the second sample Os. Indeed, O determines the second empirical inner product (, )y,,.
Hence, (,),, uses observations which are independent to the ones used to build the
HOFD.

 We begin this section with a lemma that establishes that the estimated functions
1, 1, (which result in the EHOFD) are bounded.

Lemma 5. Under Assumption (Hy,), define

éﬁunl (XU)

N, :=sup ‘ .
Uyl o0
We then have:
Np, — M* = Op(n’=%/?).
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Proof. Using the decomposition of éfunl on the dictionary, Assumption (HZ) and Cauchy-
Schwarz Inequality, a fixed constant C' > 0 exists such that for all u € S, I,:

Ve €RY |G, ., (@) - 01, (@) < CMVEY|

Aoy = A+ | -,

The conclusion then follows using Lemmas 3 and 4. O

We now present a key lemma that compares the elements (¢}’ )1, . with their esti-
mated version (‘Z)?u,nl)lu,u-

Lemma 6. Assume that (Hyp) holds with £ € (0,1), that the noise € satisfies (H o) with
q > 4/¢ and that (Hs ) is fullfilled. Then, the following inequalities hold:

(i)
SUD (12 ) — {6 00,)] = Gt = Op(n” /%)
(it)
Slllpl |<¢;Lu»n1’¢;}mn1>n2 - <¢?u7 ¢7v>| = Cn,Q - Op(nﬂ_g/Q)
(iii)
sup, (e, D1 1y hna| = Cnyg = Op(n™4/?)
(iv)
Sup |(f, &t dns — (Fr 01 | = 18°] 1 Op(n=8/2)

Uylqy
In the sequel, we will designate G, := max;e[1:31{¢n,i}-

Proof. Assertion (i) Let u,v € S, I, € [1 : L]I*l and 1,, € [1 : L]*|. We then have

(B s O i) — (D1, BY)

< Bty = BB ) — (O 0F, = B )
[ 1 e e A T s
188, = 0| (|98, 0 = 01|+ 1) + |08, 00 — 2,

and the conclusion holds applying Theorem 1.

IA

IN

Assertion (ii) We break down the term into two parts:

< ‘ <¢?u,n1 ) (b;}.,,,nl >n2 - <¢?u,n1 ) ¢;}U,n1>
R ) I
+ ’<¢ﬁ“n1 ) (b;}v,n1> - <¢?u ’ ¢;}v>

11

<¢luu,n1 ’ ¢;}v,n1>’ﬂ2 - <¢?u7 ;)1,>

)
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Assertion (¢) implies that:

sup |II| = Op(n?=/2).

RN S9N 9

To control sup |I], we apply Bernstein’s inequality to the family of independent ran-
U,V by sl

dom variables <q§f m(xi)g{)f nl(xf;)) and we denote:
wr v s=1...no

1 - v s n n
Aum,lqu = ‘ 77,72 Z (Z)?u,nl (XZ) ;U,nl (Xv> - E((ﬁﬁ“nl (Xu)(b;}v,nl (X’U))’ .
s=1

Bernstein’s inequality then implies that:

P ( SUp Ayviyly > 7n2_5/2> < P ( SUp Ay iy, > 'ynz_g/Q&Nm < M*+ 1)

U,V b, by TN P 29

+P < SUp Ay iy ly > 'ynQ_E/z&Nn1 > M* + 1)

Uy, Loy Loy
1 ’yzngl_f
< 64L*p; —=
= P &P ( 2 (M= + 1) + (M + 1)%7/3n;¢72)
+P (Np, > M* +1)

Lemma 5 and Assumption (H2) yields (44).

Assertion (7ii) The proof follows the roadmap of (ii) of Lemma 1 of Biihlmann
(2006). We define the truncated variable ¢, for all s € [1 : ng):

R if |ef| < K,
E\ sg(ef)K, if g5 > K,

where sg(e) is the sign of . Then, for v > 0, we have:

$

<¢ﬁ“n1 ) 5>n2

IN

P (ng/zsup

Uylay

2 A A
P (ng/ sup ‘<¢ﬁ,,n17€t>n2 - <¢?u,n1’5t>

Uylay
> 7/3)

> 7/3)

> 7/3)

+P ng/qup ‘<éﬁ“n1’€ - 5t>n2

Uylay

+P n§/2sup ’<¢37mm,gt>

Uslay

= I+IT+111
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Term II: We can bound I using the following simple inclusion:

2 o o
{"g/ sup ‘<¢?u,n175t>n2 - <¢?u,n175t>

Uylqy

> 7/3} C {sexists such thate® —ej # 0}

= {sexists such that |e®| > K,,}

Hence,

II P(some |e°] > K,,)

naP(le| > K,) <no K 9E(|e|)) = O (n!79/4),

n—-+oo

IN A

where ny = n/2 with the choice K, := né/*, since ¢ > 4/¢ by Assumption of the Lemma.
Hence, I1 can become arbitrarily small.

Term I: Applying Bernstein’s Inequality again to the family of independent random
variables (¢ , (%7)€f)s=1,.. n, and considering the two events {N,, > M* + 1} and
{N,, < M* + 1}, we have:

1 (2/9)na' ¢
I1<2Lp, —= P(N,, M*+1),
= P P ( 2 (M*+1)% 02+ (M* 4+ 1)K,,y/9Ing—¢/2 + PNy > +b

where 02 := E(|e|*). We can then make the right-hand side of the previous inequality
arbitrarily small owing to (HZ) with K, = n¢/2,

Term I11: by assumption, E(¢ (X,)e) =0. We then have:

r < p (ngmih}p E[(¢f. ., — o1 (Xu)ed]| > v/6> +P (né/Qigp Elgy, (Xu)(e —e0)]] > 7/6>
= IIL + H’I;, N
with,
1L = P (0§ s B, ., — 6f,)(X0)]|[E(=0)] > /6
< P (0§ sup [EIG, ., — o) (Xu)]| IE)] > 7/6

Uyla

IN

11{ng/2 sulp|E[<<£ru,n;¢ru>(xu>1 [E(e4)[>v/6}
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Moreover, we have:

E(s,)| = ’flIISKndeE(x)+f‘$|>Knsg(x)KndPs(x)‘:

fl:p\>K" (sg(z)K,, — x)dP.(x)

< [k, (K + |z)dP(2)

< KnP.(le| > Ky) + [ |#| 13>k, dP-(x)

< KE(lel') + E(e2)/2 K, *E(|e[')1/2 by the Tchebychev Inequality
< O(KY) + 0K %) = o(K;?)

(54.1)
since 0 < ¢ < 1 and t > 4/ > 4. With the choice K,, = né/4, we obtain:

¢;Lu,n1 - ¢?u

when o is the usual Landau notation of relative insignificance.

| Bl < nf/%o(Lo(n~2) = o(1),

Hence, I1I; = 0 for large enough n. For I1I, we have:

Tl < L2 sup g1, (%0 e—e0l|>v/6)°

and, by independance:
|El¢7, (Xu)(e —e0)]| = [E[or, (Xu)]| [E(s — &r)| < M* [E(e — &)

Equation (S4.1) then implies:

|E(e —e0)| = /l o (s9(2) Ky, — 2)dP.(z)| < o(K, %) = o(n=¢/?)

Thus, I11 is arbitrarily small for n and v large enough and (éi7) holds.

Assertion (iv) Note that:

SUD ({7, ., Jmy = (. D) | < 18°Lr50D [ (68,08, b = (00,08}

) ULy

Now, (Hs o) and Bernstein’s Inequality imply:

P <Sup ‘<¢;)1, ) qa?u,n1>n2 - <¢;}v7 é?u,n1>

Uylq,
vingte
(M* + 1)4 + (M* + 1)2/3ny 672 )

> 'yn2_5/2> < P(Np, > M*+1)

1
+2Lp,, exp (—2

which implies with Assumption (H3) that:

= Op(n_é/Q).

D (61, iy Jnx = (01, O, )

Uylay
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The following lemma, similar to Lemma 2 of Biithlmann (2006), holds:

Lemma 7. Under Assumptions (Hy), (H. q) with ¢ > 4/€, a constant C > 0 exists
such that, on the set Q, = {w, |(n(w)] < 1/2}:

k
Supl (Y — Gl Bt e — (Ru(F). 610 < (5) 1+ O 1)

Uylay 2

Proof. Denote A, (k,u) = (Y —Gi(f), q@}‘u’mﬂz —(Ri(f), ¢ ). Assume first that & = 0:
suplAn(0,u)| = sup|(Y, Oty e — (01

< SUP{‘<J;; i’?u,nlﬂz - <JE, Qf;ztu,n1> +

Uylay

+|(F Bty — 1)

j

+Sup ’<€7 éfu,nl >’I’L2

Uylay

< (144|B8°|z1)¢ by (i) — (iv) of Lemma 6 and Theorem 1

Referring to the main document, we recall that:

Ge(f) = Greo1(f) + (Y = Gr-a(f), éﬁfk,nﬁm ' Affwnlv (54.2)
Ru(f) = f—-Gul(f)
= [ Gea(P) =Y~ Gt (DB s B (54:3)
and
Ro(f)=f 3 o X
{ BlF) = Rucr () = v Bica (P08 000% . (34.4)
The recursive relations (S4.2) and (S4.4) leads to, for any k > 0:
An(kyu) = (Y = Gror(f) =Y = Gt () 8% = B1% s O n I
—(Ry—1(f) = v(Rp—1(f), ¢zu m>¢luk oo Ol
S An(k - ]-7 ’U,)
(1Y = Gaaa (DB — Baca (D642 )) (G5 B
1
oy (Rea (), 815 ) (01 s 81 = (12 s Bl i)

I1I
+v <Rk*1('f)’¢;?jkﬂl1 - ;L:k>< lu n1a¢l >

117
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On the one hand, using assertion (i7) of Lemma 6, and the Cauchy-Schwarz inequality
(with ||¢} || = 1), we can deduce that:

Sgplfl < Sgp|<¢1u o 8y s s [SUD A (F — 1,u)]
< (supl{ey) 0,0 + Cn)suplAn(k — 1, u)l
< (14 C)sup|ldn(k —1,u)|.

Uslay

Now consider now the phantom residual on the basis of its recursive relationship. We

-~ 12 ~ _ 12 ~ N - _ 12
can show that: || Ru()|" = |Re-r(D]| — 22 = N (D).6i2,,0% < |[Bea ()]

luk,nl

and we deduce

- 2 _

|2 <1717 (34.5)
Then,

swplir] < ([ R (P| 012, || supl(@i, s 08 = (G, 0o
< ||f||sup| lu n17¢l > < lu n17¢l n1>n2|

where

R R e T S [N O (N S 7
o — g L)l

Using assertion (i¢) from Lemma 6 and Theorem 1 again, we obtain the following bound
for II:

sup|[1| < 71 (¢ = Ol
< 2.7.
Finally, Theorem 1 gives:
iljgujl‘ < SupHRk 1( uk,m_qb?fk lukvnl HQSL H
< |Ifll -

Our bounds on I, IT and II1, and v < 1 on the set ,, = {(, < 1/2} yields that

sup|An (k,u)| < sup|d,(k—1,u)|+ 1+ (n)sup|A (k—1,u)| + 3¢, Hf”

Uyl Uyl Uyl

5 _
< 551;p|An(k‘ — L)+ 3G || f]|-
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A simple induction indicates that:

5 k B k—1 5 4
sup|A, (k,u)| < <2> s%p|An(0,u)| +3Cn HfH Z (2)
CILEN =0

Uylay
—_———
<(1+4(18%I 1 )¢n

5 k e} 5 —/L
0
< <2> G (1 + 118 s <4+6Z (2) )) :
r=1
which ends the proof with C' = 14. O

We then aim at applying Theorem 2.1 from Champion et al. (2013) to the phantom
residuals (Ry(f))x. Using the notation of Champion et al. (2013), this will be possible if
we can show that the phantom residuals follow a theoretical boosting with a shrinkage
parameter v € [0, 1]. Thanks to Lemma 7 and by definiton of ész,nl’ we have:

(Y = Gre1(f), 012y )mal = sup|(Y = Gioa(f), B ) sl

Uylqy
. B 5\ k1
> sup {|<Rk1<f>,¢;;>| -c(3) Cn||ﬁ0|L1} . (510)
Applying again Lemma 7 on the set €2,,, we obtain:
. B o 5\ k1
(st 2 1Y = s, el =€ (3) Pl
. ) 5\ k1
> swlRa (Dot -20 (3) Gl 611

Now consider the set:

k—1
Q{w Wb <k, supl(Rua (9] > 40 (3) <n||ﬁ°||L1}.

U,lay

We deduce from Equation (S4.7) the following inequality on €, N Q,,:

[(Fea () 642 )] > gsupl(Ry (7). 6,1 (1)

uvlu

Consequently, on Q, N €, the family (R (f))x satisfies a theoretical boosting, given by
Algorithm 1 of Champion et al. (2013), with constant v = 1/2 and we have:

|rn)]| < (1 + - w)k)_”z“) . (81.9)
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Now consider the complementary set:

k—1
ac ={w, U< sup|<Rk_1<f>,¢fu>|s40(5) Cnllﬂ"lu}-

Uslay

It should be noted that:

L2 o L .
|2 = B =y S R (D81 068 )
< 18%0rsup |(Re(F). 6, ) S R ) sup [{Re(7), 0,1, )| -
Moreover,
Sup [(Ru(1), )| < sup |(Ru(F), 01, | +sup [(Re(), 0, 0, — o)
< Sup‘(]:zk(f),gbfu) +2||8%)11¢s by Theorem 1 and (S4.5).
U,lay

We therefore have:

2 Lt SR o
|2 < (moum+721<Rj<f>,¢;ijj,m>) <Sgp’<Rk(f),¢z“u> +z|ﬁo||L1<n>
j=0 lu
< 118°0z (1 +29k) <sgp\<ék<‘>,¢zg> +2||50|L1Cn>
5\" -
< 4C|18%3:¢n (1 + 27k) (2) on QY. (S4.10)

Finally, using Equations (S4.9) and (S4.10), we have on the set (€, N Q,) UQS:

2—y

HR’“@HQ <c” <1 + 37(2 - 7)1@) 4O B2 G (1 + 29K) (;)k (S4.11)

To conclude the first part of the proof, it should be noted that:

P((anfzn)uﬁg)zp(gn) L

n—-+oo

On this set, Inequality (S4.11) holds almost surely, and for k, < clog(n) with

c< %, we obtain:
~ o P
HR,%(f)’ —L 0, (S4.12)
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Consider now Ay, := HRk(f) — Ry, (f)H for k > 1. By definitions reminded in (S4.3)-
(S4.4), we have:

Ay, At Y = Groi (), 0% dne — (R (), 3% )]

IN

luk,nl ’ luk,nl
< MY = G (DB e — (Rea(Ddf )l (S13)

TV B (P, B = g )

By Lemma 7, we then deduce the following inequality on €2,,:

k—1
5
mstian(3) QI G BInG. (5119

Since Ag = 0, we deduce recursively from Equation (S4.14) that, on €,,:

P
Ay, —— 0.
n—-+oo

Finally, since:

|77 = lGr.D = 7| < |7 = 7| + || 7. () = B (D + | B (D).

it remains to deal with the term H f- f H However, it should be noted that:

¢?u - ¢;Lu sma | ?

|7 - 7| < 18°1ss

and the proof follows using (Hs o) with o < /4 — /2 and Theorem 1. O
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