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Abstract: LASSO for variable selection in linear regression has been studied by

many authors. To achieve asymptotic selection consistency, it is well known that

the LASSO method requires a strong irrepresentable condition. Even adding a

thresholding step after LASSO is still too conservative, especially when the num-

ber of explanatory variables p is much larger than the number of observations

n. Another well-known method, the sure independence screening (SIS), applies

thresholding to an estimator of marginal covariate effect vector and, therefore, is

not selection consistent unless the zero components of the marginal covariate ef-

fect vector are asymptotically the same as the zero components of the regression

effect vector. Since the weakness of LASSO is caused by the fact that it utilizes

the covariate sample covariance matrix that is not well behaved when p is larger

than n, we propose a regularized LASSO (RLASSO) method for replacing the co-

variate sample covariance matrix in LASSO by a regularized estimator of covariate

covariance matrix and adding a thresholding step. Using a regularized estimator

of covariate covariance matrix, we can consistently estimate the regression effects

and, hence, our method also extends and improves the SIS method that estimates

marginal covariate effects. We establish selection consistency of RLASSO under

conditions that the regression effect vector is sparse and the covariate covariance

matrix or its inverse is sparse. Some simulation results for comparing variable se-

lection performances of RLASSO and various other methods are presented. A data

example is also provided.

Key words and phrases: High-dimensional data, LASSO, regularization, selection

consistency, sparsity, thresholding.

1. Introduction

In many statistical applications, one investigates the effect of a vector x of p

explanatory variables on a response variable y based on n independently observed

data {yi,xi, i = 1, . . . , n} following a linear model

yi = µ+ x′
iβ + σiεi, i = 1, . . . , n. (1.1)

Here yi is the ith observed response, xi is the p-dimensional observed explana-

tory variables associated with yi, xi’s are independent and identically distributed

(i.i.d.), β = (β1, . . . , βp)
′ is a p-dimensional vector of unknown parameters called
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regression effects, µ is an unknown parameter (intercept), σi’s are positive un-

known parameters, εi’s are i.i.d. unobserved random errors with mean 0 and

variance 1, xi’s and εi’s are independent, and A′ denotes the usual transpose of

a vector or matrix A. The theory of linear models is well established for tra-

ditional applications where the dimension p is fixed and the sample size n > p.

With modern technologies, however, in many biological, medical, social, and eco-

nomical studies, p is comparable with or much larger than n. The variable j,

the jth component of x, has no effect on the response if βj = 0. When the

number of variables p is large but many variables have no effect on the response,

which is often true in applications. The identification of the zero components

of β is usually made prior to statistical inference. Without loss of generality we

assume that the xi’s have mean 0 and variance 1 and are standardized so that∑n
i=1 xi = 0, and that the diagonal elements of S =

∑n
i=1 xix

′
i/n are equal to

1; this does not affect variable selection.

There is a rich literature on asymptotic theory for variable selection in the

case where n → ∞ and p is fixed, or p → ∞ at a rate much slower than n. For

variable selection when p > n with p = O(nl) for some l > 1 or O(en
ν
) for some

ν ∈ (0, 1) (ultra-high dimension), some excellent advances in asymptotic theory

have been made. See, for example, the review paper Fan and Lv (2010).

LetMβ = {j : βj ̸= 0} denote the index set for nonzero components of β and

let M̂β denote the set of indices of nonzero components of β selected by a variable

selection method using data. The selection method is selection-consistent if

P
(
M̂β = Mβ

)
→ 1, (1.2)

where the limit is taken as n → ∞ with p = pn that may also diverge to ∞ and

the probability is with respect to the randomness of data {yi,xi, i = 1, . . . , n}.
Selection-consistency is important, since it leads to oracle properties of estima-

tion and inference procedures (see, e.g., Fan and Lv (2008)). Some results on

selection-consistency have been established under conditions that do not gener-

ally hold. For example, the LASSO method (Tibshirani (1996)) requires a strong

irrepresentable condition (see (4.1) in Section 4) for its selection-consistency. The

sure independent screening (SIS) in Fan and Lv (2008) requires that

min
j∈Mβ

∣∣∣∣ ∑
k∈Mβ

βkρkj

∣∣∣∣ ≥ c0n
−κ (1.3)

for some constant c0 > 0 and 0 ≤ κ < 1/2, where ρkj is the correlation coefficient

between the jth and kth components of x; under some regularity conditions, the

SIS is screening consistent in the sense that P
(
Mβ ⊂ M̂β

)
→ 1. However, (1.3)
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can be questionable, see Model 4 in Section 5. The SIS is selection-consistent if,

in addition to (1.3),

max
j ̸∈Mβ

∣∣∣∣ ∑
k∈Mβ

βkρkj

∣∣∣∣ = o(n−κ) (1.4)

holds. Condition (1.4) is rarely satisfied in practice, since it imposes a strong

structure on the correlation coefficients ρkj . The SIS has a reputation of being

screening consistent only, not selection consistent.

The purpose of this paper is to derive a variable selection method that is

selection-consistent without requiring conditions (1.3) and (1.4), or the strong

irrepresentable condition. These conditions are replaced by a sparsity condition

on the covariance matrix Σ = E(x′x) (Bickel and Levina (2008) or Cai, Zhang,

and Zhou (2010)), or a sparsity condition on the inverse of Σ (Cai, Liu, and

Luo (2011)). The key idea is, since the LASSO utilizes a least squares minimiza-

tion involving the covariate sample covariance matrix, which is not well behaved

when p is larger than n, to replace the least squares component in the mini-

mization of LASSO by a regularized least squares component using results in

high-dimensional covariance matrix estimation (Bickel and Levina (2008), Cai,

Zhang, and Zhou (2010), Cai, Liu, and Luo (2011)). A thresholding step is added

to the resulting estimator to improve its variable selection performance.

The proposed procedure, the regularized LASSO (RLASSO), is introduced in

Section 2. Section 3 contains results on the selection-consistency of the proposed

method. A comparison of LASSO and RLASSO is given in Section 4. Section 5

provides some simulation results on the performance of the proposed method and

several other variable selection methods, and a data example is given. The last

section contains some discussions and recommendations. All proofs are given in

a separate web appendix.

2. The Methodology

We first introduce a simple procedure that is selection-consistent. The idea

is simple. If p is fixed, then we can select variables by thresholding the least

squares estimator of β,

β̂lse = (X ′X)−1X ′y = S−1X ′y

n
,

where y is the n-dimensional vector of yi’s, X is the n× p matrix whose ith row

is xi, and S = X ′X/n. But when p > n, S is singular and even if we use a

generalized inverse as its inverse, β̂lse does not have a good behavior because S is

not a good estimator of the covariate covariance matrix Σ = E(S). If Σ is sparse

in some sense, then we may estimate Σ by a regularized or sparse estimator Σ̂

that is L2-consistent in the sense that ∥Σ̂−Σ∥2 = op(1), where ∥A∥2 is the L2
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norm of a matrix A. Such an estimator can be obtained using results in high-

dimensional covariance matrix estimation (Bickel and Levina (2008); Cai and Liu

(2011)). Then we estimate β by

β̂slse = Σ̂−1X ′y

n
, (2.1)

and select those components of β̂slse whose absolute values are larger than a

threshold.

A proof of the method’s selection-consistency, under some conditions, is a

special case of the general results we establish in Theorems 1 and 2. The method

is computationally simple, if Σ̂ is obtained by thresholding elements of S. In

what follows we derive a general method for variable selection, and show that

it is selection-consistent and has better finite sample properties than the simple

method of thresholding β̂slse in (2.1).

Since Σβ = βM , the true β is a solution to

min
β

(
β′Σβ

2
− β′

Mβ

)
for any fixed βM andΣ, and the ordinary least squares estimator β̂lse is a solution

to

min
β

(
β′Sβ

2
− y′Xβ

n

)
. (2.2)

When p > n, the estimator β̂slse in (2.1) improves on the least squares estimator

by replacing S in (2.2) with an L2-consistent sparse estimator Σ̂.

The LASSO is a solution to

min
β

(
β′Sβ

2
− y′Xβ

n
+ λn∥β∥1

)
, (2.3)

where ∥β∥1 is the L1-norm of the vector β and λn ≥ 0 is a tuning parameter.

Using the same penalty idea, we consider regularizing the LASSO by replacing S

in (2.3) by an L2-consistent sparse estimator Σ̂. This leads to the minimization

problem

min
β

(
β′Σ̂β

2
− y′Xβ

n
+ λn∥β∥1

)
. (2.4)

In addition to the regularization step in the estimation of Σ and the L1

penalization, our proposed method thresholds the solution to (2.4). If β̃ is a

solution to (2.4), estimator of β is

β̂ =
(
β̃1I(|β̃1| > tn), . . . , β̃pI(|β̃p| > tn)

)′
, (2.5)
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where β̃j is the jth component of β̃, I(A) is the indicator function of the event

A, and tn is an appropriate threshold. Our method can be viewed as adding two

regularization steps to the LASSO, and it will be referred to as the regularized

LASSO (RLASSO).

If we choose λn = 0 in (2.4), then RLASSO reduces to thresholding β̂slse. If

we ignore the regularization step in the estimation of Σ, Σ̂ = S, then RLASSO is

thresholding the LASSO estimator as discussed in Meinshausen and Yu (2009);

and if the last step of thresholding is also ignored, then RLASSO is LASSO. If

we choose Σ̂ to be the p× p identity matrix, which can be viewed as a particular

type of regularization ignoring all correlations among components of xi, and if we

also choose λn = 0, then RLASSO is SIS. If we choose Σ̂ to be the inverse of the

graphical LASSO estimator of Σ−1, and if we ignore the last step of thresholding,

then RLASSO is the “Scout” method proposed by Witten and Tibshirani (2009).

In general, there are two ways to obtain regularized estimator of Σ, depend-

ing on whether Σ is sparse or its inverse Σ−1 is sparse. If Σ is sparse, we can

apply thresholding S as proposed by Bickel and Levina (2008), or the adaptive

thresholding method in Cai and Liu (2011). Both methods provide L2-consistent

estimators of Σ. Take σ̂ij to be the (i, j)th element of S. The adaptive thresh-

olding method estimates Σ by Σ̂ = (σ̂∗
ij)p×p, where σ̂

∗
ij is σ̂ij being thresholded at

δ
{
(log p/n2)

∑n
k=1[xkixkj − σ̂ij ]

2
}1/2

. We choose the tuning parameter (δ, λn, tn)

of this procedure by minimizing the Bayesian Information Criterion (BIC):

(δ̂, λ̂n, t̂n) = argmin
δ≥2,λn,tn

−2ℓ(β̂δ,λn,tn) + s log(n), (2.6)

where ℓ(β̂δ,λn,tn) is the log-likelihood based on β̂δ,λn,tn under a particular choice

of (δ, λn, tn), and s is the number of non-zero elements in β̂δ,λn,tn .

If Ω = Σ−1 is sparse, we can obtain a regularized estimator Ω̂ of Ω and

estimate Σ by Ω̂−1. For example, Friedman, Hastie, and Tibshirani (2008) pro-

posed the graphical LASSO estimator of Ω; Cai, Liu, and Luo (2011) proposed

the CLIME estimator of Ω and proved its consistency under the L1-norm and

the L2-norm.

In applications, one has to make a judgment on which of Σ and Ω is sparse

in order to apply the proposed RLASSO. We discuss this issue in Section ?? after

some theoretical and empirical results are presented.

3. Asymptotic Results

In this section we establish the selection-consistency of the RLASSO. For

asymptotic results when p → ∞ at a rate faster than n, intuitively we need

tail conditions on εi and xj , the jth component of x, a sparsity condition on
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the vector β, and a sparsity condition on the covariance matrix Σ or its inverse

Ω = Σ−1.

First, consider that Σ is sparse. To measure the sparsity of Σ, we use

rq = max
1≤i≤p

p∑
j=1

|ρij |q, (3.1)

where ρij is the (i, j)th element of Σ and 0 ≤ q < 1 is a constant not depending

on p or n. This measure was considered by Bickel and Levina (2008). When

q = 0, r0 is simply the maximum of the numbers of nonzero components of rows

of Σ. If rq → ∞ at a rate much slower than p (e.g. (C4) in Theorem 1), then Σ is

considered sparse. In this subsection, we estimateΣ by the adaptive thresholding

estimator in Cai and Liu (2011).

To measure the sparsity of β, we consider

sh =

p∑
j=1

|βj |h (3.2)

for some h ∈ [0, 1). In the special case that h = 0 in (3.2), s0 is the number of

non-zero components of β.

Let β̂M = X ′y/n. In the following, a quantity is said to be a constant if

it does not depend on n or p, but may depend on some unknown population

parameters. For two sequences an and bn, an ≍ bn means that an = O(bn) and

bn = O(an).

Lemma 1. Assume there exist positive constants m and M such that

(C1) max1≤j≤p E[exp(tx
2
j )] ≤ M and E[exp(tε2i )] ≤ M for all |t| ≤ m;

(C2) max1≤i≤n σi ≤ M < ∞ and ∥β∥∞ ≤ M < ∞.

Then there exist positive constants C1, C2, and C3 such that, for all 0 < t ≤ C3sh,

P
(
∥β̂M − βM∥∞ > t

)
≤ 2p2 exp

(
− C1nt

2

s2h

)
+ 4p exp(−C2nt

2).

Lemma 2. Assume (C1), (C2) and

(C3) log p ≍ nτ and minj,k Var(xjxk) ≥ m, where 0 < τ < 1/3 and m > 0 are

constants.

For any λn in (2.4) such that λnvp → 0, where vp = ∥Σ−1∥1, there exist positive

constants C4, C5, and C6 such that the solution to (2.4) satisfies

P
(
∥β̃ − β∥∞ > t

)
≤ 2p2 exp

(
− C4nt

2

(shvp)2

)
+ 4p exp

(
− C5nt

2

v2p

)
+ C6n

−1/2p−(δ−2)
(rqvp

t

)1/(1−q)
.
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The following result establishes the selection-consistency of the RLASSO. In
the rest of this section, M̂β denotes the index set of nonzero components of β̂
defined in (2.5).

Theorem 1. Assume (C1)−(C3) and

(C4) sh ≍ nα1, rq ≍ nα2, vp ≍ nα3, where α1, α2 and α3 are positive constants
satisfying α1 + α3 < (1− τ)/2 and α2 + α3 < (1− q)/2. If, in (2.4)−(2.5),
λn = M1(n

−1 log p) for some constant M1 > 0 and tn = M2n
−η for some

constant M2 > 0 with 0 < η < min{(1−τ)/2−α1−α3, (1−q)/2−α2−α3},
then there exists a positive constant C7 such that

1− P
(
Mβ,antn ⊂ M̂β ⊂ Mβ,tn/an

)
= O

[
exp

(
−C7(log n)

−2n1−2α1−2α3−2η
)

+(
1

p
)δ−2

(
(log n)(

1

n
)(1−q)/2−α2−α3−η

)1/(1−q)]
,

where Mβ,dn denotes the index set of components of β whose absolute values
are larger than dn and an − 1 ≍ (log n)−1. If h = 0 in (3.2) and we
additionally assume

(C5) lim infn→∞ nκminj∈Mβ
|βj | > 0 with κ < min{(1 − τ)/2 − α1 − α3, (1 −

q)/2 − α2 − α3}, and if tn = M2n
−η with κ < η < min{(1 − τ)/2 − α1 −

α3, (1− q)/2− α2 − α3}, then

P
(
M̂β ̸= Mβ

)
= O

[
exp

(
−C8n

1−2α1−2α3−2η
)
+ (

1

p
)δ−2(

1

n
)((1−q)/2−α2−α3−η)/(1−q)

]
.

Theorem 1 is more general than the selection-consistency defined by (1.2).
With probability tending to 1, the RLASSO eliminates all components of β
whose absolute values are no larger than tn/an, and retains all components of β
whose absolute values are no smaller than tnan. Since an − 1 ≍ (log n)−1, the
RLASSO asymptotically eliminates or retains variables according to whether the
components of β is smaller or larger than the threshold tn. Thus, if β is sparse in
the sense that s0 (sh in (3.2) with h = 0) diverges much slower than p, then the
RLASSO is selection-consistent in the sense of (1.2), provided that the minimum
of nonzero components of β does not decay too fast.

Condition (C2) holds in most applications. The bounded ∥β∥∞ condition
can be relaxed by ∥β∥1−h

∞ sh
√

n−1 log p → 0 at some rate. It is needed because
we estimate β through the estimation of βM and Σ.

Condition (C1) requires that the distributions of xj ’s and εi have exponential
tails. Asymptotic results can also be established when the distributions of xj ’s
and εi have polynomial tails.
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Lemma 3. Assume that there exist constants M > 0 and l > 1 such that

(C1 ′) max1≤j≤p Ex
4l
j ≤ M and Eε4li ≤ M .

If (C2) also holds, then there exist some positive constants C9 and C10 such that

P
(
∥β̂M − βM∥∞ > t

)
≤ C9p

2s2lh t
−2ln−l + C10pt

−2ln−l.

Lemma 4. Assume (C1 ′), (C2), and

(C3 ′) p ≍ nτ , where τ < min{l/2, l − 1}.

For any λn in (2.4) such that λnvp → 0, there exist positive constants C11, C12,

and C13 such that

P
(
∥β̃ − β∥∞ > t

)
≤ C11p

2s2lh v
2l
p t

−2ln−l + C12pv
2l
p t

−2ln−l

+C13

(
n−1/2p−(δ−2)

(rqvp
t

)1/(1−q)
+ n−(l−1−τ)/2

)
.

Theorem 2. Assume (C1′), (C2), (C3 ′), and (C4 ′) sh ≍ nα1, rq ≍ nα2, vp ≍
nα3 where α1, α2 and α3 are positive constants satisfying α1 + α3 < 1/2 − τ/l

and α2 + α3 < (1/2 + [δ − 2]τ)(1 − q). If λn = M3n
−1/2 for some M3 > 0,

tn = M4n
−η for some M4 > 0, and 0 < η < min{1/2− τ/l−α1 −α3, (1/2+ [δ−

2]τ)(1− q)− α2 − α3}, and an − 1 ≍ (log n)−1, then

1− P
(
Mβ,antn ⊂ M̂β ⊂ Mβ,tn/an

)
= O

{(
n−2l(1/2−τ/l−α1−α3−η) + n−{(1/2+[δ−2]τ)(1−q)−α2−α3−η}/(1−q)

)
(log n)2l

+n−(l−1−τ)/2
}
.

If h = 0 in (3.2), (C5) holds for some constant κ < min{1/2 − τ/l − α1 −
α3, (1/2 + [δ − 2]τ)(1 − q) − α2 − α3}, and if tn = M4n

−η with M4 > 0 and

κ < η < min{1/2− τ/l − α1 − α3, (1/2 + [δ − 2]τ)(1− q)− α2 − α3}, then

P
(
M̂β ̸= Mβ

)
= O

(
n−2l(1/2−τ/l−α1−α3−η) + n−{(1/2+[δ−2]τ)(1−q)−α2−α3−η}/(1−q)

+n−(l−1−τ)/2
)
.

Consider now that Ω = Σ−1 is sparse. In general, there is no relationship

between the sparsity ofΣ and the sparsity of its inverseΩ. For a sparsity measure

of Ω, we still use the notation rq in (3.1), but with ρij ’s replaced by the (i, j)th

element of Ω. All asymptotic results here are based on this sparsity measurement

of Ω, and Ω is estimated by the CLIME in Cai, Liu, and Luo (2011).



REGULARIZING LASSO 983

Theorem 3. Assume (C1), (C2), (C3 ′′) ∥Ω∥1 ≤ M and log p ≍ nτ , where

0 < τ < 1/4, and (C4 ′′) sh ≍ nα1, rq ≍ nα2, where α1 < (1 − τ)/2 and

α2 < (1 − q)/2 − α1 are positive constants. If λn = M5(n
−1 log p) for some

constant M5 > 0, tn = M6n
−η with a constant M6 > 0 and 0 < η < min{(1 −

τ)/2−α1, (1− q)/2−α1−α2}, and an−1 ≍ (log n)−1, then there exist constants

C17 and C18 such that

1− P
(
Mβ,antn ⊂ M̂β ⊂ Mβ,tn/an

)
= O

[
exp

(
−C17

[
(log n)−1n(1−q)/2−α1−α2−η

]2/(1−q)
)

+exp
(
−C18(log n)

−2n2(1/2−α1−η)
) ]

.

If (3.2) holds for h = 0 and (C5) holds for some constant κ < min{(1− τ)/2−
α1, (1− q)/2−α1 −α2}, and if tn = M6n

−η with M6 > 0 and κ < η < min{(1−
τ)/2− α1, (1− q)/2− α1 − α2}, then

P
(
M̂β ̸= Mβ

)
= O

[
exp

(
−C19

[
n(1−q)/2−α1−α2−η

]2/(1−q)
)
+ exp

(
−C20n

2(1/2−α1−η)
) ]

.

Theorem 4. Assume (C1 ′), (C2), (C3 ′′′) ∥Ω∥1 ≤ M and p ≍ nτ , where τ <

min{l/2, l − 1}, and (C4 ′′′) sh ≍ nα1, rq ≍ nα2, where α1 < 1/2 − τ/l and

α2 < (1 − q)/2 − α1 are positive constants. If λn = M7n
−1/2 for some M7 > 0,

tn = M8n
−η with constants M8 > 0 and 0 < η < min{1/2− τ/l−α1, (1− q)/2−

α1 − α2}, and an − 1 ≍ (log n)−1, then there exists a positive constant C25 such

that

1− P
(
Mβ,antn ⊂ M̂β ⊂ Mβ,tn/an

)
= O

[
exp

(
−C25

[
(log n)−1n(1−q)/2−α1−α2−η

]2/(1−q)
)

+(
1

n
)2l(1/2−τ/l−α1−η)(log n)2l + (

1

n
)(l−1−τ)/2

]
.

If (3.2) holds for h = 0 and (C5 ′) lim infn→∞ nκminj∈Mβ
|βj | > 0 for some

constant 0 < κ < min{1/2− τ/l − α1, (1− q)/2− α1 − α2}, and if tn = M8n
−η

with M8 > 0 and κ < η < min{1/2− τ/l − α1, (1− q)/2− α2}, then there exist

a positive constant C25 such that

P
(
M̂β ̸= Mβ

)
= O

[
exp

(
−C26

[
n(1−q)/2−α1−α2−η

]2/(1−q)
)

+(
1

n
)2l(1/2−τ/l−α1−η) + (

1

n
)(l−1−τ)/2

]
.
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4. Comparison of LASSO and RLASSO

We takeX1 to be the s0 columns ofX corresponding to non-zero components

of β and X2 to be those columns of X corresponding to zero components. Zhao

and Yu (2006) showed the LASSO to be selection-consistent, if S satisfies the

strong irrepresentable condition (SIC)

η∞ = 1− ∥S21S
−1
11 sign(β1)∥∞ ≥ γ, (4.1)

where S11 = X ′
1X1/n, S21 = X ′

2X1/n, γ is a positive constant, β1 = {βj , j ∈
Mβ}, and sign(β1) is the vector whose components are the signs of components of

β1. The SIC is also essentially necessary for LASSO to be selection-consistency.

An example shows a situation in which RLASSO works but LASSO fails.

Suppose that, in (1.1), ϵi’s are i.i.d. from N(0, 1), µ = 0, σi = 1, xi’s are

i.i.d. from Np(0,Σ) with

Σ =

 Is0 B′ 0

B Ik−s0 0

0 0 Ip−k

 , (4.2)

and B is a (k − s0) × s0 matrix satisfying ∥B∥∞ ≥ 1 + 2γ for some γ > 0 and

ensuring that Σ is positive definite. Take s0 and k as fixed numbers, the first s0
components of β equal to 1, and n−1 log p → 0. It is shown in the Web Appendix

that

P (∥S21S
−1
11 ∥∞ ≥ 1 + γ) → 1. (4.3)

Thus the SIC fails with probability tending to 1, which implies that LASSO can-

not be selection-consistent. On the other hand, it can be verified that (C1)−(C5)

hold if we further assume log p = o(n1/3). Hence, RLASSO is selection-consistent.

Since RLASSO uses a consistent estimator of Σ, it avoids the requirement of a

condition like the SIC.

We carried out another simulation to compare RLASSO and LASSO in

an example from Zhao and Yu (2006). We took n = 100, p = 32, and β =

(7, 4, 2, 1, 1, 0, . . . , 0). We generated a covariance matrix Σ from the Wishart(p, p)

distribution, then generated n i.i.d. xi’s from Np(0,Σ) and normalized xi’s to

have mean 0 and variance 1. The matrix X containing xi as its ith row was

treated as fixed in 1,000 simulations. In each run, n i.i.d. ϵi’s were generated

from N(0, 1) and yi was obtained from (1.1) with µ = 0 and σ2
i = 0.1 for each

i. In each simulation, we first ran LASSO to calculate its entire path to see if

there was a model along the path that matched the true model. We then ran

RLASSO with Σ̂ in (2.4) as an adaptive thresholding estimator of Σ and with

tuning parameters chosen by (2.6). After 1,000 simulations, we calculated the

percentages of times that LASSO and RLASSO selected the correct model. We
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Figure 1. Comparison of LASSO and RLASSO.

repeated independently this process 100 times, and here plot in Figure 1 the 100

simulation percentages against η∞ = 1− ∥S21S
−1
11 sign(β1)∥∞.

Figure 1 shows the performance of LASSO was good when η∞ > 0.05; this

occurred only 45 times in the 100 designs. In other 55 cases, LASSO did not

perform well. While RLASSO performed well in all 100 cases, regardless of

whether the SIC held or not.

Meinshausen and Yu (2009) introduced another sparsity condition on S,

called the incoherent design condition (IDC). If

ϕmin(m) = min
z:||z||l0≤⌈m⌉

z′Sz

z′z
and ϕmax(m) = max

z:||z||l0≤⌈m⌉

z′Sz

z′z

are the m-sparse minimal eigenvalue and m-sparse maximal eigenvalue of S,

respectively. S is said to satisfy the IDC if there exists a positive sequence en
such that

lim inf
n→∞

enϕmin(e
2
ns0)

ϕmax(s0 +min{n, p})
≥ 18, (4.4)

where s0 is the number of non-zero elements in β. Meinshausen and Yu (2009)

showed that if S satisfies the IDC, the true β is sparse, and β’s minimal non-

zero component does not converge to 0 too quickly, then LASSO followed by a

thresholding could achieve selection-consistency.
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If p ≫ n, the IDC can fail for many S. It essentially requires that λmin(S0)

cannot converge to zero too quickly, for any submatrix S0 of S with certain rank.

When p ≫ n, many submatrices of S can be singular or close to singular. Any

m×m submatrix of S is singular if m > n, and for m < n, it is a hard to check

condition.

When Σ is sparse, many regularized estimators Σ̂ in the literature, such as

the adaptive thresholding estimator in Cai and Liu (2011), satisfy ∥Σ̂−Σ2
P−→ 0.

If λmin(Σ) is bounded away from 0, then λmin(Σ̂) is also asymptotically bounded

away from 0. Hence, for any submatrix Σ̂0 of Σ̂, λmin(Σ̂0) > 0, and the IDC

holds for Σ̂. The same conclusion can be made when Ω = Σ−1 is sparse, λmax(Ω)

is bounded away from ∞, and an L2-consistent estimator Ω̂ of Ω is adopted.

5. Numerical Results

5.1. Simulations

We report on several simulation studies to compare the following eight vari-

able selection methods. RLASSO(AT): RLASSO with Σ̂ in (2.4) the adaptive

thresholding estimator of Σ. RLASSO(CLIME): RLASSO with Σ̂ in (2.4) the in-

verse of CLIME. RLASSO(GLASSO): RLASSO with Σ̂ in (2.4) the inverse of the

Graphical LASSO estimator. LASSO: the ordinary LASSO method. LASSO+T:

the ordinary LASSO followed by a thresholding step. Scout(1, 1): the Scout(1,

1) method in Witten and Tibshirani (2009). SLSE+T: the sparse least square

estimator in (2.1) followed by a thresholding step; the estimator Σ̂ is the same

as that in RLASSO(AT). SIS: the Sure Independence Screening method in Fan

and Lv (2008).

Tuning parameters in all methods were chosen by the BIC described as (2.6).

In particular, for SIS, we determined the number of selected variables by the BIC.

We examined the variable selection methods through four models. In each

model, y was generated from (1.1) with µ = 0 and σi = 1 for i = 1, . . . , n, xi’s

were i.i.d. Np(0,Σ), n = 100, and p =5,000. Parameters in each model were as

follows.

Model 1: β = (2e8,0p−8), where ek is the k-dimensional vector with all compo-

nents equal to 1 and 0k is the k-dimensional vector with all components equal

to 0;

Σ =

(
B10×10 0

0 Ip−10

)
and B10×10 =

(
I8 0.2e8×2

0.2e2×8 I2

)
,

where em×n is the m × n matrix with all elements equal to 1 and Ik is the

k-dimensional identity matrix.

Model 2: β = (4,−1.2, 2.5, 1.5, 4.6,0p−5), and Σ = toeplitz(1, 0.49, 0.44, 0.40,

0.36, 0.32, 0.29, 0.26, 0.23,0p−9).
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Table 1. Simulation results under Model 1.

SENS(%) SPEC(%) CP(%) HP(%) SIZE
RLASSO(AT) 93.00 99.98 91.00 31.00 8.62( 1.72)
RLASSO(CLIME) 87.63 99.91 41.50 0.00 9.15( 3.43)
RLASSO(GLASSO) 90.00 99.93 44.50 0.00 9.78( 1.96)
Scout(1,1) 98.25 98.79 89.00 0.00 68.31(12.7 )
LASSO 98.25 99.59 42.00 0.00 28.24(14.2 )
LASSO+T 96.62 99.90 41.00 0.00 12.58( 2.99)
SLSE+T 97.62 99.16 84.00 0.00 45.52(11.6 )
SIS 81.50 99.09 26.50 0.00 51.92(26.4 )

Model 3: β = (4,−1.2, 2.5, 1.5, 4.6,0p−5), and Σ is the inverse of Ω = toeplitz(1,

0.5,0p−2).

Model 4: β = (19,−7.2,0p−10), and

Σ =

(
0.2I10 + 0.8e10e

′
10 0

0 Ip−10

)
.

In Models 1 and 4, both the covariance matrix Σ and its inverse Ω are sparse.

In Model 2, only Σ is sparse, while in Model 3, only Ω is sparse. Model 1 is a

setting in which the SIC in (4.1) can hardly hold, since (4.1) fails with S replaced

by Σ. Model 4 is motivated by a “false negative” example in Fan and Lv (2010),

where (1.3) is violated; β10 = −7.2 in this model has a marginal effect of 0, but

indeed has the largest effect. Condition (1.4) does not hold Models 1-3, but holds

under Model 4.

We measure the performance of each variable selection method by the fol-

lowing criteria. Sensitivity (SENS): the proportion of true non-zero βj being

estimated as non-zero. Specificity (SPEC): the proportion of true zero βj being

estimated as zero. Coverage probability (CP): P (Mβ ⊂ M̂β). Hit probability

(HP): P (Mβ = M̂β). Model size (SIZE): the size of selected model.

Note that 1−SENS and 1−SPEC are also called false negative error and false

positive error, respectively. When HP is low, we should assess the performance

of a selection method by jointly considering SENS, SPEC, and CP, not just by

using one of them. Thus a method with 100% CP may not be good, since it is

too conservative when SPEC is too low.

For each model, we carried out 200 simulation runs. The mean of the perfor-

mance measures are reported in Tables 1−4. The simulation standard deviation

for SIZE is reported in parenthesis. Additional information regarding the com-

putational time, and estimation accuracy of Σ and Ω is available in the web

supplementary material.

Although RLASSO(AT) performs well in terms of SENS and SPEC, its HP

is low so that the asymptotic effect has not shown at n = 100 and p =5,000.
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Table 2. Simulation results under Model 2.

SENS(%) SPEC(%) CP(%) HP(%) SIZE
RLASSO(AT) 90.48 99.95 52.00 45.50 6.56( 2.39)
RLASSO(CLIME) 95.24 99.95 76.00 7.50 6.94( 1.47)
RLASSO(GLASSO) 89.76 99.97 48.50 7.50 5.85( 1.29)
Scout(1,1) 100.00 99.58 100.00 0.00 26.37( 3.50)
LASSO 83.33 99.89 16.00 0.00 8.68( 4.34)
LASSO+T 82.38 100.00 11.00 11.00 4.18( 0.39)
SLSE+T 100.00 99.10 100.00 0.00 40.88(11.1 )
SIS 85.00 99.98 27.00 0.00 15.00( 1.20)

Table 3. Simulation results under Model 3.

SENS(%) SPEC(%) CP(%) HP(%) SIZE
RLASSO(AT) 91.60 99.95 58.00 11.00 5.06(1.33)
RLASSO(CLIME) 93.40 99.98 68.50 17.00 5.71(0.81)
RLASSO(GLASSO) 99.80 99.90 99.00 15.00 6.00(0.35)
Scout(1,1) 100.00 99.59 100.00 0.00 9.06(1.41)
LASSO 81.80 99.65 9.50 0.00 7.61(1.91)
LASSO+T 81.20 99.92 6.50 3.00 4.90(0.90)
SLSE+T 100.00 99.22 100.00 0.00 12.74(4.26)
SIS 100.00 99.66 100.00 0.00 8.35(1.81)

Table 4. Simulation results under Model 4.

SENS(%) SPEC(%) CP(%) HP(%) SIZE
RLASSO(AT) 91.50 99.91 67.00 66.00 10.09( 1.19)
RLASSO(CLIME) 96.20 93.30 62.00 0.00 18.99( 2.54)
RLASSO(GLASSO) 93.60 90.94 46.50 0.00 18.08( 7.55)
Scout(1,1) 94.30 90.01 53.00 0.00 27.29( 7.93)
LASSO 82.80 97.24 42.00 0.00 35.63(10.1 )
LASSO+T 56.90 100.00 2.00 2.00 5.72( 2.32)
SLSE+T 96.60 90.34 66.50 0.00 19.26( 9.83)
SIS 89.90 99.01 0.00 0.00 18.84( 6.58)

Since its average SIZE is quite close to the true size (8, 5, 5, 10 for Models 1−4,

respectively), the low HP is caused by selecting of 1 or 2 unnecessary variables

or missing 1 or 2 important variables. In Tables 1 and 4 where both Σ and its

inverse Ω are sparse, RLASSO(AT) is, in general, better than RLASSO(CLIME)

and RLASSO(GLASSO). The same is true in Table 2, where Σ is sparse but Ω

is not, a situation that is in favor of RLASSO(AT). In Table 3, Ω is sparse

but Σ is not, both RLASSO(CLIME) and RLASSO(GLASSO) are better than

RLASSO(AT). RLASSO(CLIME) and RLASSO(GLASSO) perform similarly, as

they only differ in the estimation of Ω. Overall, RLASSO(AT) performs better

than SLSE+T, indicating that the L1 penalty in (2.4) is worthwhile. Note that

SLSE+T is a special case of RLASSO with λn = 0.
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In Tables 2−3, any of the three RLASSO’s is better than LASSO. In Table 1,

LASSO has a higher SENS but is too conservative in having an average model size

28.24, much larger than the true model size 8. In Table 4, RLASSO(AT) is always

better than LASSO; LASSO has a SPEC higher than those of RLASSO(CLIME)

and RLASSO(GLASSO), but it has much worse SENS and CP. Thus, the over-

all performance of LASSO is worse than any RLASSO and sometimes is much

worse. LASSO+T in general improves LASSO, since LASSO is too conservative

in all tables. However, LASSO+T is still worse than any of RLASSO in general,

indicating the importance of regularizing the estimation of Σ.

Since the marginal effect βM differs very much from β in Tables 1−3, condi-

tion (1.4) does not hold, SIS is too conservative. On the other hand, in Table 4

where condition (1.4) holds but condition (1.3) does not hold, SIS has zero CP.

5.2. Data analysis

Sinnaeve et al. (2009) studied the relationship between Coronary Artery Dis-

ease (CAD) and gene expression patterns. In their study, each subject’s coronary

artery disease index (CADi) was measured; this is a validated angiographical

measure of the extent of coronary atherosclerosis. Gene expression profiles were

obtained by using Affymetrix U133A chips. The raw dataset is available under

the name “GSE12288” in Gene Expression Omnibus.

We regressed CADi on the expression of genes that are listed in Kyoto En-

cyclopedia of Genes and Genomes (KEGG). There were n = 110 subjects and

p =4,260 genes involved in the analysis. To select important genes, we applied

RLASSO(AT), RLASSO(CLIME), RLASSO(GLASSO), Scout(1,1), LASSO,

LASSO+T, and SIS. Tuning parameters of each method were chosen by the

BIC method described in Section 2. The selection of genes by various methods

is listed in Table 5.

Gene PECAM1 is selected by all methods except SIS. Stevens et al. (2008)

showed that PECAM1 plays a role as a critical mediator of atherosclerosis,

which accounts for the vast majority of fatal and non-fatal CAD events. Besides

PECAM1, at least one of EPHA4, TPM2, and TSHR is selected by all methods

except SIS, and some methods select two or all three of them. Without a second

thresholding step, Scout(1,1) and LASSO select too many genes. LASSO+T is

much more reasonable. The selection by SIS is very different from the others,

which may be caused by the fact that it ignores the correlations among genes.

Overall, the analysis shows the importance of PECAM1 for this data set,

followed by a few more genes such as EPHA4, TPM2 and TSHR.
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Table 5. Genes Selections for GSE12288.

Method Selection of Genes

RLASSO (AT) GABBR1 PECAM1 PRKAB2 PTCRA TPM2 TSHR UBE3A
RLASSO (CLIME) EPHA4 FGF14 PECAM1

RLASSO
(GLASSO)

EPHA4 PECAM1 TPM2 TSHR

Scout(1,1) ABCC6 ACSL5 ADRB1 AKT3 APOA4 ATP6V0A4 ATR CA6
CBLB CBR3 CCNA1 CD14 CLDN14 COX4I1 COX6A1 CSF2

CYBA DAD1 DSE EPHA4 FGF14 GABBR1 GLS2 GNG12
GNG13 H2AFY2 HSPBP1 LRP2 MC2R MLNR MYO10 NFAT5
NOS1 OAS1 OR2J2 PAPSS1 PDSS2 PECAM1 PIGB PNLIPRP2

PPP2R5A PRKAB2 PTCRA RARS2 RRAS SERPINB4 SPRY2
STX2 SUCLA2 THY1 TPM2 TRAF3 TSHR UBE3A WNT10B

LASSO ABCC6 ACSL5 ADRB1 AKT3 APOA4 ATP6V0A4 ATR CA6

CBLB CBR3 CCNA1 CD14 COX4I1 COX6A1 CSF2 CYBA
DAD1 DSE EPHA4 FGF14 GABBR1 GLS2 GNG13 H2AFY2
HSPBP1 LRP2 MC2R MLNR MYO10 NFAT5 NOS1 OAS1

OR2J2 PDSS2 PECAM1 PIGB PNLIPRP2 PPP2R5A PRKAB2
PTCRA RARS2 SERPINB4 SPRY2 STX2 SUCLA2 THY1
TPM2 TRAF3 TSHR UBE3A WNT10B

LASSO + T CSF2 EPHA4 MC2R PECAM1 TPM2 TSHR

SIS A2M ABP1 C1QB C3 C5 C6 CD55 CFB CFH CPB2 CYP2A6
CYP3A7 DPYS F13A1 F2R F7 F8 F9 FGB FGG IM-
PDH2 KLKB1 MASP2 PLAU SERPINA5 TFPI THBD UCKL1

UGT2B15 UGT2B28 UPB1 XDH

6. Discussion

We propose a regularized LASSO that replaces ill-behaved X ′X/n with

a sparse estimator of Σ or its inverse and adds a thresholding step to handle

variable selection with pmuch larger than n. Theoretical and empirical properties

of the proposed method, RLASSO, are discussed. In applications, we have to

decide which of Σ or its inverse Ω is sparse and choose one version of RLASSO

accordingly. In a situation where no information regarding the sparsity of Σ and

Ω is available, we recommend RLASSO(AT) based on its empirical property. We

may also try three different RLASSO methods as we did in the data example.

The computation of RLASSO with CLIME Ω̂ is lengthy when p is as large as

5,000. Some improvement may be developed in our future research.

The idea of replacing ill-behaved X ′X/n by a sparse estimator of Σ, or its

inverse, can be applied to variable selection in more complicated models. For

example, we are investigating how to use this approach to variable selection in

linear mixed-effect models and some nonlinear or nonparametric models.
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As with almost all asymptotic methods, the proposed RLASSO requires

the signal from non-zero components of β to be large enough to have the good

properties predicted by the asymptotic theory. One strategy is to carry out

simulation studies to check finite sample performance in a setting close to the

actual situation. There are some procedures that work well in the low signal

cases; see, for example, Ji and Jin (2012).
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