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This appendix provides proofs of Theorems 1 and 2 in Section 3 of the paper entitled

“Density Matrix Estimation in Quantum Homodyne Tomography” by Wang and Xu.

Denote by C a generic constant whose value is free of n and p and may change from

appearance to appearance. OP and oP denote orders in probability as both n and p go to

infinity.

Proof of Theorem 1. Let ρp = (ρjl)1≤j,l≤p. Using the triangle inequality and the relation-

ship between `2- and `1-norms we have

‖T$[ρ̄]− ρ‖2 ≤ ‖T$[ρ̄]− T$[ρp]‖2 + ‖T$[ρp]− ρp‖2 + ‖ρp − ρ‖2

≤ ‖T$[ρ̄]− T$[ρp]‖1 + ‖T$[ρp]− ρp‖1 + ‖ρp − ρ‖1. (16)

Condition A1 implies that

‖ρp − ρ‖1 = max

{
max
1≤j≤p

∞∑

l=p+1

|ρjl|, max
j≥p+1

∞∑

l=1

|ρjl|
}
≤ Cp−α. (17)

Denote by T$ the threshold procedure with threshold value $. From Lemma 5.1 below we have

‖T$[ρp]− ρp‖1 = max
1≤i≤p

p∑
j=1

|ρij| 1(|ρij| ≤ $) = OP

(
π(p) $1−δ

)
. (18)

To complete the proof we need to derive the order of the first term, ‖T$[ρ̄]− T$[ρp]‖1, on the

right hand side of (16). We simply manipulate algebras regarding the hard thresholding rule

to find

‖T$[ρ̄]− T$[ρp]‖1 ≤ max
1≤i≤p

p∑
j=1

|ρ̄ij − ρij| 1(|ρ̄ij| ≥ $, |ρij| ≥ $)

+ max
1≤i≤p

p∑
j=1

|ρ̄ij|1(|ρ̄ij| ≥ $, |ρij| < $) + max
1≤i≤p

p∑
j=1

|ρij|1(|ρ̄ij| < $, |ρij| ≥ $)

≤ max
1≤i,j≤p

|ρ̄ij − ρij| max
1≤i≤p

p∑
j=1

1(|ρij| ≥ $) + max
1≤i≤p

p∑
j=1

|ρij| 1(|ρij| < $)

+ max
1≤i,j≤p

|ρ̄ij − ρij| max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, |ρij| < $) + $ max
1≤i≤p

p∑
j=1

1(|ρij| ≥ $). (19)
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As the orders of all terms on the right side of (19) are given by Lemmas 5.1 and 5.2 below, we

immediately obtain that ‖T$[ρ̄]− T$[ρp]‖1 is of order

OP ($) OP

(
π(p) $−δ

)
+ OP

(
π(p) $1−δ

)
+ OP ($) OP

(
π(p) $−δ

)
+ $ OP

(
π(p) $−δ

)

= OP

(
π(p) $1−δ

)
.

Similarly for the soft thresholding rule, we have

‖T$[ρ̄]− T$[ρp]‖1 ≤ max
1≤i≤p

p∑
j=1

[|ρ̄ij − ρij|+ 2$] 1(|ρ̄ij| ≥ $, |ρij| ≥ $)

+ max
1≤i≤p

p∑
j=1

[|ρ̄ij|+ $]1(|ρ̄ij| ≥ $, |ρij| < $) + max
1≤i≤p

p∑
j=1

[|ρij|+ $]1(|ρ̄ij| < $, |ρij| ≥ $)

≤ max
1≤i,j≤p

|ρ̄ij − ρij| max
1≤i≤p

p∑
j=1

1(|ρij| ≥ $) + 2 max
1≤i≤p

p∑
j=1

|ρij| 1(|ρij| < $)

+ 2 max
1≤i,j≤p

|ρ̄ij − ρij| max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, |ρij| < $) + 2$ max
1≤i≤p

p∑
j=1

1(|ρij| ≥ $),

which has the same order as the right hand side of (19). Thus, ‖T$[ρ̄]−T$[ρp]‖1 is also of order

π(p) $1−δ for the soft thresholding rule.

Lemma 5.1 If ρ satisfies A1-A2 and $ is chosen as in Theorem 1, then for any fixed a > 0,

max
1≤i≤p

p∑
j=1

|ρij| 1(|ρij| ≤ a $) ≤ a1−δ C π(p) $1−δ = OP

(
π(p) $1−δ

)
, (20)

max
1≤i≤p

p∑
j=1

1(|ρij| ≥ a$) ≤ a−δ C π(p) $−δ = OP

(
π(p) $−δ

)
. (21)

Proof. Simple algebraic manipulation shows that

max
1≤i≤p

p∑
j=1

|ρij| 1(|ρij| ≤ a$) ≤ (a$)1−δ max
1≤i≤p

p∑
j=1

|ρij|δ 1(|ρij| ≤ a$)

≤ a1−δ $1−δ C π(p) = OP

(
π(p) $1−δ

)
,

which proves (20). (21) follows from

max
1≤i≤p

p∑
j=1

1(|ρij| ≥ a$) ≤ max
1≤i≤p

p∑
j=1

[|ρij|/(a $)]δ 1(|ρij| ≥ a$)

≤ (a$)−δ max
1≤i≤p

p∑
j=1

|ρij|δ ≤ (a $)−δ C π(p) = OP

(
π(p) $−δ

)
.
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Lemma 5.2 If ρ satisfies A1-A2 and $ is chosen as in Theorem 1, then

max
1≤i,j≤p

|ρ̄ij − ρij| = OP

(
p1/4

√
log p

n

)
= OP ($). (22)

max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, |ρij| < $) ≤ 2δ M π(p) $−δ + oP (1) = OP

(
π(p) $−δ

)
. (23)

Proof. For 1 ≤ i ≤ j ≤ p, the pattern functions fij(x) satisfy

sup
x
|fij(x)| ≤ Cp1/4,

where the inequality is from the proof of Lemma 3.1 in Gill and Guţă(2003, Equation (3.14))

[which is the early version of Artiles, Gill and Guţă(2005, Lemma 1)]. Thus Fij in (4) are

bounded by Cp1/4 uniformly for 1 ≤ i, j ≤ p. Applying Bernstein inequality to ρ̄ij we have for

1 ≤ i, j ≤ p uniformly

P (|ρ̄ij − ρij| > h) ≤ C1 exp(−C2 nh2p−1/2).

Taking h = h0n
−1/2p1/4 log1/2 p we immediately show

P ( max
1≤i,j≤p

|ρ̄ij − ρij| > h) ≤ p2 C1 exp(−C2 nh2) = C1 p2−C2 h2
0 → 0, (24)

if h2
0 > 2/C2, as n, p →∞. Thus,

max
1≤i,j≤p

|ρ̄ij − ρij| = OP

(
p1/4

√
log p

n

)
.

To show (23), we have

max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, |ρij| < $) ≤ max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, |ρij| ≤ $/2)

+ max
1≤i≤p

p∑
j=1

1(|ρ̄ij| ≥ $, $/2 < |ρij| < $)

≤ max
1≤i≤p

p∑
j=1

1(|ρ̄ij − ρij| ≥ $/2) + max
1≤i≤p

p∑
j=1

1(|ρij| > $/2).

For the two terms on the right hand side of this equation, (21) shows that the second term is

of order

2δ C π(p) $−δ ∼ π(p) $−δ,
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and (25) below implies that the first term is negligible. This proves (23).

We need to show

P

(
max
1≤i≤p

p∑
j=1

1{|ρ̄ij − ρij| ≥ $/2} > 0

)
= o(1). (25)

From (24) we get

P

(
max
1≤i≤p

p∑
j=1

1{|ρ̄ij − ρij| ≥ $/2} > 0

)
≤ P

(
max

1≤i,j≤p
|ρ̄ij − ρij| ≥ $/2

)

≤ p2C1 exp(−C2 n$2p−1/2/4)

= C1 p2−ζ2 C2/4 → 0,

if ζ2 > 8/C2, as n, p →∞, which proves (25).

Proof of Theorem 2. Since ρ is semi-positive and has unit trace, then it is in the cone Γ,

and by definition we have ‖ρ̃− ρ̂‖2 ≤ ‖ρ− ρ̂‖2. Thus,

‖ρ̃− ρ‖2 ≤ ‖ρ̃− ρ̂‖2 + ‖ρ̂− ρ‖2 ≤ 2‖ρ̂− ρ‖2.

From

‖ρ̃− ρ̂‖2 = ‖O†(ρ̃− ρ̂)O‖2 = ‖O†ρ̃O − diag
(
λ̂1, λ̂2, · · · , λ̂p

)
‖2,

it is easy to see that the projection of diagonal matrix diag
(
λ̂1, λ̂2, · · · , λ̂p

)
onto Γ is the

solution of the minimization problem (11). Hence ρ̃ is the projection of ρ̂ onto Γ.
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