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This appendix provides proofs of Theorems 1 and 2 in Section 3 of the paper entitled
“Density Matrix Estimation in Quantum Homodyne Tomography” by Wang and Xu.

Denote by C' a generic constant whose value is free of n and p and may change from
appearance to appearance. Op and op denote orders in probability as both n and p go to
infinity.

Proof of Theorem 1. Let p, = (p;i)1<ji<p- Using the triangle inequality and the relation-

ship between /5- and ¢;-norms we have
17=[p] = pll2 < | 7<[p] — Tw{pp]H? + ”TW[PP] - ppH2 + pr —pll2
< 7= [p] = T=lppllls + 1 7= lpp] = polli + lop — £l (16)

Condition A1l implies that

lpp = plli = max {glfg Z lpal, @g}l; !pjz!} <Cp, (17)

Denote by 7, the threshold procedure with threshold value w. From Lemma 5.1 below we have
17 [pp] = pplli = max Z |pij| Wlpis| < @) = Op (n(p) @' ™). (18)

To complete the proof we need to derive the order of the first term, ||75[p] — Zw[pp)ll1, on the
right hand side of (16). We simply manipulate algebras regarding the hard thresholding rule
to find

17 (7] = T=[pplll < max Z 1935 = pigl 1(|pis| = @, [pij| = @)
+ jax Z|Pz]|1 (1pij| = @, |pij| < @) + maxz i |1(1pi] < @, |pij| = @)

< lIin&X |pij — pm‘ max Zl (lpij| =2 @) + max Zl |pij| 1| pij| < @)
J j
P

p
+ max by — py| max 1 il = @, oyl < @) + @ max 3 1lpy| > ). (19)
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As the orders of all terms on the right side of (19) are given by Lemmas 5.1 and 5.2 below, we
immediately obtain that || 7, [p] — T [pp]||1 is of order

Op(@) Op (7(p) @ °) + Op (7(p) @ °) + Op(w) Op (7(p) @ °) + @ Op (7(p) @)
= Op (r(p) @' 7).

Similarly for the soft thresholding rule, we have
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which has the same order as the right hand side of (19). Thus, ||75[p] — Z=[pp)|1 is also of order
7(p) @' for the soft thresholding rule.

Lemma 5.1 If p satisfies A1-A2 and w is chosen as in Theorem 1, then for any fixed a > 0,
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max Y 1(|p;| > aw) <a* Cr(p)w™ = Op (7(p) @) (21)

1<i<p =

Proof. Simple algebraic manipulation shows that

maXZ|ﬂw\1 pijl Saw) < (aw maXZ|pZ]|5 (lpij| < aw)

1<:i<p 7 1<i<p
Jj=

<ad" @ Crn(p) = Op (7(p) @' ),

which proves (20). (21) follows from

p p
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Lemma 5.2 If p satisfies A1-A2 and w 1is chosen as in Theorem 1, then

log p
1I<naX |Pij — pij| = Op <p1/4\/ ) = Op(w). (22)
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max 1(|ps;| > @, |pij| < @) <22 M 7(p)w ™ + op(1) = Op (7(p) @ ?). (23)
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Proof. For 1 <i < j < p, the pattern functions f;;(x) satisty

sup | fi;(z)] < Cp'/*,

where the inequality is from the proof of Lemma 3.1 in Gill and Guta(2003, Equation (3.14))
[which is the early version of Artiles, Gill and Guta(2005, Lemma 1)]. Thus Fj; in (4) are
bounded by Cp'/* uniformly for 1 <4,j < p. Applying Bernstein inequality to pij we have for
1 < 4,7 < p uniformly

P(|pij — pijl > h) < Crexp(=Con h*p™"/?).
Taking h = honY/2p/* log'/? p we immediately show
P(max |pij = pij| > h) < p* Crexp(=Can h?) = Cyp*© " — 0, (24)
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if h2 > 2/Cy, as n,p — oo. Thus,

/logp
- 1/4
lglax |pij — pil = Op (p 0 )

To show (23), we have
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For the two terms on the right hand side of this equation, (21) shows that the second term is

of order

2Cr(p)w’ ~r(p) =™,



and (25) below implies that the first term is negligible. This proves (23).

We need to show

1<i<p 4
Jj=1

P <m oy — pul = w/2) > o) = o(1). (25)

From (24) we get

1<i<p £ 1<i,j<
J=1

< p*Crexp(—Canw’p /2 /4)

p
P (max Wlpij — pijl 2 @/2} > 0) <P ( max |pi; — pij| > w/2>
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=Cyp* M 0,
if (2 > 8/Cs, as n,p — oo, which proves (25).

Proof of Theorem 2. Since p is semi-positive and has unit trace, then it is in the cone I,

and by definition we have ||p — p|l2 < ||p — pl|2- Thus,

lp = plla < {lp = pll2 + 119 = pll2 < 2[1p = pll2-

From
15~ plla = 10'(5 ~ $)Oll> = 0150 — diag (A, R+ ) I
it is easy to see that the projection of diagonal matrix diag (5\1,5\2, e ,Sxp) onto I' is the

solution of the minimization problem (11). Hence p is the projection of p onto I.





