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Abstract: This article is concerned with moderate deviation principles of a class

of interacting empirical processes. We derive an explicit description of the rate

function, and we illustrate these results with Feynman-Kac particle models arising

in nonlinear filtering, statistical machine learning, rare event analysis, and com-

putational physics. We discuss functional moderate deviations of the occupation

measures for both the strong τ -topology on the space of finite and bounded mea-

sures as well as for the corresponding stochastic processes on some class of functions

equipped with the uniform topology, yielding the first results of this type for mean

field interacting processes. Our approach is based on an original semigroup analy-

sis combined with Orlicz norm inequalities, stochastic perturbation techniques, and

projective limit large deviation methods.
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1. Introduction

1.1. Sequential Monte Carlo methodologies

Suppose we are given a complex target probability measure πT defined on

some product space E = ST+1, for some dimension parameter T ≥ 0, and

some measurable state space S. Stochastic particle methodologies, also termed

Sequential Monte Carlo samplers (abbreviated SMC ), consist of sampling approx-

imately from a sequence of ”interpolating” probability distributions πn on the

state spaces En := Sn+1 with increasing dimension, 0 ≤ n ≤ T , starting from

some probability measure π0 up to the desired target measure πT . In the further

development of this section, dxn stands for an infinitesimal neighborhood of the

path sequence xn = (x0, . . . , xn), with 0 ≤ n ≤ T .

We assume that these bridging measures are connected by the formula

∀0 ≤ n ≤ T, πn+1(dxn+1) ∝ Pn+1(xn, dxn+1)× πn(dxn) (1.1)
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for some conditional probability distributions Pn+1(xn, dxn+1). Here, dxn+1

stands for some infinitesimal neighborhood of the state xn+1 ∈ En+1. We choose

a sequence of dominating importance sampling distributionMn+1(xn, dxn+1) s.t.

Pn+1(xn, dxn+1) ≪Mn+1(xn, dxn+1)

and we set

ηn+1(dxn+1) :=Mn+1(xn, dxn+1)× πn(dxn). (1.2)

We consider the corresponding importance weight function Gn+1 defined by

Gn+1(xn+1) ∝
dπn+1

dηn+1
(xn+1) =

dPn+1(xn, ·)
dMn+1(xn, ·)

. (1.3)

We also consider a dominating importance sampling distribution η0 s.t. π0 ≪ η0,

and we set G0 ∝ dπ0/dη0, the corresponding Radon-Nydodim weight function.

To avoid unnecessary technical discussions, we further assume that the functions

Gn are positive and bounded. For more general models, including indicator type

functions and unbounded functions Gn, we refer the reader to Section 7.2.1 in

the research monograph of Del Moral (2004).

The SMC algorithm is a population type Monte Carlo algorithm based

on sampling sequentially a collection of N random trajectories. Initially, we

sample (Xi
0)1≤i≤N with some proposal distribution η0(dx0). Then we resample

(X̂i
0)1≤i≤N with the discrete measure ∝

∑
1≤i≤N G0(X

i
0)δXi

0
on E0. For each of

the selected variables X̂i
0, we sample a random variable X̃i

1 with the proposal dis-

tributionM1(X̂
i
0, dx1), and we set Xi

1 =
(
X̂i

0, X̃
i
1

)
. Then we resample (X̂i

1)1≤i≤N

with the discrete measure ∝
∑

1≤i≤N G1(X
i
1)δXi

1
on the product space E1. For

each of the selected variables X̂i
1, we sample a random variable X̃i

2 with the

proposal distribution M2(X̂
i
1, dx2), and we set Xi

2 =
(
X̂i

1, X̃
i
2

)
, and so on.

By (1.3) we have Pn+1(xn, dxn+1) ∝ Mn+1(xn, dxn+1) Gn+1(xn+1) . Thus,

combining (1.1) and (1.2), we readily check that

πn(dxn) ∝ Gn(xn) ηn(dxn) and ηn+1(dxn+1) :=Mn+1(xn, dxn+1) πn(dxn).

This shows that the interpolating sequence of distributions satisfies the nonlinear

equation

ηn −→ (πn =) ΨGn(ηn) −→ ηn+1 := Φn+1(ηn) := ΨGn(ηn)Mn+1 (1.4)

defined in terms of two operator:
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• The Boltzmann-Gibbs transformation ΨGn from the set of probability mea-

sures on En into itself, defined by

ηn(dxn) ΨGn(ηn)(dxn) :=
Gn(xn)

ηn(Gn)
ηn(dxn)

and

ηn(Gn) :=

∫
ηn(dxn) Gn(xn).

• The Markov transport equation from the set of probability measures on En
into the set of probability measures on En+1, defined by

πn(dxn) (πnMn+1) (dxn+1) :=

∫
πn(dxn)Mn+1(xn,dxn+1).

In this framework, with some obvious abusive notation the SMC algorithm dis-

cussed above takes the following synthetic form(
X1
n, . . . , X

N
n

)
i.i.d. ∼ Φn

( 1

N

∑
1≤i≤N

δXi
n−1

)
. (1.5)

The rationale behind these interacting processes is that if the empirical mea-

sure ηNn−1 :=
1
N

∑
1≤i≤N δXi

n−1
≃ ηn−1 for N large enough at a given rank (n−1),

then at rank n we have
(
X1
n, . . . , X

N
n

)
are almost i.i.d. samples of the distribution

ηn. From a statistical point of view, the interacting particle evolution equation

(1.5) can be also be interpreted as a kinetic transformed statistical model defining

a sequence of interacting empirical measures ηNn . At any time n, the desired mea-

sures ηn are approximated by the empirical measures ηNn . More general particle

models are discussed in Section 1.2, dedicated to mean field particle approxima-

tions of a general class of measure-valued processes.

The measure-valued equations and the corresponding particle algorithm arise

in such applications areas, as physics, biology, and advanced stochastic engineer-

ing sciences. For instance, in signal processing, the conditional distributions

of the paths of the Markov signal Xn := (X0, . . . , Xn), given a series of noisy

observations (Y0, . . . , Yn) = (y0, . . . , yn), satisfy a two-step prediction-updating

equation of the form (1.6): for any n ≥ 0,

ηn = Law (Xn | ∀0 ≤ p < n Yp = yp) .

In this context, the Gn(xn) = pn(yn | xn, y0, . . . , yn−1) are given by the likelihood

functions of the observation yn w.r.t. the signal sequence xn, and the Boltzmann-

Gibbs transformation coincides with the Bayes’ rule. The updating-prediction

evolution equation (1.6) is sometimes called the discrete generation nonlinear
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filtering equation; Here the particle model is also called a particle filter or a

genetic algorithm.

In the context of sequential bayesian inference, the distributions ηn(dθ) could

also be the posterior distributions of an unknown parameter given the data col-

lected up to time n,

ηn(dθ) = p(θ | yp, p < n) ∝
{ ∏

0≤k<n
p(yk | θ, y0, . . . , yk−1)

}
p(dθ).

For any Markov chain Monte Carlo (abbreviated MCMC ) transition Mn with

target measure ηn = ηnMn we clearly have that

Gn−1(θ) = p(yn | θ, y0, . . . , yn−1) ⇒ ηn = Φn (ηn−1) := ΨGn−1(ηn−1)Mn.

Applying the particle methodology (1.5) we design an interacting type particle

MCMC model that approximate sequentially the desired posterior distribution

p(θ | y0, . . . , yn) by an interacting empirical process, as N ↑ ∞. When the func-

tionsGn(θ) are unknown we consider the extended model θ = (θ,Xθ,i
k , 1 ≤ i ≤ N ′,

0 ≤ k ≤ T ), where the latent variables Xθ,i
k stands for the particle filter discussed

above associated with the fixed parameter θ. In this context, it is more or less

well known that the θ-marginal of the extended distribution

ηn(dθ) ∝
{ ∏

1≤k≤n
Gk−1(θ)

}
p(dθ) with Gn−1(θ)

=
1

N ′

∑
1≤i≤N ′

pn(yn | Xθ,i
n , y0, . . . , yn−1)

coincides with the desired posterior distribution p(θ | y0, . . . , yn), for any N ′ ≥
1. A detailed proof of this result can be found in Del Moral (2013). In this

framework, for any Markov chain Monte Carlo (abbreviated MCMC ) transition

Mn with target measure ηn = ηnMn, we clearly have that

ηn = Φn
(
ηn−1

)
:= ΨGn−1

(ηn−1)Mn.

Applying the particle methodology (1.5) we design an interacting MCMC sampler

coupled with particle filters that approximate sequentially the desired posterior

distribution p(θ | y0, . . . , yn) by an interacting empirical process, as N ↑ ∞.

1.2. Mean field interacting particle processes

Let (En)n≥0 be a sequence of measurable spaces equipped with some σ-fields

(En)n≥0, and let P(En) be the set of all probability measures over the set En,

with n ≥ 0. We consider a collection of transformations Φn : P(En−1) → P(En),
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and we denote by (ηn)n≥0 a sequence of probability measures on En that satisfy

the nonlinear equation of

ηn+1 = Φn+1 (ηn) . (1.6)

The mean field particle interpretations of these measure-valued models relies

on the fact that the one-step mappings can be rewritten as

Φn (ηn−1) = ηn−1Kn,ηn−1 (1.7)

for some collection of Markov kernels Kn,µn−1 indexed by the time parameter

n and the set of probability measures µn−1 on the space En−1. These models

provide a natural interpretation of the distribution laws ηn as the laws of a

non-linear Markov chain whose elementary transitions depend on the current

distribution. In further developments, we assume that the mappings
(
xin
)
1≤i≤N ∈

ENn 7→ Kn+1, 1
N

∑N
j=1 δxjn

(
xin, An+1

)
are E⊗N

n -measurable, for any n ≥ 0, 1 ≤ i ≤
N , and any measurable subset An+1 ⊂ En+1. In this situation, the mean field

particle interpretation of this nonlinear measure-valued model is an ENn -valued

Markov chain ξ
(N)
n =

(
ξ
(N,i)
n

)
1≤i≤N

, with elementary transitions defined as

P
(
ξ
(N)
n+1 ∈ dx

∣∣∣ A(N)
n

)
=

N∏
i=1

Kn+1,ηNn
(ξ(N,i)n , dxi) with ηNn :=

1

N

N∑
j=1

δ
ξ
(N,j)
n

.

(1.8)

Here, A(N)
n := σ

(
ξ
(N)
p , 0 ≤ p ≤ n

)
stands for the sigma-field generated by the

random variables (ξ
(N)
p )0≤p≤n, and dx = dx1×. . .×dxN stands for an infinitesimal

neighborhood of a point x = (x1, . . . , xN ) ∈ EN
n . The initial system ξ

(N)
0 consists

of N independent and identically distributed random variables with common law

η0. To simplify the presentation, when there is no possible confusion we suppress

the parameter N , so that we write ξn and ξin instead of ξ
(N)
n and ξ

(N,i)
n . For

a thorough description of these discrete generation and nonlinear McKean type

models, we refer the reader to Del Moral (2004).

During the last two decades, the mean field particle interpretations of these

discrete generation measure valued equations are increasingly identified as a pow-

erful stochastic simulation algorithm. They have led to spectacular results in

signal processing and statistical machine learning with the corresponding parti-

cle filter technology, in stochastic engineering with interacting type Metropolis

and Gibbs sampler methods, and in statistical physics with quantum and diffu-

sion Monte Carlo algorithms leading to precise estimates of the top eigenvalues

and the ground states of Schrödinger operators in Hetherington (1984), Caffarel

(1989), Assaraf and Caffarel (2000), Assaraf, Caffarel, and Khelif (2000), Caf-

farel et al. (2006) and Caffarel (2011). For a more detailed discussion on these
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application areas, we again refer the reader to Doucet, de Freitas, and Gordon

(2001), Del Moral (2004, 2013), Del Moral, Doucet, and Jasra (2006), and the

references therein.

A typical example is the Feynman-Kac model associated with (0, 1]-valued

potential functions Gn and Markov transitions Mn+1 from En into En+1 given

by

Φn+1 (ηn) (dy) = (ΨGn (ηn)Mn+1) (dy) :=

∫
ΨGn (ηn) (dx) Mn+1(x, dy). (1.9)

In this situation, the flow of measures ηn is given for any bounded measurable

function f on En as

ηn(fn) =

∫
En

fn(x) ηn(dx) ∝ E
(
fn(Xn)

∏
0≤p<n

Gp(Xp)
)
,

where Xn stands for a Markov chain with initial distribution η0 and Markov

transitions Mn.

Recall that if ΨGn(ηn) can be expressed as a non-linear Markov transport

equation

ΨGn(ηn)=ηnSηn,Gn with Sηn,Gn(x, dy)=Gn(x)δx(dy)+ (1−Gn(x))ΨGn(ηn)(dy),

(1.10)

then we find that Kn+1,ηn = Sηn,GnMn+1.

The mathematical and numerical analysis of these mean field particle models

(1.8) is one of the most active research subject in pure and applied probability, as

well as in statistical machine learning, advanced stochastic engineering, and com-

putational physics. In recent years, a variety of mathematical results have been

discussed in the literature, including propagation of chaos-type properties, Lp-
mean error bounds, as well as fluctuations theorems, large deviation principles,

and non asymptotic concentration inequalities.

Moderate deviation properties can be thought as an intermediate asymptotic

estimation between the central limit theorem and the large deviations principles.

The theory of moderate and large deviations is a wide and fast developing branch

of probability and statistic theory. Nevertheless, to the best of our knowledge the

existing literature on moderate deviation principles is concerned with indepen-

dent and identically distributed random sequences, Markov chain processes, and

random fields models; see for instance the article by Dobrushin and Shlosman

(1994), the series of works by Ledoux (1992), Wu (1994, 1999), Gao (1996, 2003),

de Acosta (1997), de Acosta and Chen (1998), Arcones (2003a,b), Gao and Zhao

(2011), and the more recent and seminal works of Wu and Zhao (2008), and

Peligrad et al. (2013).

Surprisingly, moderate deviations for mean field type interacting particle

systems have not been covered by the literature. In the present article, we analyze
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these questions using a stochastic perturbation analysis of an abstract class of

nonlinear semigroups in distribution spaces. The central idea is to use backward

semigroup expansions to express any global error quantity in terms of the local

sampling errors induced by the mean field simulation. We use the differential

calculus on measure spaces developed in the recent article of the first author

with E. Rio (2011). These authors generalize the classical Hoeffding, Bernstein

and these Bennett inequalities for independent random sequences to interacting

particle systems, but leave open the question of moderate deviation principles.

In the context of continuous time mean field particle models, the analysis of the

first and the second order variational derivatives of limiting nonlinear semigroups

w.r.t. the initial data has also been developed by Kolokoltsov (2007, 2010, 2013)

to analyze the smoothness of nonlinear semigroups, and to derive dynamical law

of large numbers and fluctuation theorems.

We complete this study with functional moderate deviations of mean field

particle models for both the τ -topology on the space of signed and bounded

measures, and for the empirical random field processes associated with some

collection of functions. Our analysis is based on an original semigroup analysis

combined with stochastic perturbation techniques and projective limit deviation

methods. The mathematical framework developed in Del Moral and Rio (2011),

and in the present work applies to a general class of mean field particle models,

including Feynman-Kac integration models, interacting jump processes, McKean

Vlasov diffusion type models, as McKean collision type models of gases. For a

detailed derivation of these application models, we refer to Del Moral and Rio

(2011), Del Moral (2013).

1.3. Outline of the paper

The main results are presented in Section 2 : the moderate deviation prin-

ciples (MDP) in finite dimension ; in infinite dimension but in the τ -topology;

for empirical process indexed by a class of functions; We describe some main

arguments leading to them. We prove the MDP in finite dimension in Section

3. We prove in Section 4 the MDP in the τ−topology by the method of pro-

jective limit. We establish in Section 5 the MDP for empirical processes by the

method of metric entropy. The proofs of some technical results are provided in

a Web-Appendix.

1.4. Some notation

We denote respectively by M(E), M0(E), and B(E), the set of all finite

signed measures on some measurable space (E, E), the convex subset of finite

signed measures ν with ν(E) = 0, and the Banach space of all bounded and

measurable functions f equipped with the uniform norm ∥f∥. We denote by
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Osc1(E) the convex set of E-measurable functions f with oscillations osc(f) :=

supx ̸=y |f(x)− f(y)| ≤ 1. We let µ(f) =
∫
µ(dx) f(x), be the Lebesgue integral

of a function f ∈ B(E), with respect to a measure µ ∈ M(E). A bounded

integral operatorM from a measurable space (E, E) into an auxiliary measurable

space (F,F) is an operator f 7→ M(f) from B(F ) into B(E) such that the

functions x 7→ M(f)(x) :=
∫
F M(x, dy)f(y) are E-measurable and bounded, for

any f ∈ B(F ). A Markov kernel is a positive and bounded integral operator M

with M(1) = 1. Given a pair of bounded integral operators (M1,M2), we let

(M1M2) denote the composition operator (M1M2)(f) = M1(M2(f)). For time

homogenous state spaces, we denote by Mm = Mm−1M = MMm−1 the m-th

composition of a given bounded integral operator M , with m ≥ 1.

A bounded integral operator M from a measurable space (E, E) into an

auxiliary measurable space (F,F) generates a dual operator µ 7→ µM fromM(E)

into M(F ) defined by (µM)(f) := µ(M(f)). We let b(m) be the collection of

constants on

b(2m)2m :=
(2m)!

m!2m
, and b(2m+ 1)2m+1 :=

(2m+ 1)!

(m+ 1)!
√
m+ 1/2

2−(m+1/2).

For the bounded integral operator M with M(1) (x) =M(1) (y) for any (x, y) ∈
E2, the operator µ 7→ µM maps M0(E) into M0(F ). In this situation, we let

β(M) be the Dobrushin coefficient of a bounded integral operator M defined by

β(M) := sup {osc(M(f)) ; f ∈ Osc1(F )}. (1.11)

Finally, we let Φp,n, 0 ≤ p ≤ n, be the semigroup associated with the measure

valued equation defined in (1.6), Φp,n = Φn ◦Φn−1 ◦ · · · ◦Φp+1. For p = n, we use

the convention Φn,n = Id, the identity operator.

2. Main Results and a First Order Fluctuation Analysis

2.1. Regularity conditions

We let Υ(E1, E2) be the set of mappings Φ : µ ∈ P(E1) 7→ Φ(µ) ∈ P(E2)

satisfying the first order decomposition

Φ(µ)− Φ(η) = (µ− η)DηΦ+RΦ(µ, η), (2.1)

where

(i) the first order operators (DηΦ)η∈P(E1) is some collection of bounded integral

operators from E1 into E2 such that ∀η ∈ P(E1), ∀x ∈ E1, (DηΦ)(1)(x) = 0

and

β (DΦ) := sup
η∈P(E1)

β (DηΦ) <∞; (2.2)
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(ii) the collection of second order remainder signed measures (RΦ(µ, η))(µ,η)∈P(E2
1)

on E2 are such that∣∣RΦ(µ, η)(f)
∣∣ ≤ ∫ ∣∣(µ− η)⊗2(g)

∣∣ RΦ
η (f, dg) (2.3)

for some collection of integral operatorsRΦ
η from B(E2) into the set Osc1(E1)

2

such that

sup
η∈P(E1)

∫
osc(g1)osc(g2)R

Φ
η (f, d(g1 ⊗ g2)) ≤ osc(f)δ

(
RΦ
)
with δ

(
RΦ
)
<∞.

(2.4)

We observe that any mapping Φ ∈ Υ(E1, E2) is Fréchet differentiable in the

sense that

Φ(µ)− Φ(η)− (µ− η)DηΦ = o(µ− η),

where limµ→η ∥(µ − η)∥−1
tv ∥o(µ − η)∥tv. This implies that Φ is also Gâteaux

differentiable at any µ ∈ P(E1) in any direction ν = (η − µ) ∈ M0(E1), with

η ∈ P(E1), in the sense that

lim
ϵ↓0

∥∥∥∥1ϵ [Φ(µ+ ϵν)− Φ(µ)]− νDµΦ

∥∥∥∥
tv

= 0.

One practical way to compute the integral operator DµΦ is to check that for any

f ∈ Bb(E2) we have that

d

dϵ
Φ(µ+ ϵν)(f)|ϵ=0 = νDµΦ(f).

Inversely, let Φ be a Gâteaux differentiable mapping at any µ ∈ P(E1) in

any direction ν = (η − µ) ∈ M0(E1), with η ∈ P(E1), such that

lim
ϵ↓0

∥∥∥∥1ϵ [νDµ+ϵνΦ− νDµΦ]− ν⊗2D2
µΦ

∥∥∥∥
tv

= 0

for some bounded integral operator D2
µΦ from Bb(E2) into Bb(E1 × E1). Here

again, one way to compute D2
µΦ is to check that

d2

dϵ2
Φ(µ+ ϵν)(f)|ϵ=0 =

d

dϵ
νDµ+ϵνΦ(f)|ϵ=0 = ν⊗2D2

µΦ(f).

We further assume that the mappings (ν, µ) 7→ ν⊗2D2
µΦ and (ν, µ) 7→ νDµΦ are

continuous. In this situation, Φ is C2-Gâteaux differentiable mapping at any

µ ∈ P(E1)) in any direction ν = (η − µ) ∈ M0(E1), with η ∈ P(E1), and we

have Taylor’s theorem with integral remainder

Φ(µ+ ν) = Φ(µ) + νDµΦ+

∫ 1

0
(1− t) ν⊗2D2

µ+tνΦ dt.
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The r.h.s. integral is the Gelfand-Pettis weak sense integral in Brooks (1969).
This yields the first order decomposition

Φ(η) = Φ(µ) + (η − µ)DµΦ+RΦ(η, µ)

with the second order remainder measure

RΦ(η, µ) =

∫ 1

0
(1− t) (η − µ)⊗2D2

µ+t(η−µ)Φ dt.

We say that a collection of Mckean transitions Kη from a measurable space
(E1, E1) into another (E2, E2) satisfy condition (K) as soon as the Lipschitz type
inequality is met for every f ∈ Osc1(E2):

(K) ∥ [Kµ −Kη] (f)∥ ≤
∫

|(µ− η)(h)| TKη (f, dh). (2.5)

Here TKη stands for some collection of bounded integral operators from B(E2)
into B(E1) such that

sup
η∈P(E1)

∫
osc(h) TKη (f, dh) ≤ osc(f) δ

(
TK
)

(2.6)

for some finite constant δ
(
TK
)
< ∞. With Kη(x, dy) = Φ(η)(dy), for some

mapping Φ : η ∈ P(E1) 7→ Φ(η) ∈ P(E2), condition (K) is a simple Lipschitz
type condition on the mapping Φ. In this situation, we denote by (Φ) the corre-
sponding condition; and whenever it is met, we say that the mapping Φ satisfy
condition (Φ).

Throughout this paper we assume

(H1) The given collection of McKean transitions Kn,η satisfies (2.5) and (2.6),
and that the one-step mappings

Φn : µ ∈ P(En−1) −→ Φn(µ) := µKn,µ ∈ P(En)

governing (1.6) are chosen so that Φn ∈ Υ(En−1, En), for any n ≥ 1.

Several examples of non linear semigroups satisfying these weak regularity,
assumptions can be found in Del Moral and Rio (2011) and Del Moral (2013),
including Gaussian type mean field models, and McKean velocity models of gases.
We illustrate our assumptions in the context of Feynman-Kac type models. In
this situation, we have the easily checked formulae

[Φn+1 (µ)− Φn+1 (η)] (f) =
1

µ(Gn,η)
(µ− η) [Gn,η Mn+1,η(f)]

= (µ− η) [Gn,η Mn+1,η(f)]

+
1

µ(Gn,η)
[η − µ] (Gn,η) (µ− η) [Gn,η Mn+1,η(f)]
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with Gn,η = Gn/η(Gn) and Mn+1,η(f) := Mn+1(f)− Φn+1 (η) (f). Assuming

that gn = supx,y Gn(x)/Gn(y) <∞, we find the Lipschitz estimates

|[Φn+1 (η)− Φn+1 (η)] (f)| ≤ gn |(µ− η)DηΦn+1(f)| , (2.7)

as well as the first order estimation

|[[Φn+1 (η)− Φn+1 (η)]− (µ− η)DηΦn+1] (f)|
≤ gn |[η − µ] (Gn,η)| |(µ− η) [DηΦn+1(f)]|

with the first order functional DηΦn+1(f) = Gn,η Mn+1,η(f).

The corresponding one-step mappings Φn(η) = ηKn,η and the corresponding

semigroup Φp,n satisfy condition (Φp,n) for some collection of bounded integral

operators T
Φp,n
η .

2.2. Main results

The best way to present moderate deviations is to start with the analysis

of the fluctuations of the particle occupation measures. For mean field particle

models, these central limit theorems are based on a stochastic perturbation inter-

pretation of the local sampling errors. The random fields associated with these

perturbation models are defined below.

Definition 1. (V N
n ,WN

n ) is the sequence of random fields given by the pair of

stochastic perturbation formulae

ηNn = ηNn−1Kn,ηNn−1
+

1√
N

V N
n = ηn +

1√
N

WN
n , (2.8)

where ηNn = (1/N)
∑N

j=1 δξ(N,j)
n

is the empirical distribution of ξNn .

The sequence V N
n is sometimes referred to the local sampling random field

model. The centered random fields V N
n have conditional variance functions given

by

E(V N
n (fn)

2
∣∣ ξNn−1 ) = ηNn−1

[
Kn,ηNn−1

(
(fn −Kn,ηNn−1

(fn))
2
)]
. (2.9)

To analyze the propagation properties of the sampling errors, up to a second

order remainder measure, by assumption that Φn ∈ Υ(En−1, En), we have the

first order decomposition

Φn(η)− Φn(µ) ≃ (η − µ)DµΦn (2.10)

with a first order integral operator DµΦn from B(En) into B(En−1).

Definition 2. (Dp,n)0≤p≤n is the semigroup Dp,n = Dp+1Dp+1,n, associated with

the integral operator Dn = Dηn−1Φn.



932 PIERRE DEL MORAL, SHULAN HU AND LIMING WU

We use the convention Dn,n = Id, for p = n. Using the decomposition

WN
n = V N

n +
√
N
[
Φn(η

N
n−1)− Φn(ηn−1)

]
≃ V N

n +WN
n−1Dηn−1Φn =⇒WN

n ≃
n∑
p=0

V N
p Dp,n, (2.11)

we proved in Del Moral and Rio (2011) that the sequence of random fields
(V N
n )n≥0 converges in law, as N tends to infinity, to the sequence of n indepen-

dent, centered Gaussian random fields (Vn)n≥0 with a covariance function with,
for any f, g ∈ B(En), the space of the bounded and measurable real functions on
En and n ≥ 0,

E(Vn(f)Vn(g)) = ηn−1Kn,ηn−1([f −Kn,ηn−1(f)][g −Kn,ηn−1(g)]). (2.12)

In addition, WN
n converges in law, as the number of particles N tends to infinity,

to a centered Gaussian random field

Wn =

n∑
p=0

VpDp,n. (2.13)

Here we analyze asymptotic expansions for probabilities of moderate devia-
tions. We first give the description of a large deviation principle (LDP).

Definition 3. With (α(N))N≥1 a sequence of positive numbers such that limN→∞
α(N) = ∞, a sequence of random variables XN with values in a topological
state space (S,S) satisfies an LDP with speed α(N) and good rate function
I : x ∈ S 7→ I(x) ∈ [0,∞] if: for every finite constant a < ∞, the level sets
{x ∈ S : I(x) ≤ a} are compact sets; for each A ∈ S,

−I
( o
A
)
≤ lim inf

N→∞

1

α(N)
logP

(
XN ∈ A

)
≤ lim inf

N→∞

1

α(N)
logP

(
XN ∈ A

)
≤ −I

(
A
)

where, for a subset B ⊂ S, I(B) := infx∈B I(x).
A sequence of random variables YN satisfies a moderate deviation principle

(abbreviate MDP) with good rate function I and speed α(N) if the sequence
of random variables XN := YN/

√
α(N) satisfies an LDP with speed α(N) and

good rate function I.

Theorem 1. For any nondecreasing function α(N) such that limN→∞ α(N)/N =
0, any n ≥ 0, and any collection of functions fp ∈ B(Ep), 0 ≤ p ≤ n, we have

lim
N→∞

1

α(N)
logE

(
exp

{√
α(N)

n∑
p=0

V N
p (fp)

})
=

1

2

n∑
p=0

E
(
Vp (fp)

2
)
, (2.14)

lim
N→∞

1

α(N)
logE

(
exp

{√
α(N) WN

n (fn)
})

=
1

2
E
(
Wn (fn)

2
)
. (2.15)
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The proof is in Section 3.2 and Section 3.3. Here (2.15) is a more or less

direct consequence of (2.14) combined with(2.11).

Now, for any finite subset Fn = {f1n, . . . , fdnn } ⊂ B(En)dn , with dn ≥ 1,

consider the projection mapping

πFn : µ ∈ M(En) 7→ πFn(µ) = (µ(f))f∈Fn
∈ RFn ≃ Rdn .

By a theorem of J. Gärtner and R.S. Ellis, using (2.15), we prove the following.

Corollary 1. The random sequence πFn(W
N
n ) satisfies an MDP principle in Rdn

with speed α(N) and good rate function given for any v ∈ Rdn, since

IWn
Fn

(v) = sup
u∈Rdn

(
⟨u, v⟩ − 1

2
E

(( d∑
i=1

ui Wn(f
i
n)
)2))

with ⟨u, v⟩ :=
dn∑
i=1

uivi.

(2.16)

If the covariance matrix CFn :=
(
E
(
Wn

(
f in
)
Wn

(
f jn
)))

1≤i,j≤dn
is invertible,

then the rate function IWn
Fn

takes the form

IWn
Fn

(v) =
1

2
⟨v, C−1

Fn
v⟩.

Using (2.14), we readily prove the following corollary.

Corollary 2. The random sequences
[
πF0

(
V N
0

)
, . . . , πFn

(
V N
n

)]
satisfy a MDP

principle in Rd0+...+dn with speed α(N), and the good rate function given for any

v = (v0, . . . , vn) ∈ Rd0+...+dn since

I
V[0,n]

F[0,n]
(v) =

n∑
p=0

I
Vp
Fp
(vp),

with the functions IVnFn
on Rdn defined as IWn

Fn
by replacing in (2.16) the field Wn

by Vn.

We strengthen these MDP in two ways, firstly, deriving the MDP for the

random fields sequences on the set of measures equipped with the τ topology.

Theorem 2. When the state spaces En are Polish spaces (metric, complete and

separable), the sequence of random fields
(
V N
0 , . . . , V N

n

)
satisfies an MDP in the

product space
∏n
p=0M(Ep) equipped with the product τ topology, with speed α(N)

and the good rate function I[0,n] given for any µ = (µp)0≤p≤n ∈
∏n
p=0M(Ep) by

I[0,n](µ) =

n∑
p=0

Ip(µp),
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where the good rate functions In on M(En) are for any µn ∈ M(En),

In(µn) = sup
f∈B(En)

(
µn(f)−

1

2
ηn−1

(
Kn,ηn−1

[
f −Kn,ηn−1(f)

]2))
. (2.17)

The sequence of random fields WN
n satisfies an MDP in M(En) (equipped with

the τ topology), with speed α(N) and good rate function

Jn(ν) = inf
{ n∑
p=0

Ip(µp) : µ s.t. ν =

n∑
p=0

µpDp,n

}
= sup

f∈B(En)

(
ν(f)− 1

2
E
(
Wn(f)

2
))
. (2.18)

A more explicit description of the rate functions In in terms of integral

operators norms on Hilbert spaces can be found in Section 4.

Our second main result is a functional moderate deviation for stochastic pro-

cesses indexed by a separable collection Fn of measurable functions fn : En → R
such that ∥fn∥ ≤ 1. We let l∞(Fn) be the space of all bounded real functions Fn :

fn ∈ Fn 7→ Fn(fn) ∈ R on Fn with the supnorm ∥Fn∥Fn = supfn∈Fn
|Fn(fn)|.

This vector space is a non-separable Banach space if the set of functions Fn is

infinite. To measure the size of a given class Fn, consider the covering numbers

N(ϵ,Fn, Lp(µ)) defined as the minimal number of Lp(µ)-balls of radius ϵ > 0

needed to cover Fn. By N (ϵ,Fn), ϵ > 0, and by I(Fn) we denote the uniform

covering numbers and entropy integral given by

N (ϵ,Fn) = sup
η∈P(En)

{
N (ϵ,Fn,L2(η))

}
and I(Fn) =

∫ 2

0

√
logN (ϵ,Fn) dϵ.

We assume the following

(A1) N (ϵ,Fn) <∞ for any ϵ > 0, and I(Fn) <∞.

This condition implies that the set Fn is totally bounded in L2(η), for any dis-

tribution η on En. Various classes of functions with finite covering and entropy

integral are given in van der Vaart and Wellner (1996).

For any δ > 0, we set Fn(δ) :=
{
h = (f−g) : (f, g) ∈ Fn s.t. ηn(h

2)1/2≤δ
}
.

(A2) There exists a separable collection F ′
n of measurable functions fn on En,

∥fn∥ ≤ 1, such that I(F ′
n) < c0(n) I(Fn+1) and, for any probability measure µ,

any δ > 0,

∥Φn+1(µ)− Φn+1(ηn)∥Fn+1(δ)
≤ c2(n) ∥µ− ηn∥F ′

n(c1(n)δ)

for some finite constant ci(n) < ∞, i = 0, 1, 2, whose values only depend on the

mapping Φn+1, and on the measure ηn.
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In the context of the Feynman-Kac models, using (2.7), we find that

|[Φn+1 (η)− Φn+1 (ηn)] (h)| ≤ gn

∣∣∣∣(µ− ηn)

(
Gn

ηn(Gn)
(Mn+1(h)− ηn+1(h))

)∣∣∣∣ ,
where gn = supx,y Gn(x)/Gn(y) and

ηn

(( Gn
ηn(Gn)

(Mn+1(h)− ηn+1(h))
)2)

≤ gn ηn

(
Gn

ηn(Gn)
((Mn+1(h)− ηn+1(h)))

2

)
≤ gn ηn+1(h

2).

Using elementary manipulations, we show that (A2) is met with c1(n)=1/(2
√
gn)

≤ 1, c2(n) = 2g2n, and the class of functions

F ′
n =

{
1

2gn

Gn
ηn(Gn)

(Mn+1(f)− ηn+1(f)) : f ∈ Fn+1

}
.

Using Lemma 2.3 in Del Moral and Ledoux (2000), we also prove that I(F ′
n)

< c0(n) I(Fn+1) for some finite constant whose values only depends on gn.

For any finite subset Gn ⊂ Fn, let

πFn,Gn : v ∈ l∞(Fn) 7→ πFn,Gn(v) = (v(g))g∈Gn
∈ l∞(Gn) = RGn

be the restriction mapping defined by πFn,Gn(ν)(g) = v(g), for any gn ∈ Gn. The
MDP of the stochastic processes WN

n on L∞(Fn) are described below.

Theorem 3. If the class of observables Fn satisfies (A1) and (A2), the sequence

of stochastic processes WN
n satisfies the large deviation principle in L∞(Fn) with

the good rate function IWn
Fn

,

v ∈ L∞(Fn), IWn
Fn

(v) = sup
{
IWn
Gn

(πFn,Gn(v)) : Gn ⊂ Fn , with Gn finite
}

= inf {Jn(ν)|ν ∈M0(En), ν(f) = v(f), ∀f ∈ Fn} ,

where Jn is given in (2.18).

For finite sets Fn, this reduces to the MDP presented in (2.16). The τ -

topology on M(En) is sometimes finer than the topology associated with the

seminorm ∥µ − η∥Fn induced by Fn. For instance, when E = Rd and F =

{1(−∞,x] ; x ∈ Rd}, the topology induced by the supremum distance

∥µ− η∥F = sup
x∈Rd

|µ((−∞, x])− η((−∞, x])|
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is strictly coarser than the τ -topology. Then Theorem 3 is a direct consequence

of Theorem 2. In more general situations, by Wu (1994) or a theorem of Ar-

cones (2003b), the MDP for stochastic processesWN
n in L∞(Fn) is deduced from

the MDP of the finite marginals πFn,Gn(W
N
n ), plus the exponential asymptotic

equicontinuity condition

∀y > 0, lim
δ→0

lim sup
N→∞

1

α(N)
logP

( 1√
α(N)

∥∥WN
n

∥∥
Fn(δ)

> y
)
= −∞

with the collection of functions

Fn(δ) := {hn : hn = (fn − gn) with (fn, gn) ∈ F2
n and ηn(h

2
n) ≤ δ}.

The proof is given in Section 5.

3. Asymptotic Laplace Expansions

3.1. Some preliminary results

Lemma 1. For any 0 ≤ p ≤ n, we have Φp,n ∈ Υ(Ep, En) with the first order

decomposition

Φp,n(η)− Φp,n(µ) = [η − µ]DµΦp,n +RΦp,n(η, µ) (3.1)

for some collection of bounded integral kernels DµΦp,n from Ep into En and some

second order remainder signed measures RΦp,n(η, µ). For any N ≥ 1, we have

the first order decomposition

WN
n =

n∑
p=0

V N
p Dp,n +

1√
N

RN
n with RN

n := N

n−1∑
p=0

R
Φp+1

p+1

(
ηNp , ηp

)
Dp+1,n (3.2)

and the semigroup (Dp,n)0≤p≤n at (2.11).

Lemma 2. For every f ∈ Osc1(En), N ≥ 1 and any n ≥ 0 and m ≥ 1, we have

the Lm estimates

E
(∣∣V N

n (fn)
∣∣m ∣∣∣ξ(N)

n−1

)1/m
≤ b(m)

and
√
NE

(∣∣[ηNn − ηn
]
(fn)

∣∣m)1/m ≤ b(m)

n∑
p=0

δ(TΦp,n), (3.3)

as well as the bias estimate

N
∣∣E (ηNn (fn)

)
− ηn(fn)

∣∣ ≤ n∑
p=0

δ(RΦp,n). (3.4)
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A detailed proof of (3.1) is in Del Moral and Rio (2011). Formula (3.2) is

a direct consequence of the inductive decomposition WN
n = V N

n + WN
n−1Dn +√

N RΦn
(
ηNn−1, ηn−1

)
.

The first estimates in Lemma 2 are direct consequence of Kintchine’s in-

equality, and the sencond are more or less direct consequences of the Lipschitz

properties of the semigroups Φp,n. A proof is in Appendix A of the Web Ap-

pendix.

3.2. Second order remainder measures

This section is mainly concerned with the non asymptotic Laplace estimates

of the second order remainder measures

RN
n :=

√
N
[
WN
n −

n∑
p=0

V N
p Dp,n

]
.

Proposition 1. For every f ∈ Osc1(En), N ≥ 1, n ≥ 0, we have

∀ t ∈
[
0,

1

2r(n)

)
E
(
exp

(
t
√
N
∣∣RN

n (fn)
∣∣)) ≤ 1√

1− 2r(n)t
, (3.5)

for some finite constant r(n) ≤
∑n−1

p=0 β(Dp+1,n)
(∑p

q=0 δ(T
Φq,p)

)2
δ
(
RΦp+1

)
.

Proof. By (3.2),

∣∣RN
n (fn)

∣∣ ≤ n−1∑
p=0

∫ ∣∣∣(V N
p

)⊗2
(g)
∣∣∣ RΦp+1

ηp (f, dg).

Combining (3.3) with the generalized Minkowski inequality,(
E
∣∣RN

n (fn)
∣∣m)1/m ≤ b(2m)2 r(n).

Then, for a Gaussian centered random variable with E(X2) = 1, b(2m)2m =

E(X2m) and, for any t ∈ [0, 1/2[,

E(exp
{
tX2

}
) =

∑
m≥0

tm

m!
b(2m)2m =

1√
1− 2t

.

Corollary 3. For every f ∈ Osc1(En), N ≥ 1, n ≥ 0, and for every ϵ > 0, we

have

P
(∣∣RN

n (fn)
∣∣ ≥ ϵ+

r(n)√
N

)
≤ 2e−(ϵ

√
N/2r(n)){1−δn(ϵ,N)},

where
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δn(ϵ,N) =
r(n)

ϵ
√
N

log
(
1 +

ϵ
√
N

r(n)

)
.

For any nondecreasing function α(N) such that limN→∞ α(N)/N = 0, we have

lim
N→∞

1

α(N)
logP

(∣∣RN
n (fn)

∣∣ ≥ ϵ
√
α(N)

)
= −∞. (3.6)

Thus, the random fields 1/
√
α(N)WN

n and 1/
√
α(N)

∑n
p=0 V N

p Dp,n are α(N)-

exponentially equivalent.

Proof. Using the fact that

logE
(
et[R

N
n (fn)−r(n)]

)
≤ −r(n)t− 1

2
log (1− 2r(n)t),

we readily find that

P
(
RN
n (fn) ≥ ϵ+ r(n)

)
≤ exp

(
− sup
t≤1/2

{ ϵ

r(n)
t+ t+

1

2
log (1− 2t)

})
.

Choosing t = (1/2)(1− 1/(1 + ϵ)), we find that

P
(
RN
n (fn) ≥ ϵ+ r(n)

)
≤ exp

(
− ϵ

2r(n)

{
1− r(n)

ϵ
log
(
1 +

ϵ

r(n)

)})
which ends the proof.

We end this section with a technical transfer lemma of Laplace asymptotic

expansions for arbitrary stochastic processes. The proof is elementary, so it is

omitted.

Lemma 3. Let (XN ), (YN ) be two sequences of random valuables such that, for

any λ ≥ 0,

lim
N→∞

1

α(N)
logE

(
eλα(N)XN

)
= Λ(λ) and lim

N→∞

1

α(N)
logE

(
eλα(N)|XN−YN |

)
=0

for some sequence α(N) increasing to infinite and some finite logarithmic moment

generating function Λ(λ). Then for all λ ≥ 0,

lim
N→∞

1

α(N)
logE(eλα(N)YN ) = Λ(λ).

3.3. Asymptotic Laplace transform estimates

This section is mainly concerned with the proof of Theorem 1. Fluctuation

properties of the first order random field sequence
∑n

p=0 V
N
p Dp,n are encoded in

a pair of martingale sequences .
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We associate with collection of functions f = (fn)n≥0 ∈
∏
n≥0 B(En), the

pair of σ
(
ξ
(N)
0 , . . . , ξ

(N)
n

)
-martingale sequences

M (N)
n (f) =

n∑
p=0

V N
p (fp) and E(N)

n (f) :=
1

Z(N)
n (f)

exp
{√

α(N) M (N)
n (f)

}
with the stochastic product

Z(N)
n (f) :=

n∏
p=1

E
(
exp

{√
α(N) V N

p (fp)
}

| ξ(N)
p−1

)
.

For every N ≥ 1, the angle bracket of M
(N)
n (f) is

⟨M (N)(f)⟩n =

n∑
p=0

∆p⟨M (N)(f)⟩

with the random increments

∆n⟨M (N)(f)⟩ := ηNn−1

(
Kn,ηNn−1

[(
fn −Kn,ηNn−1

(fn)
)2])

.

The sequence of martingales M
(N)
n (f) converges in law, as N tends to infinity,

to the Gaussian martingale

Mn(f) =

n∑
p=0

Vp(fp) with ⟨M(f)⟩n =

n∑
p=1

ηp−1

(
Kp,ηp−1

[(
fp−Kp,ηp−1(fp)

)2])
.

The main object here is to prove that

lim
N→∞

1

α(N)
logE

(
e
α(N)

(
(1/

√
α(N)) M

(N)
n (f)

))
=

1

2
⟨M(f)⟩n. (3.7)

Using the exponential martingale decomposition

exp

{√
α(N) M (N)

n (f)− α(N)

2
⟨M (N)(f)⟩n

}
= E(N)

n (f) exp

{
logZ(N)

n (f)− α(N)

2
⟨M (N)(f)⟩n

}
.

We can prove the following estimates. A detailed proof is in Appendix A of the
Web Appendix.

Lemma 4. There exist a pair of functions (τ
(N)
j,n (f))j=1,2 that converge to 0 as

N tends to ∞, such that

e
√
α(N)M

(N)
n (f)−α(N)

2
⟨M(N)(f)⟩n ≤ E(N)

n (f) eτ
(N)
2,n (f)

α(N)
2

⟨M(N)(f)⟩n ,

E(N)
n (f) e−τ

(N)
1,n (f)

α(N)
2

⟨M(N)(f)⟩n ≤ e
√
α(N)M

(N)
n (f)−α(N)

2
⟨M(N)(f)⟩n .
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Proposition 2. We have

lim
N→∞

1

α(N)
logE

(
e
α(N)

(
(1/

√
α(N)) M

(N)
n (f)−(1/2) ⟨M(N)(f)⟩n

))
= 0,

E
(
et

√
N|⟨M(N)(f)⟩n−⟨M(f)⟩n|

)
≤ (1 + tcn) e

(cnt)2/2, (3.8)

where cn stands for some finite constant cn :=
∑n

p=0 c(p) with

c(p) := 2
{
1 + δ

(
TΦp

)
+ δ

(
TKp

)} ∑
0≤q<p

δ(TΦq,p−1).

Before getting to the proof of the proposition, we make a couple of comments.
First, replacing in (3.8) the parameter t by (α(N)/

√
N)t we find that

E
(
etα(N)|⟨M(N)(f)⟩n−⟨M(f)⟩n|

)
≤
(
1 +

tα(N)√
N

cn

)
exp

{
t2α(N)2

2N
c2n

}
,

from which we conclude that

∀t ≥ 0, lim sup
N→∞

1

α(N)
E
(
eα(N) t|⟨M(N)(f)⟩n−⟨M(f)⟩n|

)
= 0.

The stochastic processes

ANn (f) =
1√
α(N)

M (N)
n (f)− 1

2
⟨M (N)(f)⟩n,

BN
n (f) =

1√
α(N)

M (N)
n (f)− 1

2
⟨M(f)⟩n

on the set of sequences f = (fp)0≤p≤n ∈
∏n
p=0 B(Ep), have the following scaling

properties∣∣ANn (f)− ϵ−1 ANn (ϵf)
∣∣ = 1

2
⟨M (N)(f)⟩n (1− ϵ) ≤ 1

2
(1− ϵ)

n∑
p=0

osc(fp)
2;

∣∣BN
n (f)− ϵ−1 BN

n (ϵf)
∣∣ = 1

2
⟨M(f)⟩n (1− ϵ)

for any ϵ ∈ [0, 1]. Here ϵf stands for the sequence of functions (ϵfp)0≤p≤n.
Therefore (3.7) is a direct consequence of Lemma 3.

Proof of proposition 2. Since ⟨M (N)(f)⟩n ≤ σ2n(f) :=
∑n

p=0 osc(fp)
2, using

Lemma 4, shows that

−τ (N)
1,n (f)

1

2
σ2n(f) ≤

1

α(N)
logE

(
e
α(N)

(
(1/

√
α(N)) M

(N)
n (f)−(1/2) ⟨M(N)(f)⟩n

))
≤ τ

(N)
2,n (f)

1

2
σ2n(f).
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This is the first assertion. To prove (3.8), for every n ≥ 1, η ∈ P(En−1), and

fn ∈ B(En), set

Σn(η, fn) := η
(
Kn,η

[
(fn −Kn,η(fn))

2
])
.

For n = 0, let Σ0(η, f0) = η([f0 − η(f0)]
2). We observe that

Σn(η, fn)− Σn(µ, fn) = [Φn(η)− Φn(µ)]
(
f2n
)
+ µ

(
Kn,µ(fn)

2
)
− η

(
Kn,η(fn)

2
)

= [Φn(η)− Φn(µ)]
(
f2n
)
+ [µ− η]

(
Kn,η(fn)

2
)

+µ
(
Kn,µ(fn)

2 −Kn,µ(fn)
2
)
.

This implies that

|Σn(η, fn)− Σn(µ, fn)|
≤ | [Φn(η)− Φn(µ)]

(
f2n
)
|+ | [µ− η]

(
Kn,η(fn)

2
)
|+ 2∥Kn,µ(fn)−Kn,η(fn)∥,

and therefore(
E|Σn(ηNn−1, fn)− Σn(ηn−1, fn)|m

)1/m
≤
∫ (

E|(ηNn−1−ηn−1)(g)|m
)1/m

TΦn
ηn−1

(f2n, dg)

+
(
E|(ηNn−1 − ηn−1)

(
Kn,ηn−1(fn)

2
)
|m
)1/m

+2

∫
E
(
|(ηNn−1 − ηn−1)(g)|m

)1/m
TKn
ηn−1

(fn, dg).

Using (3.3), we have the upper bound

√
N E

(
|Σn(ηNn−1, fn)− Σn(ηn−1, fn)|m

)1/m ≤ b(m) c(n),

and one concludes that

√
N E

(
|⟨M (N)(f)⟩n − ⟨M(f)⟩n|m

)1/m
≤ b(m) cn.

The Lm-inequalities then imply that, for any t > 0,

E
(
exp

{
t
√
N
∣∣∣⟨M (N)(f)⟩n − ⟨M(f)⟩n

∣∣∣})
≤
∑
m≥0

1

m!

(
t2c2n
2

)m
+ (tcn)

∑
m≥0

1

m!

(
t2c2n
2

)m
,

Then (3.8) follows, and completes ends the proof.
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3.4. Proof of Theorem 1

Proof of (2.14). This was done in Subsection 3.3.

Proof of (2.14) =⇒ (2.15). If a final time horizon n is fixed, then we have

for any function fn ∈ B(En),

(∀0 ≤ p ≤ n fp = Dp,n(fn)) =⇒
n∑
p=0

V N
p (fp) =

n∑
p=0

V N
p Dp,n(fn).

Let (ANn , B
N
n ) the pair of random fields

ANn =
1√
α(N)

n∑
p=0

V N
p Dp,n and BN

n =
1√
α(N)

WN
n .

By (2.14), we have

lim
N→∞

1

α(N)
logE

(
eα(N) AN

n (fn)
)
= An(fn) := E

(1
2

n∑
p=0

Vp(Dp,n(fn))
2
)

and by (3.5)

∀t ∈
[
0,

N

2α(N)r(n)

[
, E

(
et α(N)|[BN

n −AN
n ](fn)|

)
≤
(
1− α(N)2r(n)t

N

)−1/2

.

This yields that

∀t > 0 lim
N→∞

1

α(N)
logE

(
e tα(N)|[BN

n −AN
n ](fn)|

)
= 0

where (2.15) follows by Lemma 3.

4. Moderate Deviations in τ-topology

We prove Theorem 2. For this theorem we require that the state spaces En
are Polish spaces. The τ -topology on M(En) is the coarsest topology that makes

the maps µ ∈ M(En) 7→ µ(A) continuous, for any measurable set A ∈ E .
We first provide a more explicit representation of the rate functions In ap-

pearing in (2.17). Let K⋆
n,ηn−1

be the adjoint operator of Kn,ηn−1 from L2(ηn−1)

into L2(ηn) given by

∀(f, g) ∈ L2(ηn)× L2(ηn−1), ηn

(
fK⋆

n,ηn−1
(g)
)
= ηn−1(Kn,ηn−1(f) g).

Using a spectral decomposition of the self-adjoint operator K⋆
n,ηn−1

Kn,ηn−1 we
get that

In(µ) =
1

2

∑
m≥0

ηn

[
(hµ)

(
K⋆
n,ηn−1

Kn,ηn−1

)m
(hµ)

]
, (4.1)
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if µ ∈ M(En), µ(En) = 0, µ ≪ ηn, hµ = dµ/dηn ∈ L2(ηn), and In(µ) = +∞
otherwise. A proof of this is in Section 2.4 of the Web Appendix.

4.1. Proof of Theorem 2 by projective limit

Let U(En) be the set of finite partitions Un = (U in)1≤i≤d ∈ Edn of the set En,

with d ≥ 1, and let σ(Un) be the σ-field generated by Un. Take

πUn : µ ∈ M(E) 7→ πUn(µ) ∈ M(En, σ(Un))

as the restriction of the measure µ to the sigma-field σ(Un). Here M(En, σ(Un))

can be identified with RUn ≃ Rd. Furthermore, the σ-algebra and the τ -topology

induced on M(En, σ(Un)) by the restriction mapping πUn coincide with the nat-

ural topology and the Borel sigma-field on Rd.
We say that a partition U ′

n is finer than Un, U
′
n ≥ Un, if σ(U

′
n) ⊃ σ(Un). We

let πU ′
n,Un : µ ∈ M(En, σ(U

′
n)) 7→ πU ′

n,Un(µ) ∈ M(En, σ(Un)) be the restriction

of the measure µ on σ(U ′
n) to the sigma-field σ(Un). The set (M(En, σ(Un)),

πU ′
n,Un)U ′

n≥Un forms a projective inverse spectrum of U(En). We let limUn Mn

be the projective limit space of the spectrum

lim
Un

Mn :=
{
µ ∈

∏
Un∈Un

M(En, σ(Un)) : ∀U ′
n ≥ Un πUn(µ) = πU ′

n,Un(πU ′
n
(µ))

}
.

We take M(En) as the set of finite additive set functions from En into R+,

equipped with the τ1-topology of setwise convergence. Thus, a sequence µk ∈
M(En) τ1-converges to some µ ∈ M(En) if limk→∞ µk(A) = µ(A), for any A ∈
En.

Let θ : limUn Mn → M(En) be the mapping that associates a point µ =

(µUn)Un∈Un ∈ limUn Mn the set function θ ∈ M(En) defined for any A ∈ En by

θ(µ)(A) = µUn(A), where Un ∈ Un is such that A ∈ σ(Un).

By construction of the projective inverse spectrum, and by definition of the τ1
convergence, θ is an homeomorphism.

By Theorem 1, the random sequence V N
n (Un) :=

(
V N
n (U1

n), . . . , V
N
n (Udn)

)
satisfies a MDP in Rd, with speed α(N) and with the good rate function

IUn(v
1, . . . , vd) := sup

u∈Rd

(
⟨u, v⟩ − 1

2
E

(( d∑
i=1

ui Vn(U
i
n)
)2))

.

Since we have

d∑
i=1

ui Vn(U
i
n) = Vn (fu) with fu :=

d∑
i=1

ui 1U i
n
,
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we readily find that

1

2
E

(( d∑
i=1

ui Vn(U
i
n)
)2)

=
1

2
ηn−1

(
Kn,ηn−1

[
fu −Kn,ηn−1(fu)

]2)
from which we conclude that

IUn(πUn(µ)) := sup
f∈B(En,σ(Un))

(
µ(f)− 1

2
ηn−1

(
Kn,ηn−1

[
f −Kn,ηn−1(f)

]2))
.

By a theorem of D. Dawson and J. Gärtner, we deduce the following.

Proposition 3. The sequence of random fields V N
n satisfies an MDP in M(En)

(≃ limUn Mn), with speed α(N) and with the good rate function

Īn(µ) = sup
Un∈Un

IUn(πUn(µ)). (4.2)

The proof of the MDP for V N
n is now a direct consequence of the next lemma.

Lemma 5. The domain Dom(Īn) =
{
µ ∈ M(En) : Īn(µ) <∞

}
of the mapping

Īn is included in M(En) and, for any µ ∈ M(En), the rate function Īn(µ) defined

in (4.2) coincides with In in (2.17).

Remark 1. Since the relative topology on M(En) induced by the τ1 topology

coincides with the τ topology, one concludes that the sequence of random fields

V N
n satisfies a MDP in M(En) with good rate function In.

Further, since the operators πUn are τ -continuous, by the contraction prin-

ciple one concludes that the random fields sequence πUn

(
V N
n

)
satisfies a MDP

in M(En, σ(Un)) with the good rate function

IUn(ν) := inf {In(µ) : µ ∈ M(En) s.t. πUn(µ) = ν}.

Proof of Theorem 2. These constructions extend in a natural way to the

sequence of random fields (V N
n )n≥0. Indeed, using (2.14), we find that the random

sequence(
V N
0 (U0), . . . , V

N
n (Un)

)
with (U0, . . . , Un) ∈ (U0 × . . .× Un)

satisfies an MDP in
(
Rd0 × . . .× Rdn

)
, with speed α(N) and with the good rate

function

IU0,...,Un(v0, . . . , vn) :=

n∑
p=0

sup
up∈Rdp

(
⟨up, vp⟩ −

1

2
E
(
Vp(f

up
p )2

))
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where funn =
∑d

i=1 u
i
n 1U i

n
. Hence by projective limit,

(
V N
0 , . . . , V N

n

)
satisfies the

MDP on M(E0) × · · · × M(En) w.r.t. the product τ1-topology, with the rate
function

I[0,n](µ0, · · · , µn) =
n∑
p=0

Īp(µp).

The proof of Theorem 2 is completed by Lemma 5.
Now, we come to the

Proof of lemma 5. Consider a sequence of partitions Un,d, finer and finer as d

increases, such that σ
(∪

d≥1 Un,d

)
= En. To prove that Dom(Īn) ⊂ M(En), we

use
IUn,d

(πUn,d
(µ)) <∞ ⇒ πUn,d

(µ) ≪ πUn,d
(ηn),

πUn,d
(ηn)

((
dπUn,d

(µ)

dπUn,d
(ηn)

)2
)

≤ IUn,d
(πUn,d

(µ)) ≤ Īn(µ) <∞.

See for instance (2.5) in theWeb Appendix. Therefore
{
dπUn,d

(µ)/dπUn,d
(ηn)

}
d≥1

is a L2-bounded martingale w.r.t. the probability measure ηn and the filtra-
tion (σ(Un,d))d≥1. By the Martingale Convergence Theorem, there is some
hµ ∈ L2(ηn) such that

dπUn,d
(µ)

dπUn,d
(ηn)

→ hµ

in L2(ηn), as d goes to infinity. We show that hµ does not depend on the sequence
(Un,d). In fact if (U ′

n,d)d≥1 is another such sequence of partitions, we consider
a partition Vn,d which is finer than Un,d and U ′

n,d, and such that Vn,d+1 is finer
than Vn,d. As above,

dπU ′
n,d

(µ)

dπU ′
n,d

(ηn)
→ h′µ,

dπVn,d
(µ)

dπVn,d
(ηn)

→ h̃µ

in L2(ηn), as d → ∞. Consequently for any σ(Un,d)-measurable and bounded
function f (with d fixed),

ηn(hµf) = ηn

(
dπUn,d

(µ)

dπUn,d
(ηn)

f

)
= πUn,d

(µ)(f) = πVn,d
(µ)(f) = ηn(h̃µf).

Thus hµ = h̃µ, ηn− a.s.. In the same way h′µ = h̃µ, ηn− a.s.. Hence hµ does not
depend on (Un,d).

Finally for any finite partition Un and σ(Un)-measurable function f , taking
a sequence of partitions (Un,d) containing Un, we get for d large enough

µ(f) = πUn,d
(ηn)

(
dπUn,d

(µ)

dπUn,d
(ηn)

f

)
= ηn(fhµ).
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Consequently µ is the measure hµηn. For the last assertion, we see that

Īn(µ) = sup
Un∈Un

sup
f∈B(En,σ(Un))

(
µ(f)− 1

2
EVn(f)2

)
= In(µ)

by the fact that for any f ∈ B(En), there is a sequence fk ∈
∪
Un∈Un

B(En, σ(Un))
which converges to f over En, and EVn(fk)2 → EVn(f)2 by the expression for

EVn(f)2.

4.2. Some contraction properties

By the contraction principle, the moderate deviation principles presented in

Theorem 2 can be transferred to continuous transformations of the local sampling

random fields V N
n .

Proposition 4. The random fields
∑n

p=0 V
N
p Dp,n and WN

n satisfy the MDP in

M(En) with the good rate function

Jn(ν) = inf
{ n∑
p=0

Ip(µp) : (µp)0≤p≤n ∈
n∏
p=0

M(Ep) s.t. ν =

n∑
p=0

µpDp,n

}
= sup

f∈B(En)

(
ν(f)− 1

2
E
(
Wn(f)

2
))
. (4.3)

Proof. The fact that
∑n

p=0 V
N
p Dp,n satisfies a MDP in M(En) with the the

good rate function (4.3) is an immediate consequence of Theorem 2. On the

other hand, using (2.14) and (2.15), we prove that the random sequences

WN
n (Un) :=

(
WN
n (U1

n), . . . ,W
N
n (Udn)

)
,

n∑
p=0

V N
p Dp,n(Un) :=

 n∑
p=0

V N
p Dp,n(U

1
n), . . . ,

n∑
p=0

V N
p Dp,n(U

d
n)

 ,

with Un = (U in)1≤i≤d ∈ Un, satisfy a MDP in Rd, with speed α(N) and the good

rate function

JUn(v
1, . . . , vd) := sup

f∈B(En,σ(Un))

(
µ(f)− 1

2
E
(
Wn(f)

2
))
.

We conclude that fields WN
n and

∑n
p=0 V

N
p Dp,n satisfy the same MDP in M(En)

with the good rate function

Jn(ν) := sup
Un∈Un

sup
f∈B(En,σ(Un))

(
ν(f)− 1

2
E
(
Wn(f)

2
))

= Jn(ν).
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The last formula comes from the uniqueness property of the rate function, and

ends the proof.

5. Moderate Deviations for Stochastic Processes

This section is mainly concerned with the proof of Theorem 3. By a recent

theorem of Arcones (2003b), this result is a direct consequence of the following

lemma.

Lemma 6. Under the conditions (A1) and (A2), for any y > 0 we have

lim
δ→0

lim sup
N→∞

1

α(N)
logP

( 1√
α(N)

∥∥WN
n

∥∥
Fn(δ)

> y
)
= −∞

with the set of functions Fn(δ) := {hn : hn = (fn − gn) : (fn, gn) ∈ F2
n :

ηn(h
2
n)

1/2 ≤ δ}.

Proof. Consider a collection of independent random variablesX = (Xi)i≥1, with

respective distributions (µi)i≥1 on some measurable state space (E, E), with F a

given collection of measurable functions on E s.t. ∥f∥ ≤ 1.

Let πψ[Y ] be the Orlicz norm of an R-valued random variable Y asso-

ciated with the convex function ψ(u) = eu
2 − 1, and defined by πψ(Y ) =

inf {a ∈ (0,∞) : E(ψ(|Y |/a)) ≤ 1}, with the convention inf∅ = ∞. Take V (X) =√
N (m(X)− µ) as the fluctuation random field associated with the empirical

measures m(X) = (1/N)
∑N

i=1 δXi and their mean average µ = (1/N)
∑N

i=1 µ
i.

Then

πψ (∥V (X)∥F ) ≤ c I(F) (5.1)

for some finite constant c <∞. We further assume that

√
N πψ (∥µ− µ∥F ) ≤ τ(I(F)) (5.2)

some probability measure µ on E and some non decreasing function τ . In this

situation, we have

E
(
et∥V (X)∥F(δ)

)
≤ 4 exp

(
t2

2

[
aδ(F)2 +

1

N
(tbδ(F))2

])
(5.3)

for any t ≥ 0, with the parameters

aδ(F) ≤ c

∫ δ

0

√
logN (F , ϵ) dϵ and bδ(F) ≤ c logN (F , δ) [I(F) + τ(c I(F))]

and some finite constant c < ∞. These results are known, so their proofs are

omitted. Proofs are in Appendix C of the Web Appendix.
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By construction, recalling that 0 ∈ Fn, if we choose δ = 2 then we have

Fn(δ) = Fn(2) = {h = (f − g) : (f, g) ∈ Fn} ⊃ Fn.

Thus, using elementary manipulations we prove that the condition (A2) implies

that

∥Φn+1(µ)− Φn+1(ηn)∥Fn+1
≤ c(n) ∥µ− ηn∥Σn(Fn+1)

for some separable collection Σn (Fn+1) of measurable functions fn on En, s.t.

∥fn∥ ≤ 1, and such that

I(Σn (Fn+1)) < c′(n) I(Fn+1) (5.4)

for some finite constants c(n) and c′(n) <∞. This implies that
√
N
∥∥Φn+1(η

N
n )− Φn+1(ηn)

∥∥
Fn+1

≤ c(n)
∥∥WN

n

∥∥
Σn(Fn+1)

. (5.5)

On the other hand, we have

WN
n+1 = V N

n+1 +
√
N
[
Φn+1(η

N
n )− Φn+1(ηn)

]
,

and therefore

∥∥WN
n+1

∥∥
Fn+1

≤
∥∥V N

n+1

∥∥
Fn+1

+ c(n)
∥∥WN

n

∥∥
Σn(Fn+1)

≤
n+1∑
p=0

cp(n)
∥∥V N

p

∥∥
Σp,n(Fn+1)

with Σp,n = Σp ◦ Σp+1,n, and cp(n) =
∏
p≤q<n c(q). From previous calculations,

we have

πψ

(∥∥WN
n+1

∥∥
Fn+1

)
≤

n+1∑
p=0

cp(n) πψ

(∥∥V N
p

∥∥
Σp,n(Fn+1)

)
.

Combining (5.1) with (5.4), we find that

πψ

(∥∥WN
n+1

∥∥
Fn+1

)
≤ c′′(n) I (Fn+1)

for some finite constants c′′(n). By (5.5), we also have that

√
N πψ

(∥∥Φn+1(η
N
n )− Φn+1(ηn)

∥∥
Fn+1

)
≤ c′′′(n) I (Fn+1)

for some finite constants c′′′(n). This shows that the random fields V N
n satisfy

(5.2).

Arguing as above, we prove that∥∥WN
n

∥∥
Fn(δ)

≤
n∑
p=0

αp(n)
∥∥V N

p

∥∥
Fp,n(βp(n)δ)
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for some separable collection Fp,n of measurable functions fp on Ep, s.t. ∥fp∥ ≤ 1,

and such that I(Fp,n) <∞, and for some finite constants αp(n) and βp(n) <∞.

It follows that

P
(∥∥WN

n

∥∥
Fn(δ)

> y
√
α(N)

)
≤

n∑
p=0

P
(∥∥V N

p

∥∥
Gp,n(δ)

> yp,n
√
α(N)

)
with yp,n = y/[(n+ 1)αp(n)] and Gp,n(δ) := Fp,n(βp(n)δ). On the other hand,

using (5.3) we readily check that

1

α(N)
logP

(∥∥V N
p

∥∥
Gp,n(δ)

> yp,n
√
α(N)

)
≤ −

y2p,n
2a(βp(n)δ)(Fp,n)2

(
1− α(N)

N
y2p,n

( b(βp(n)δ)(Fp,n)
a(βp(n)δ)(Fp,n)

)2)

→N↑∞ −
y2p,n

2a(βp(n)δ)(Fp,n)2

with some finite constant bδ(F), and

aδ(F) ≤ c

∫ δ

0

√
logN (F , ϵ) dϵ→δ↓0 0 ⇒ −

y2p,n
2a(βp(n)δ)(Fp,n)2

→δ↓0 −∞.

This ends the proof of the lemma.
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