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Abstract: Observed images are often blurred. Blind image deblurring (BID) is for

estimating a true image from its observed but blurred version when the blurring

mechanism described by a point spread function (psf) cannot be completely speci-

fied beforehand. This is a challenging “ill-posed” problem, because (i) theoretically

speaking, the true image cannot be uniquely determined by the observed image

when the psf is unknown, and (ii) practically, besides blur, observed images often

contain noise that brings numerical instability to the image deblurring problem.

In the literature, early image deblurring methods were developed under the as-

sumption that the psf is known. More recent methods try to avoid this restrictive

assumption by assuming that either the psf follows a parametric form with some

unknown parameters, or the true image has certain special structures. In this pa-

per, we propose a BID methodology, without imposing restrictive assumptions on

the psf or the true image. It even allows the psf to change over location. Our

method makes use of the hierarchical nature of blurring: image structure is altered

most significantly around step edges, less significantly around roof/valley edges,

and least significantly at places where the true image intensity function is straight.

It pays special attention to regions around step and roof/valley edges when deblur-

ring. Theoretical justifications and numerical studies show that our method works

well in applications.

Key words and phrases: Deconvolution, denoising, edges, jump-preserving surface

estimation, local smoothing, nonparametric regression, principal components.

1. Introduction

Observed images generated by image acquisition devices are usually not ex-
actly the same as the true images, but are degraded versions of their true images
(e.g., Gonzalez and Woods (1992), Qiu (2005)). Degradations can occur in the
entire image acquisition process, and there are many sources of degradation. For
instance, in aerial reconnaissance, astronomy, and remote sensing, images are
often degraded by atmospheric turbulence, aberrations of the optical system,
or relative motion between the camera and the object. Among different degra-
dations, point degradation (or, noise) and spatial degradation (or, blurring) are
the most common in practice. Other types of degradations involve chromatic or
temporal effects. See Bates and McDonnell (1986) for details.
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In the literature, a commonly used model for describing the relationship
between a true image f and its observed but degraded version Z is

Z(x, y) = H{f}(x, y) + ε(x, y), for (x, y) ∈ Ω, (1.1)

whereH{f}(x, y) =
∫ ∫

R2 h(u, v;x, y)f(x−u, y−v) dudv denotes the convolution
between a 2-D point spread function (psf) h and the true image intensity function
f , ε(x, y) is the pointwise noise at (x, y), and Ω is the design space of the image.
In (1.1), it is assumed that f is degraded spatially by h and pointwise by ε,
the spatial blur is linear and the pointwise noise is additive. Commonly, it
is assumed that h, which describes the spatial blurring mechanism, is location
invariant. That is, h(u, v;x, y) does not depend on (x, y).

Image deblurring is for estimating f from Z. This problem is “ill-posed”
for the following reasons. First, even in cases when no noise is contained in Z,
there could be multiple sets of h and f that correspond to the same Z, when h
is unspecified beforehand. Second, the inverse problem to estimate f from Z is
often numerically unstable, caused mainly by noise. For instance, in cases when
h is location invariant and known, from (1.1) we have

F{Z}(u, v) = F{h}(u, v)F{f}(u, v) + F{ε}(u, v), for (u, v) ∈ R2,

where F{f} denotes the Fourier transformation of f . Then, an intuitively rea-
sonable estimator of f can be defined by the inverse Fourier transformation of
F{Z}(u, v)/F{h}(u, v). However, when u2+v2 gets larger, F{h}(u, v) converges
to zero quickly because h is usually a smooth function, where F{Z}(u, v) con-
verges to zero much slower because of the high-frequency noise in Z. Such an
estimator is numerically unstable.

Early image deblurring procedures made the assumption that h is completely
specified. And, in such cases, a major challenge is to overcome numerical dif-
ficulties. To this end, many proposals have been suggested, including inverse
filtering, Wiener filtering, the Lucy-Richardson algorithm, the maximum a pos-
teriori (MAP) procedure, total variation image deblurring, and so forth (e.g.,
Biggs and Andrews (1997), Figueiredo and Nowak (2003), Gonzalez and Woods
(1992), Skilling (1989), Oliveira, Bioucas-Dias, and Figueiredo (2009)). In prac-
tice, it is often difficult to specify h. Image deblurring when h is unspecified is
referred to as the blind image deblurring (BID) problem, which is challenging
due to its “ill-posed” nature. There are some existing procedures to handle the
BID problem. Some of them assume that h follows a parametric model with one
or more unknown parameters, and estimate the parameters together with the
true image f (e.g., Carasso (2001), Hall and Qiu (2007a), Joshi and Chaudhuri
(2005), Katsaggelos and Lay (1990)). Some others assume that f has one or
more regions with certain known edge structures (e.g., Hall and Qiu (2007a),
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Kundur and Hatzinakos (1996), Qiu (2008)). Several authors formulate the BID
problem as a regularization problem with regularization measures on both h and
f (e.g., Chan and Wong (1998), Pruessner and O’Leary (2003), Rudin, Osher,
and Fatemi (1992), You and Kaveh (1996)). Others develop BID methods under
the Bayesian framework (e.g., Fergus et al. (2006), Likas and Galatsanos (2004)).
For overviews on this topic, see Kundur and Hatzinakos (1996) and Levin et al.
(2011).

Model assumptions here are often invalid, or difficult to check. For instance,
the blur in a satellite image is usually caused by wind, turbulence, relative motion
between the satellite and the earth, imperfection of the camera lens, and so
forth. The psf h in such cases is difficult to specify by a parametric model and
may not be location invariant either. As demonstrated by several authors (e.g.,
Carasso (2001), Hall and Qiu (2007a)), image deblurring results are sensitive to
the specification of h. Therefore, the ill-posed BID problem is still mostly open.

We propose a novel approach to the BID problem without imposing restric-
tive assumptions on either h or f . It even allows h to change over location. We
notice that image blurring has hierarchical nature: it alters the image structure
most significantly at step edges (i.e., places where f has jumps), less signifi-
cantly at roof/valley edges (i.e., places where the first-order derivatives of f have
jumps), and least significantly at places where f is straight. We pay special at-
tention to regions around jumps in f and in its derivatives of different orders. In
practice, jumps in the second or higher order derivatives of f are hardly visible,
and only step and roof/valley edges are specially treated in this paper, although
jumps in the second or higher order derivatives of f can be treated similarly. Our
basic tool here is jump regression analysis (JRA) (cf., Qiu (2005)). Under that
framework, (1.1) is regarded as a 2-dimensional (2-D) regression model, f is a
jump regression surface, and various edges correspond to jumps in f and in its
derivatives of different orders. Local smoothing procedures are proposed under
that framework for estimating f by removing both pointwise noise and spatial
blur. Theoretical justifications and numerical studies show that it works well in
applications.

The rest of the article is organized as follows. In the next section, our
proposed methodology is described in detail. Some of its statistical properties
are presented in Section 3. Its numerical performance is investigated in Section
4. Discussions about future research are presented in Section 5. Technical details
and some numerical results are provided in a supplementary file.

2. Methodology

2.1. Step and roof/valley edge detection

In the literature, existing edge detection procedures focus mainly on cases
in which the observed image contains pointwise noise but has no spatial blur
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involved (e.g., Canny (1986), Chu et al. (2012), Garlipp and Müller (2007), Sun
and Qiu (2007)). Here, we try to take into account the possible blurring in the
observed data when detecting edges. For simplicity, assume that the design space
is Ω = [0, 1] × [0, 1], and (xi, yj) = (i/n, j/n), for i, j = 1, . . . , n. Observations
{(xi, yj , Zij), i, j = 1, . . . , n} are assumed to be from model (1.1),

Zij = H{f}(xi, yj) + εij , for i, j = 1, . . . , n, (2.1)

where εij are i.i.d. errors with mean 0 and unknown variance σ2. For a given point
(x, y) ∈ [k1/n, 1 − k1/n] × [k1/n, 1 − k1/n], where the positive integer k1 < n/2
is a bandwidth, we consider its circular neighborhood

O′
n(x, y) =

{
(u, v) : (u, v) ∈ Ω and

√
(u− x)2 + (v − y)2 ≤ k1

n

}
.

In this neighborhood, we consider the local linear kernel (LLK) smoothing pro-
cedure

min
a,b,c

∑
i2+j2≤k21

[
Z (x+ i/n, y + j/n)−

(
a+ b

i

n
+ c

j

n

)]2
K∗
(

i

k1
,
j

k1

)
, (2.2)

where K∗ is a circularly symmetric bivariate density kernel function defined on
the unit disk centered at the origin. Let the solution for {a, b, c} at (2.2) be
denoted as {â(x, y), b̂(x, y), ĉ(x, y)}. Then, (̂b(x, y), ĉ(x, y)) is an estimator of the
gradient of the true regression surface f at (x, y). Now, we divide O′

n(x, y) into
two halves, denoted as U ′

n(x, y) and V ′
n(x, y), along the direction perpendicular to

(̂b(x, y), ĉ(x, y)). The change in the values of f from V ′
n(x, y) to U ′

n(x, y) should
be relatively large if (x, y) is on a step edge segment. Also, in cases when spatial
blur is present, design points in O′

n(x, y) closer to the step edge segment would
have more blurring involved. By combining these two facts, we define our step
edge detection criterion by

M(1)
n (x, y) =

|â+(x, y)− â−(x, y)|√ ∑
(xi,yj)∈U′

n(x,y) bij(x,y)
2[∑

(xi,yj)∈U′
n(x,y) bij(x,y)

]2 +

∑
(xi,yj)∈V ′

n(x,y) b
′
ij(x,y)

2[∑
(xi,yj)∈V ′

n(x,y) b
′
ij(x,y)

]2
,

where â+(x, y) and â−(x, y) are respectively the solutions to a of the following
local weighted least square problems:

min
a,b,c

∑
U ′
n(x,y)

[
Z
(
x+ i

n , y +
j
n

)
−
(
a+ b i

n + c j
n

)]2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, (2.3)

min
a,b,c

∑
V ′
n(x,y)

[
Z
(
x+ i

n , y +
j
n

)
−
(
a+ b i

n + c j
n

)]2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, (2.4)
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bij(x, y) =
[
B1(x, y) +B2(x, y)

i
n +B3(x, y)

j
n

]
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
,

B1(x, y) = t20(x, y)t02(x, y)− t11(x, y)t11(x, y),

B2(x, y) = t01(x, y)t11(x, y)− t10(x, y)t02(x, y),

B3(x, y) = t10(x, y)t11(x, y)− t01(x, y)t20(x, y),

ts1,s2(x, y) =
∑

U ′
n(x,y)

(
i
n

)s1 ( j
n

)s2
K∗
(

i
k1
, j
k1

)
L∗
(

d′ij
k1/n

)
, s1, s2 = 0, 1, 2,

with b′ij(x, y) defined in the same way as bij(x, y) except that U ′
n(x, y) in the

definition of ts1,s2(x, y) should be replaced by V ′
n(x, y), L

∗ is a univariate increas-

ing density kernel function with support [0, 1], and d′ij is the Euclidean distance

from the point (xi, yj) to the line dividing O′
n(x, y) into U ′

n(x, y) and V ′
n(x, y).

Our step edge detection criterion is a standardized difference between the two

one-sided local linear kernel estimators â+(x, y) and â−(x, y). By using the two

kernel functions K∗ and L∗, design points farther from (x, y) or closer to the line

dividing O′
n(x, y) into U ′

n(x, y) and V ′
n(x, y) would receive less weights. Then,

the design point (x, y) is flagged as a detected step edge pixel if

M(1)
n (x, y) > unσ, (2.5)

where un is a threshold value. As pointed out by Rudin, Osher, and Fatemi

(1992), detected edge pixels by (2.5) usually contain two types of deceptive ones:

those scattered in the whole design space due to randomness and those around

true edge curves due to thresholding. They can be deleted reasonably well by

the two modification procedures proposed in that paper. In practice, σ is often

unknown, and it needs to be estimated from the observed data. To this end, it can

be estimated by the residual mean squares of the conventional LLK smoothing

procedure. The estimator of σ is denoted as σ̂ hereafter.

A related procedure for detecting roof/valley edges is described in the sup-

plementary file.

2.2. Blind image deblurring

Our proposed BID procedure pays special attention to regions around the

detected step and roof/valley edges when deblurring the observed image Z (or,

estimating the true image f from Z). To estimate f at a given design point

(x, y), we consider a circular neighborhood

On(x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ k

n
},

where k < n/2 is a positive integer that could be different from the bandwidths

k1 or k2 used in edge detection. Let {(wl, vl), l = 1, . . . ,m} be detected step edge
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Figure 1. (a): In neighborhoodOn(x, y), the PC line (solid line) goes through
the center of the detected step edge points (small dots) along the direction
that they have the biggest dispersion. (b): In On(x, y), a typical weighting
function used in (2.7) is shown by the surface. (c): A cross section of a
blurred image intensity surface around a step edge (solid line) and the de-
blurred versions by (2.8) when the bandwidth k/n is relatively small (dotted
line) and relatively large (dashed line).

points in On(x, y), w̄, v̄, σww, and σvv be the sample means and sample variances

of {wl, l = 1, . . . ,m} and {vl, l = 1, . . . ,m}, σwv be their sample covariance,

and (W,V ) be a vector variable taking values over {(wl, vl), l = 1, 2, · · · ,m}.
To estimate the underlying step edge segment in On(x, y) from the detected

step edge points, we consider using the principal component (PC) line of the

points {(wl, vl), l = 1, . . . ,m} that goes through the center of these points along

the direction in which they have the biggest dispersion. See Figure 1(a) for a

demonstration. The PC line has the expression

σwv(W − w̄) + (λ1 − σww)(V − v̄) = 0, (2.6)

where λ1 = (1/2)(σww + σvv −
√
(σww − σvv)2 + 4σ2

wv) is the smaller eigenvalue

of the sample covariance matrix of {(wl, vl), l = 1, 2, . . ., m}. In cases when no

blurring is involved in Z, Qiu (1998) has shown that this PC line provides a good

approximation to the underlying step edge segment if the step edge segment has

a unique tangent line at (x, y). In Section 3, we show that this is still true in

cases when Z contains spatial blur.

Intuitively, if Z contains no blur, then f(x, y) can be estimated by a weighted

average of the observations located on the same side of the PC line as (x, y), as in

the image denoising literature (cf., Qiu (1998)). In cases when blurring is present,

if a design point in On(x, y) is closer to the PC line, then it is more likely that the
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corresponding observed image intensity has blurring involved. Thus, it should
receive a smaller weight in the weighted average. To address this issue, besides a
2-D kernel function used in conventional local smoothing to assign more weights
to design points closer to (x, y), a univariate kernel function L is used to assign
less weights to design points closer to the PC line. Then, the deblurred image
f̂(x, y) is defined by the solution to a0 of the following local constant kernel
(LCK) smoothing procedure:

min
a0∈R

∑
Un(x,y)

{
Z
(
x+ i

n , y +
j
n

)
− a0

}2
K
(

i
k ,

j
k

)
L
(

dij
k/n+d(x,y)

)
, (2.7)

where K is a circularly symmetric 2-D kernel density function that can be dif-
ferent from the kernel function K∗ used in edge detection, L is a univariate
increasing density kernel function with support [0, 1] that could also be different
from the kernel function L∗, d(x, y) is the Euclidean distance from point (x, y)
to the PC line, dij is the Euclidean distance from point (xi, yj) to the PC line,
and Un(x, y) denotes the set of design points in On(x, y) that are on the same
side of the PC line as (x, y):

Un(x, y) =


{(xi, yj) ∈ On(x, y) : σwv(xi − w̄) + (λ1 − σww)(yj − v̄) ≥ 0},

if σwv(x− w̄) + (λ1 − σww)(y − v̄) ≥ 0;

{(xi, yj) ∈ On(x, y) : σwv(xi − w̄) + (λ1 − σww)(yj − v̄) < 0},
otherwise.

By algebraic manipulations we have

f̂(x, y) =

∑
(xi,yj)∈Un(x,y)

w̃ij(x, y)Zij∑
(xi,yj)∈Un(x,y)

w̃ij(x, y)
, (2.8)

where w̃ij(x, y) = K(i/k, j/k)L(dij/(k/n+ d(x, y))). By (2.7) and (2.8), we ac-
tually fit a constant in On(x, y), using a weighted average scheme. The weights
are controlled by K (i/k, j/k)L (dij/(k/n+ d(x, y))). When K and L are chosen
to be the ones used in Section 4 and when the detected step edge points are
those shown in Figure 1(a), the weights used in (2.7) when estimating f(x, y) are
demonstrated by the surface shown in Figure 1(b). From the plot, we can see
that (i) only those design points that are on the same side of the PC line as (x, y)
would receive positive weights, and (ii) a given design point would receive more
weight if it is closer to (x, y) and farther away from the PC line. Because of this
weighting scheme, the fitted plane in On(x, y) is mainly determined by observa-
tions whose design points are a certain distance from the PC line. Consequently,
f̂(x, y) would not be affected much by the blurring around the underlying step
edge segment in On(x, y), especially when the blurring extent rn(x, y) (see its
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definition in Section 3) is relatively small, compared to k. In Figure 1(c), a cross
section of a blurred image intensity function around a step edge is shown by the
solid line. The dotted and dashed lines denote the deblurred image intensity
functions by (2.8) when k = rn(x, y) and k = 2rn(x, y), respectively. It can be
seen that (i) the BID procedure (2.8) does have the ability to deblur the image
around step edges, and (ii) it would deblur the image better if the ratio rn/k
is smaller. The second conclusion implies that procedure (2.8) would perform
better if the blurring extent were smaller. If the blurring extent is relatively
large, then the deblurred image by (2.8) may still contain certain blur, although
it mostly eliminated, because (2.8) cannot use a very large bandwidth in order to
avoid large bias in local smoothing. More theoretical and numerical justifications
of (2.8) are given in the next two sections.

Formula (2.8) is for image deblurring around the detected step edges. In
On(x, y), if the number of detected step edge points, denoted as I ′n(x, y), is so
small that it is unlikely to have a step edge segment in On(x, y) (e.g., I

′
n(x, y) <

k,), then we check to see whether On(x, y) would possibly contain a roof/valley
edge segment. When the number of detected roof/valley edge points, denoted as
I ′′n(x, y), is quite large (e.g., I ′′n(x, y) ≥ k) and it is possible to have a roof/valley
edge segment in On(x, y), f̂(x, y) can still be defined by (2.8), except that the
detected step edge points {(wl, vl), l = 1, . . . ,m} should be replaced by the de-
tected roof/valley edge points in its definition. The corresponding estimator
f̂(x, y) should deblur the image well around the detected roof/valley edge points.
When both I ′n(x, y) and I ′′n(x, y) are so small that On(x, y) is unlikely to con-
tain any step or roof/valley edge segments, we suggest estimating f(x, y) by the
conventional LLK estimator, the solution to a0 of the LLK procedure

min
a0,a1,a2

∑
i2+j2≤k2

[
Z
(
x+ i

n , y +
j
n

)
−
(
a0 + a1

i
n + a2

j
n

)]2
K
(

i
k ,

j
k

)
. (2.9)

In such cases, f̂(x, y) has the expression

f̂(x, y) =

∑
i2+j2≤k2 wij(x, y)Zij∑
i2+j2≤k2 wij(x, y)

, (2.10)

where

wij(x, y) =

[
A1(x, y) +A2(x, y)

i

n
+A3(x, y)

j

n

]
K

(
i

k
,
j

k

)
,

A1(x, y) = r20(x, y)r02(x, y)− r11(x, y)r11(x, y),

A2(x, y) = r01(x, y)r11(x, y)− r10(x, y)r02(x, y),

A3(x, y) = r10(x, y)r11(x, y)− r01(x, y)r20(x, y),

rs1s2(x, y) =
∑

i2+j2≤k2

(
i

n

)s1 ( j

n

)s2

K

(
i

k
,
j

k

)
, for s1, s2 = 0, 1, 2.
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Figure 2. A cross section of a blurred image intensity surface around a step
edge (solid line), the deblurred version by (2.8) with local constant kernel
estimation (dashed line), and the deblurred version by (2.8) with local linear
kernel estimation (dotted line).

Comparing (2.10) with (2.8), it can be seen that, when estimating f(x, y), an

LCK estimator is used in (2.8) when (x, y) is close to a step or roof/valley edge

segment, while an LLK estimator is used in (2.10) when (x, y) is far away from

any step or roof/valley edge. That is because the LCK estimator is more robust

to spatial blur around edges, as demonstrated by Figure 2, and the LLK estima-

tor is less biased in continuity regions (cf., Qiu (2005, Chap. 2)). In practice, a

regular image usually contains some regions where no step or roof/valley edge

segments are present. So, at a given pixel (x, y), before estimating a PC line

from the detected step or roof/valley edge pixels in On(x, y), we suggest mak-

ing a judgment to insure that a step or roof/valley edge segment is possible in

On(x, y). One major benefit in this is that the image estimator in (2.10) would

be more efficient than the one in (2.8) at places without any step or roof/valley

edge segments, since the former estimator is constructed from all observations

in On(x, y) while the latter estimator uses only part observations in On(x, y).

After taking all these considerations into account, our proposed BID procedure

is summarized as follows.

Proposed Blind Image Deblurring Procedure

1. Detect step and roof/valley edge points.

2. At a given point (x, y), if the number of detected step edge points I ′n(x, y) ≥ k,

then estimate f(x, y) by (2.6)–(2.8).
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3. If I ′n(x, y) < k but I ′′n(x, y) ≥ k, then still estimate f(x, y) by (2.6)–(2.8), after

the detected step edge points are replaced by the detected roof/valley edge

points in On(x, y) when computing the estimator.

4. If I ′n(x, y) < k and I ′′n(x, y) < k, then estimate f(x, y) by (2.9) and (2.10).

When I ′n(x, y) ≥ k and I ′′n(x, y) ≥ k, the neighborhood On(x, y) likely contains

both step and roof/valley edge segments. For instance, on two different sides of

a step edge segment in On(x, y), the image intensity surface can have different

slopes. So, the step edge segment is also a roof/valley edge segment. In such

cases, the BID procedure focuses on the detected step edge points only, because

step edges would dominate the roof/valley edges in terms of human visual per-

ception about the image. When we make the judgment whether there are step

and/or roof/valley edge segments in On(x, y), the number γn = k is used as a

threshold, which is roughly half of the number of pixels on a line that passes (x, y)

and is parallel to the x- or y-axis in On(x, y). If there is a step (or, roof/valley)

edge segment in On(x, y) and the threshold value un in (2.5) is properly cho-

sen, then the number of detected step edge points (or, detected roof/valley edge

points) is generally larger than k. Our numerical studies show that other num-

bers around k can also be chosen as γn; but such choices can hardly improve

the estimated image. For this reason, we recommend using γn = k, instead of

choosing γn separately, to save some computation.

Like most local smoothing estimators, the estimator f̂(x, y) in (9) or (11) is

well defined in [ξn, 1 − ξn] × [ξn, 1 − ξn] only, where ξn = (k + max(k1, k2))/n.

It is not well defined in the border regions of the design space. This is the so-

called “boundary problem” in the literature (e.g., Qiu (2005, Sec. 3.5)). There

are several existing proposals to overcome this problem. For instance, most

DWT software packages use periodic or symmetric “padding” methods to define

neighborhoods in the border regions (e.g., Nason and Silverman (1994)). In all

numerical examples presented in Section 4, the symmetric “padding” method

is used. By that method, the design space is expanded from [0, 1] × [0, 1] to

[−ξn, 1+ ξn]× [−ξn, 1+ ξn] in the way that the expanded image intensity surface

is symmetric about the border of the original design space.

2.3. Selection of procedure parameters

In the proposed BID procedure, there are several parameters to choose. We

provide an approach that chooses parameters by data-driven procedures.

Our BID procedure consists of two sequential steps for edge detection and for

image estimation. Parameters in these two steps can also be chosen sequentially.

In the edge detection procedures, there are four parameters k1, un, k2 and vn to

choose (k2 and vn are used for roof/valley edge detection). Since detection of step

edges is more important to our procedure, compared to detection of roof/valley
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edges, we suggest choosing k1 and un before choosing k2 and vn. To this end, we
need a performance measure for the set of detected step edges, denoted as Ŝn, in
estimating the set of true step edges, denoted as S. When there is no blurring
in the observed image Z, Qiu (2002) suggested the measure

dQ(Ŝn, S; k1, un) = w
|Ŝn\S|
|Ω\S|

+ (1− w)
|S\Ŝn|
|S|

,

where 0 ≤ w ≤ 1 is a weighting parameter, and |A| denotes the number of design
points in the pointset A. In practice, D can be replaced by D∗ = {(xi, yj) :
dE((xi, yj), D) ≤ 1/(2n)} for the purpose of calculating dQ, where dE is the

Euclidean distance. Obviously, dQ(Ŝn, S; k1, un) is a weighted average of the
proportion of false step edge points detected by (2.5) and the proportion of true
step edge points missed by (2.5). The weight w represents the relative importance
of the first proportion compared to the second, and it should be determined
beforehand. When there is no prior information about the relative importance
of the proportions, we can simply choose w = 0.5.

In simulations, the pointset S is usually known. So, k1 and un can be chosen
by minimizing dQ(Ŝn, S; k1, un). In practice, however, S is often unknown. Then
we propose a bootstrap procedure. Let

{ε̂ij = Zij − â0(xi, yj), i, j = 1, . . . , n}

be the set of residuals obtained from the LLK procedure (2.9) with the bandwidth
k selected separately via the conventional cross validation procedure. Since the
mean function of Z(x, y) is H{f}(x, y), which is the blurred version of f and a
continuous function, these residuals should be reasonable estimates of the random
errors {εij , i, j = 1, . . . , n} in model (2.1). Then, we draw n2 residuals from the
above residual set with replacement, and the selected residuals are denoted as

{ε̃(1)ij , i, j = 1, . . . , n}. The first bootstrap sample is

Z̃(1) =
{
Z̃

(1)
ij = â0(xi, yj) + ε̃

(1)
ij , i, j = 1, . . . , n

}
.

After repeating this process B times, we get B bootstrap samples Z̃(1), Z̃(2), . . .,
Z̃(B), where B is the bootstrap sample size. Assume that the detected sets of step

edge points from these bootstrap samples are S̃
(1)
n , S̃

(2)
n , . . . , S̃

(B)
n , respectively.

Then, k1 and un can be chosen to be the solution of

min
k1,un

1

B

B∑
l=1

dQ

(
S̃(l)
n , Ŝn; k1, un

)
. (2.11)

The parameters k2 and vn can be chosen similarly. Let RV , R̂V n, and

{R̃V
(l)

n , l = 1, . . . , B} be the true set of roof/valley edge points, its estimate
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from the original data, and its estimates from the bootstrap samples, respec-
tively. Then, when RV is known, k2 and vn can be chosen by minimizing
dQ(R̂V n, RV ; k2, vn), which is defined similarly to dQ(Ŝn, S; k1, un). When RV is

unknown, k2 and vn can be chosen by minimizing (1/B)
∑B

l=1 dQ(R̃V
(l)

n , R̂V n; k2, vn).
After edge detection, we need to choose the bandwidth k used in the BID pro-

cedure (2.7)−(2.10) for defining the deblurred image f̂ . In simulations, with the
true image f known, k can be selected by minimizing MSE(f, f̂ ; k) = (1/n2)

∑n
i,j=1

(f(xi, yj)−f̂(xi, yj))
2. In practice, f is never known. To this end, cross-validation

procedures are natural to consider, but, at (1.1), the mean response is the blurred
image H{f}(x, y), instead of f . Cross-validation is appropriate only at places
where f is continuous because H{f}(x, y) and f(x, y) are close if f is straight
around (x, y). On the other hand, observations at design points around the edges
are much affected by the blur; thus, choosing k by minimizing the distance be-
tween individual observations Zij and the leave-one-out estimates of f(xi, yj) may
not be appropriate there. We suggest using the following bootstrap procedure
instead. Let {f̂ (l)(x, y), l = 1, . . . , B} be BID estimates of f constructed from
the B bootstrap samples {Z̃(l), l = 1, . . . , B} as above. Then k is approximated
by the minimizer of

min
k

1

B

B∑
l=1

{
w̃

|Ŝn ∪ R̂V n|

∑
(xi,yj)∈Ŝn∪R̂V n

[
f̂ (l)(xi, yj)− f̂(xi, yj)

]2
(2.12)

+
(1− w̃)

|Ω\(Ŝn ∪ R̂V n)|

∑
(xi,yj) ̸∈Ŝn∪R̂V n

[
f̂
(l)
−(xi,yj)

(xi, yj)− Z̃
(l)
ij

]2}
,

where f̂
(l)
−(xi,yj)

(xi, yj) denotes the leave-one-out estimate at the design point

(xi, yj) constructed from the bootstrap sample Z̃(l), and w̃ ∈ (0, 1) indicates
the relative importance of the two quantities. In (2.12), the first quantity reflects
the effectiveness of deblurring around edges while the second one indicates the
data fidelity in continuity regions.

When defining f̂ (l)(x, y) from Z̃(l), we suggest using the detected step and

roof/valley edge points from the original data, Ŝn and R̂V n, instead of using
detected step and roof/valley edge points from Z̃(l), to save much computation
without losing much efficacy. Also, we have used the same bootstrap samples as
those used in (2.11) for simplicity.

3. Statistical Properties

We discuss some statistical properties of the proposed edge detection pro-
cedures and the BID procedure in this section. In the literature on image de-
blurring, the psf h(u, v;x, y) in model (1.1) is usually assumed to be a den-
sity function since it is believed that the blurring process would not change
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the image mass (cf., Bates and McDonnell (1986)). We do so here. Further,
we assume that h(u, v;x, y) = 0 if

√
u2 + v2 > rn(x, y)/n, where rn(x, y) is

a positive integer indicating the number of rows/columns of pixels that are
affected by the blur at (x, y). Our first result gives some results about the
detected step and roof/valley edge points. The following notations are used:
Ωk1,n = {(xi, yj) : (xi, yj) ∈ [k1/n, 1 − k1/n] × [k1/n, 1 − k1/n]}, JS includes all
singular points in S, defined to be crossing points of step edge segments, points on
a single step edge segment at which there does not exist a unique tangent line of
the edge segment, or points on a single step edge segment at which the jump sizes
in f are 0, JS,k1,n = {(x, y) : dE((x, y), (x

′, y′)) ≤ k1/n, for any (x′, y′) ∈ JS},
JS,k1,n = Ω\Jk1,n, Sk2,n = {(x, y) : dE((x, y), (x

′, y′)) ≤ k2/n, for any (x′, y′) ∈
S}, Sk2,n = Ω\Sk2,n, Ωk2,n is defined similarly to Ωk1,n, JRV includes all singular
points on RV defined similarly to JS , JRV,k2,n is defined similarly to JS,k1,n, and

dH(A,B) = max

{
sup
s1∈A

inf
s2∈B

dE(s1, s2), sup
s1∈B

inf
s2∈A

dE(s1, s2)

}
is the Hausdorff distance between two pointsets A and B.

Theorem 1. Assume that the true image intensity function f has piecewisely
continuous second-order derivatives in each closed subset of [0, 1] × [0, 1] where
f and its first-order derivatives are continuous; at the boundary curves of the
pieces, f has uniformly bounded, directional second-order derivatives from any
direction in a single piece; f also has uniformly bounded, directional first-order
derivatives at any point in RV from any direction passing through a region that
the first-order derivatives are continuous; E(ε311) < ∞; the kernel function K∗

is a Lipschitz-1 continuous, circularly symmetric, density function; the kernel
function L∗ is a Lipschitz-1 continuous increasing density function supported on
[0, 1]; the psf h(u, v;x, y) is bounded uniformly with respect to (u, v) and (x, y); the
blurring extent Rn=supi,j rn(xi, yj), the bandwidths k1, k2, and the sample size
n satisfy the conditions that k1/n = o(1), k2/n = o(1), 1/k1 = o(1), 1/k2 = o(1),
Rn/k1 = o(1), Rn/k2 = o(1), n2 log(n)/k31 = O(1) and n2 log(n)/k32 = O(1); un
and vn satisfy k21/(nun) = o(1), un/k1 = o(1), k21/(nvn) = o(1), and vn/k1 =
o(1). Then

(i) dH

(
Ŝn
∩
(Ωk1,n

∩
JS,k1,n), S

∩
(Ωk1,n

∩
JS,k1,n)

)
= O(k1/n), a.s., and

(ii) dH

(
R̂V n

∩
(Ωk2,n

∩
Sk2,n

∩
JRV,k2,n), RV

∩
(Ωk2,n

∩
Sk2,n

∩
JRV,k2,n)

)
= O(k2/n), a.s..

Remark 1. By Theorem 1, the detected step edge pointset Ŝn converges almost
surely to the true step edge pointset S in Hausdorff distance, after some small
regions around the singular points of S and the border of the design space are
excluded; the detected roof/valley edge pointset R̂V n converges almost surely to
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the true roof/valley edge pointset RV in Hausdorff distance, after some small
regions around the step edge pointset S, the singular points of RV , and the
border of the design space are excluded.

Remark 2. With the assumption thatRn/k1 = o(1), the number of rows/columns
of pixels affected by blur, Rn, is allowed to tend to infinity, but the rate needs
to be slower than that of the number of pixels used in local smoothing, k1. In
terms of the image acquisition, this assumption implies that when the image
acquisition techniques are improved so that the image resolution n is increased,
Rn can increase with it. But, to have a good blind image deblurring result using
our method, Rn cannot increase too fast. Intuitively, this requirement seems
reasonable because when image acquisition techniques are improved, the number
of rows/columns of pixels affected by blur should be under control.

The next theorem establishes the statistical consistency of the deblurred
image by the proposed BID procedure (2.7)−(2.10). Proofs of the theorems are
in the Supplementary file.

Theorem 2. Under the conditions stated in Theorem 1, if we further assume
that k1/k = o(1) and k2/k = o(1), then we have

(i) for any given point (x, y) ∈ Ωk,n\(S
∪

RV ),

f̂(x, y) = f(x, y) +O(
k

n
) +O

(
log(n)

k

)
, a.s.;

(ii) for any given point (x, y) ∈ Ωk,n
∩
(S \ JS),

f̂(x, y) = f(x, y)− C(x, y)CK,L +O(
k

n
) +O

(
k1
k

)
+O

(
log(n)

k

)
, a.s.,

where C(x, y) is the jump magnitude of f at (x, y),

CK,L =

∫ 1
0

∫ 1
−1K(s, t)dtL(s)

∫
u>s k

rn(x,y)
h̃(u, v;x, y)dudvds∫ 1

0

∫ 1
−1K(s, t)dt L(s)ds

,

h̃(u, v;x, y) = h(u cos θ + v sin θ,−u sin θ + v cos θ;x, y), and θ is the acute
angle formed by the tangent line of S at (x, y) and the y-axis;

(iii) for any given point (x, y) ∈ Ωk,n
∩
(RV \ JRV ),

f̂(x, y) = f(x, y) +O(
k

n
) +O

(
k2
k

)
+O

(
log(n)

k

)
, a.s.,

where Ωk,n is defined similarly to Ωk1,n in Theorem 1.



BLIND IMAGE DEBLURRING 893

Remark 3. Result (i) in Theorem 2 establishes the consistency for f̂(x, y) in
continuity regions of f . Result (ii) is about the property of f̂(x, y) around step
edges. It can be checked that the second term on the right hand side of the
equation for f̂(x, y) is of order O(Rn/k). So, under the conditions stated in
the theorem, f̂(x, y) is a consistent estimator of f(x, y) around step edges. Fur-
thermore, if the kernel function L is increasing on [0, 1], then by the Chebyshev
integral inequality (cf., Mitrinovic, Pecaric, and Fink (1993)), we have

CK,L ≤

∫ 1
0

∫ 1
−1K(s, t) dt

∫
u>s k

rn(x,y)
h̃(u, v;x, y) dudv ds∫ 1

0

∫ 1
−1K(s, t) dt ds

.

The right-hand-side of the inequality is the leading term of the asymptotic bias
caused by blur of f̂(x, y) for estimating f(x, y) in cases when L is not used in
constructing f̂(x, y). This result shows that L used in (2.7) is helpful in reducing
the asymptotic bias of f̂(x, y). Result (iii) in the theorem is about the property
of f̂(x, y) around roof/valley edges. The asymptotic bias of f̂(x, y) in this case
can be studied in a similar way to that in result (ii). It is omitted here.

4. Numerical Studies

In this section, we present some examples concerning the numerical per-
formance of the proposed BID procedure (2.7)−(2.10). Throughout this sec-
tion, if there is no further specification, the kernel functions K∗ and K were
both truncated Gaussian density functions, 1/(2π − 3π exp(−0.5)) [exp(−(x2 +
y2)/2)−exp(−0.5)]Ix2+y2≤1, the kernel functions L

∗ and L were both 1/1.194958
exp(x2/2)I0≤x≤1, proportional to the reciprocal of the 1-D truncated Gaussian
density function, w in (2.11) and w̃ in (2.12) were both fixed at 0.5, and B in
(2.11) and (2.12) was chosen to be 100. Degraded images were generated from
(2.1), in which the psf was chosen to be

h(u, v;x, y) =
3

π

(
1−

√
u2 + v2

rn(x, y)/n

)
I√u2+v2≤rn(x,y)/n

,

and the additive random errors εij were N(0, σ2). This psf is circularly symmet-
ric with a blurring extent rn(x, y) that may depend on (x, y). Let ρn(x, y) =
rn(x, y)/n denote the blurring-extent-to-sample-size ratio (BSR) at (x, y). Two
artificial numerical examples are presented in the supplementary file, from which
we can see that our proposed BID procedure (2.7)−(2.10) performs well in various
cases.

Next, we consider the test image of peppers with 256 × 256 pixels, shown
in Figure 3, and compare our proposed BID procedure with three representa-
tives of the existing deblurring methods. The first existing method considered
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Figure 3. Original test image of peppers.

here is the one accomplished by the Matlab’s blind deconvolution routine decon-

vblind, which is based on the method discussed by Biggs and Andrews (1997)

and Jansson (1997) in the framework of the Richardson-Lucy algorithm. The

second method is the total-variation-based image deblurring method proposed

by Oliveira, Bioucas-Dias, and Figueiredo (2009). The third method is the blind

image deconvolution procedure developed under the Bayesian framework by Fer-

gus et al. (2006). These methods are denoted as RL, TV and Bayes, respectively.

RL and Bayes are blind image deblurring schemes, but TV requires the psf h to

be fully specified.

The original test image was first blurred by the psf h with three different

BSR functions: ρ̃
(1)
n (x, y) = 0.03(1− (x− 0.5)2 − (y − 0.5)2), ρ̃

(2)
n (x, y) = 0.03x,

and ρ̃
(3)
n (x, y) = 0.02. Then, additive random noise generated from the N(0, σ2)

distribution was added to the blurred test image, where σ was fixed at 5 or 10.

Figure 4(a) presents the degraded test image in the case with ρ̃
(2)
n and σ = 10.

The deblurred image by our BID method with the bandwidth k/n chosen to be

5/256 is shown in Figure 4(b). The deblurred image by RL is shown in Figure

4(c). The RL algorithm is designed to handle location-invariant blur only, and

the blurring extent rn needs to be specified beforehand. In our simulation, rn was

selected by minimizing the mean squared error of the deblurred image so that it

will have its best performance in the example. The TV procedure requires the

specification of h beforehand. In this example, we tried two schemes for that

purpose: the true expression of h was used, and the second assumed h to be
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the psf of a motion blur along the x-axis , h(u, v;x, y) = (2n/rn)I{|u|≤rn/n}δ0(v),
where δ0 is a point mass at 0. The versions of the TV procedure are denoted
as TV1 and TV2 hereafter, and their deblurred images are shown in Figure
4(d)−(e). To implement the Bayes method, a sub-region of the image needed
to be chosen beforehand. As suggested in Fergus et al. (2006), their algorithm
performs better and runs faster if a smaller patch, rich in edge structure, is
manually selected. Based on our visual impression of the test image, we chose
the sub-region [25/256, 75/256] × [25/256, 75/256], and the deblurred image is
shown in Figure 4(f). From the figure, (i) our proposed method can remove both
noise and blur reasonably well, (ii) the deblurred image by RL contains much
noise and some artifacts, (iii) the TV1 method cannot handle spatially-variant
blur well, in that much artifacts are generated at the boundaries of the image
while its deblurred image in the central part looks reasonably good, (iv) the TV2
method performs poorly, and (v) the Bayes method performs poorly as well: the
observed test image contains much noise and the method is developed mainly
for handling motion blur which is not the case here. We tried several different
choices of the sub-region when implementing the Bayes method, but with no
significant improvement.

Figure 5 presents the corresponding results when ρ̃
(3)
n (x, y) = 0.02 and σ =

10. In such cases, the spatial blur is location invariant. From the figure, it can
be seen that (i) our proposed method sharpens the observed test image, (ii) the
deblurred image by RL contains much noise and many artifacts, (iii) the TV
method performs well when the true psf h is fully specified, (iv) the TV method
does not perform well when h is misspecified, and (v) the Bayes method performs
poorly.

Table 1 presents the root mean squared errors (RMSE) of the four deblurring
methods, based on 100 replicated simulations. In the table, the proposed BID
method is denoted as NEW. It can be seen that (i) the proposed method out-
performs the other methods in most cases considered, and it can handle a wide
variety of blurs since it does not require any restrictive conditions on the psf h,
(ii) the TV method performs the best when the true psf is location-invariant and

fully specified, the case when ρn(x, y) = ρ̃
(3)
n (x, y) for TV1, (iii) the TV method

could perform poorly when h is misspecified, and (iv) both the RL and Bayes
methods cannot deblur the image well.

5. Discussion

Our proposed method for blind image deblurring differs from most existing
methods by imposing little restriction on the psf h and the true image inten-
sity function even allowing h to be spatially variant. Our method makes use of
the hierarchical structure of blurred images by paying special attention to re-
gions around the detected step and valley/roof edges. A data-driven parameter
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a): Observed test image of peppers in the case when ρn(x, y) =
0.03x and σ = 10. (b)-(f): Deblurred images by NEW, TV when h is speci-
fied correctly, TV when h is specified incorrectly, and Bayes, respectively.

Table 1. RMSE values of the four image deblurring methods in the example
of the test image of peppers.

ρ̃
(1)
n (x, y) ρ̃

(2)
n (x, y) ρ̃

(3)
n (x, y)

Methods σ = 5 10 σ = 5 10 σ = 5 10
NEW 19.18 19.37 18.14 19.34 18.07 18.40
RL 30.32 33.66 49.18 52.58 37.90 40.14
TV1 19.40 19.64 64.79 64.59 17.66 17.75
TV2 27.71 36.84 76.27 103.29 20.73 29.36
Bayes 33.78 45.06 42.44 52.81 46.48 48.99

selection scheme based on the bootstrap has been given. Both theoretical justifi-
cations and numerical studies show that the method can remove pointwise noise
and spatial blur well in various scenarios.

There is much room for further improvement. For instance, the current
version of the method uses constant bandwidth and threshold parameters in
step edge and roof/valley edge detection and in image deblurring. The idea of
multilevel smoothing with location-variant bandwidths and threshold values can
be incorporated into the method, but at the cost of computation. Our current
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a): Observed test image of peppers in the case when ρn(x, y) =
0.02 and σ = 10. (b)-(f): Deblurred images by NEW, TV when h is specified
correctly, TV when h is specified incorrectly, and Bayes, respectively.

method does not provide an estimate for the psf h. Much research is needed to

modify it properly so that h can be estimated accurately at the same time the

observed image is deblurred.
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