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Abstract: In survival analysis, the accelerated failure time model is a useful alterna-

tive to the popular Cox proportional hazards model due to its easy interpretation.

Current estimation methods for the accelerated failure time model mostly assume

independent and identically distributed random errors, but in many applications

the conditional variance of log survival times depend on covariates exhibiting some

form of heteroscedasticity. In this paper, we develop a local Buckley-James estima-

tor for the accelerated failure time model with heteroscedastic errors. We establish

the consistency and asymptotic normality of the proposed estimator and propose

a resampling approach for inference. Simulations demonstrate that the proposed

method is flexible and leads to more efficient estimation when heteroscedasticity is

present. The value of the proposed method is further assessed by the analysis of a

breast cancer data set.
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1. Introduction

In survival analysis, the accelerated failure time model is an attractive al-

ternative to the popular proportional hazards model for its simplicity and ease

of interpretability. The conventional accelerated failure time model assumes a

direct linear relationship between Ti, the survival time or some transformation

thereof, and the covariates Xi:

Ti = α+XT
i β + ϵi, i = 1, · · · , n, (1.1)

where α is the intercept, β is the p-dimensional vector of regression coefficients,

and ϵi is the independent and identically distributed (i.i.d.) random error with

mean zero. The accelerated failure time model is semiparametric as the distri-

bution of ϵi is not specified.

A large number of estimation methods have been proposed for the accel-

erated failure time model. By assuming unconditional independence between
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survival and censoring times, the “synthetic data” approaches via the inverse

probability of censoring weighted technique have been studied by Koul, Susarla,

and Van Ryzin (1981), Leurgans (1987), and Fan and Gijbels (1994), among

others. Many methods were developed based on the more relaxed assumption of

conditional independence of survival and censoring times, including the Buckley-

James estimator (Buckley and James (1979); Lai and Ying (1991); Zhou and

Li (2008)), weighted rank estimators (Tsiatis (1990); Ritov (1990); Ying (1993);

Zhou (2005)), and nonparametric maximum profile likelihood estimator (Zeng

and Lin (2007)), to name a few. The asymptotic properties of these estimators

and their associated inference procedures have been formally studied. In particu-

lar, Jin et al. (2003) and Jin, Lin, and Ying (2006) developed proper resampling

procedures for variance estimation of the rank and Buckley-James estimators,

respectively.

A key assumption in the accelerated failure time model is that the random

errors are independently and identically distributed, and independent of the co-

variates, while, in many applications, the random errors depend on the covariates

and exhibit some form of heteroscedasticity. Stare, Heinzl, and Harrell (2000)

showed through simulations that the Buckley-James estimator is biased for the

accelerated failure time model with heteroscedastic errors. Compared with the

vast literature on the standard accelerated failure time model, much less work

has been done for the accelerated failure time model with heteroscedastic er-

rors. Chen and Khan (2000) studied estimation in censored regression models

with nonparametric heteroscedasticity where censoring variables are fixed and

observed. Zhou, Bathke, and Kim (2012) discussed an empirical likelihood infer-

ence approach for a heteroscedastic accelerated failure time model. Zhang and

Davidian (2008) proposed an estimation approach for the accelerated failure time

model via a flexible representation of the error distribution, and they discussed

the extension to incorporate heteroscedasticity of a specific parametric form.

Heuchenne and Van Keilegom (2007) developed an estimation procedure for cen-

sored polynomial regression, where synthetic data points were constructed in a

way to accommodate heteroscedasticity. Liu and Lu (2009) proposed a weighted

least squares method based on the synthetic data transformation (Fan and Gijbels

(1994)), a linear combination of the transformations proposed in Koul, Susarla,

and Van Ryzin (1981) and Leurgans (1987).

Motivated by the iterative least square representations of the Buckley-James

estimator, we develop a local Buckley-James estimator for a heteroscedastic accel-

erated failure time model. The main idea is to recursively impute the censored

survival times by estimating the conditional mean based on the local Kaplan-

Meier estimate of the conditional survival functions. The regression coefficients

are then estimated through ordinary least squares fit based on the imputed sur-

vival times. We establish the theoretical properties of the local Buckley-James
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estimator and propose a resampling procedure for inference. By allowing the

heteroscedasticity to depend on the mean index, our proposed method is free of

the curse of dimensionality.

The rest of the paper is organized as follows. Section 2 describes the het-

eroscedastic accelerated failure time model and the proposed local Buckley-James

estimator. Section 3 presents the theoretical properties of the local Buckley-

James estimator and introduces a resampling procedure for inference. In Section

4, we present a comprehensive simulation study to demonstrate the effective-

ness of the local Buckley-James method. The proposed method is applied to a

breast cancer data set in Section 5. Section 6 concludes the paper with a brief

discussion. The theoretical proofs are given in a Web Appendix.

2. Proposed Method

2.1. The heteroscedastic accelerated failure time model

We consider the heteroscedastic accelerated failure time model

Ti = α+XT
i β + σ(XT

i β)ϵi, i = 1, . . . , n, (2.1)

where Ti is the survival time or some transformation thereof, and ϵi are i.i.d.

random errors with mean zero and standard deviation one. The function σ(XT
i β)

describes the error heteroscedasticity with σ(·) an unspecified nonparametric

function.

One motivation for the model arises when the conditional variance of log-

transformed survival times depends on the covariates through the fitted mean

log-survival. Another occurs in the generalized linear model when the variance of

the response variable is a function of the mean. Letting σ = σ(Xi), an arbitrary

function of the covariate vector Xi, is theoretically enticing, but this imposes

technical difficulties since nonparametric estimation of the function σ(Xi) or the

conditional survival function given Xi is challenging for high dimensional Xi due

to the curse of dimensionality. We focus here on the estimation of β in (2.1).

2.2. The local Buckley-James estimation

Due to right censoring, we only observe the triplets (Yi, δi, Xi), where Yi =

min(Ti, Ci), δi = I(Ti ≤ Ci), and Ci is the corresponding censoring time. Through-

out, we assume that Ti and Ci are conditionally independent given Xi.

When there is no censoring, the classical ordinary least squares (OLS) esti-

mator β̂ can be obtained by solving, for β,

n−1
n∑

i=1

(Xi − X̄n)(Ti −XT
i β) = 0, (2.2)
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where X̄n = n−1
∑n

i=1Xi. The intercept α can be estimated by α̂ = n−1
∑n

i=1

ei(β̂), where ei(b) = Ti −XT
i b for a given vector b.

In the presence of censoring, the exact survival times Ti are unknown for

censored cases with δi = 0. Buckley and James (1979) proposed to replace the

censored Ti in (2.2) with the estimate of E(Ti|Ti ≥ Ci, Yi, Xi), the conditional

expectation of Ti. Buckley-James estimator β̂ can then be obtained by fitting

least squares regression with the imputed survival times. However, the conven-

tional Buckley-James estimator assumes homoscedastic errors and thus does not

work for model (2.1).

To account for heteroscedasticity, we propose a local Buckley-James esti-

mator. The method shares the same spirit as the Buckley-James estimator by

imputing the censored survival time Ti by its estimated conditional mean. Under

the heteroscedastic accelerated failure time model (2.1),

E(Ti|Ti ≥ Ci, Yi, Xi) = E(ei|Ti ≥ Ci, Yi, X
T
i β) +XT

i β (2.3)

=

∫∞
Yi−XT

i β udFβ(u|XT
i β)

1− Fβ(Yi −XT
i β|XT

i β)
+XT

i β,

where Fβ(u|v) is the unknown conditional cumulative distribution function of the

residual ei ≡ ei(β) = Ti −XT
i β given XT

i β = v: Fβ(u|v) = P (ei ≤ u|XT
i β = v).

In the presence of heteroscedastic errors, Fβ(u|XT
i β) depends onXT

i β and cannot

be estimated by the Kaplan-Meier estimate. We adopt the local Kaplan-Meier

estimator (Dabrowska (1987)) to estimate Fβ(u|XT
i β), which is then used to

estimate β through iteration. The proposed local Buckley-James algorithm is as

follows.

Step 1. Obtain an initial coefficient estimator β̂0, for instance, the Buckley-

James estimator.

Step 2. At the ath iteration, impute the censored survival times Ti by

Ỹi(β̂a) = δiYi + (1− δi)Ê(Ti|Ti ≥ Ci, Yi, X
T
i β̂a), i = 1, 2, . . . , n,

where

Ê(Ti|Ti ≥ Ci, Yi, X
T
i β̂a) = XT

i β̂a +

∫∞
ẽi(β̂a)

udF̂β̂a
(u|XT

i β̂a)

1− F̂β̂a
{ẽi(β̂a)|XT

i β̂a}
, (2.4)

with ẽi(b) = Yi−XT
i b. In (2.4), F̂b(u|XT

i b) is the local Kaplan-Meier estimate of

Fb(u|XT
i b), the conditional cumulative distribution function of the residual ei(b)

given XT
i b,

F̂b(t|XT
i b) = 1−

n∏
j:ẽj(b)<t

{
1− Bnj(X

T
i b)δj∑n

k=1 I{ẽk(b) ≥ ẽj(b)}Bnk(X
T
i b)

}
,
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whereBnk, k = 1, 2, . . . , n, is a sequence of non-negative weights with
∑n

k=1Bnk =

1. We choose the Nadaraya-Watson type of weight for Bnk(X
T
i b) (Nadaraya

(1964)),

Bnk(X
T
i b) =

K((XT
i b−XT

k b)/hn)∑n
l=1K((XT

i b−XT
l b)/hn)

,

where hn is the bandwidth such that hn → 0 as n → ∞ and K(·) is a symmetric

kernel function.

Step 3. Fit a least squares regression using the imputed survival times Ỹi(β̂a)

to obtain the updated estimator

β̂a+1 =
{ n∑

i=1

(Xi − X̄n)
⊗2

}−1
n∑

i=1

(Xi − X̄n){Ỹi(β̂a)− Ȳn(β̂a)},

where Ȳn(β̂a) = n−1
∑n

i=1 Ỹi(β̂a).

Step 4. Repeat Steps 2 and 3 until convergence is achieved. We denote the

converged estimator as β̂LBJ .

Our convergence criteria is maxj |β̂a+1,j − β̂a,j | < 0.01, where β̂a+1,j and β̂a,j
are the jth components of β̂a+1 and β̂a, respectively. The number of iterations

needed for convergence depends on such factors as sample size, number of covari-

ates, and censoring pattern. Based on our numerical experience, the algorithm

often converges within 10 iterations. One possible reason is that in Step 1, we

use Buckley-James estimator as the initial estimator; it serves a good starting

value although it is not consistent.

3. Asymptotic Properties and Inference

3.1. Asymptotic properties

The local Buckley-James estimator β̂LBJ is the solution to

Un(b) ≡
n∑

i=1

(Xi − X̄n){XT
i b− Ỹi(b)}

=

n∑
i=1

{∫ ∞

−∞
tdY x

i (t, b) +

∫ ∞

−∞

∫ ∞

t

1− F̂ib(s)

1− F̂ib(t)
dsdJx

i (t, b)
}
= 0,

where Y x
i (t, b) = (Xi− X̄n)I{ẽi(b) ≥ t} and Jx

i (t, b) = (Xi− X̄n)I{ẽi(b) ≥ t, δi =

0} are the indicator processes related to the ith observation, and F̂ib(t) is the

shorthand notation for F̂b(t|XT
i b). Since Un(b) is not a continuous function of b,

to facilitate theoretical investigation, we take the local Buckley-James estimator

β̂LBJ as a zero-crossing of the estimating function Un(b). As in Lai and Ying

(1991), we take Vn(b) as a smooth approximation of Un(b),



868 LEI PANG, WENBIN LU AND HUIXIA JUDY WANG

Vn(b) =

n∑
i=1

{∫ ∞

−∞
tdEY x

i (t, b) +

∫ ∞

−∞

∫ ∞

t

1− Fib(s)

1− Fib(t)
dsdEJx

i (t, b)

}
,

where Fib(t) is defined after (A.1) in the Web Appendix as the limit of F̂ib(t).

We need some regularity conditions.

A1. supi ∥Xi∥ ≤ M , where M is a positive constant, and β ∈ Bp(0, ρ), a p-

dimensional ball in Rp centered at zero and with radius ρ. In addition,

XT
i β has a differentiable and bounded density function fµ(·) and σ(·) is

differentiable.

A2. For all v, Fβ(u|v) has a bounded twice-differentiable density fβ(u|v). In

addition,
∫∞
−∞ u2dFβ(u|v) < ∞ and

∫∞
−∞{ḟβ(u|v)}2/fβ(u|v)du < ∞, where

ḟβ(u|v) is the first derivative of fβ(u|v) with respect to u.

A3. The bandwidth satisfies hn = O(n−1/2+κ), where 0 < κ ≤ 1/6.

A4. The kernel function K(·) is Lipschitz continuous of order one and satisfies∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du < ∞, and

∫
u2K(u)du < ∞.

A5. There exist some constants ν1 and ν2 > 0 such that P (Ci −X ′
iβ > ν1) = 0

and infv Fβ(ν1|v) > ν2 for all v.

A6. For 0 < λ < 1/12, limn→∞ n−3/4
{
inf∥b∥≤ρ,∥b−β∥≥n−λ ∥Vn(b)∥

}
= ∞.

A7. The first order derivative matrix Γn of n−1Vn(b) at β converges to a finite

and nondegenerate matrix Γ, as n goes to infinity.

Conditions A1−A5 are standard conditions. Condition A6 is assumed to

ensure the consistency of the local Buckley-James estimator as the zero-crossing

of Un(b) for b ∈ Bp(0, ρ). Let v(b) denote the limit of n−1Vn(b) as n → ∞. As

shown by Lai and Ying (1991), A6 is satisfied when Γ is nondegenerate, and

v(b) ̸= 0 for b ̸= β with ||b|| ≤ ρ. Condition A7 is needed to establish the

asymptotic normality of the local Buckley-James estimator.

Theorem 1. Under A1−A7 we have, as n → ∞,

(i) β̂LBJ − β = o(n−λ) a.s.;

(ii)
√
n(β̂LBJ − β)

d−→ N(0,Γ−1Σ(Γ−1)′), where Σ is the asymptotic covariance

matrix of n−1/2Un(β) as defined in Lemma 4 of the Web Appendix.

The proof of Theorem 1 is given in the Web Appendix available at http:

//www.stat.sinica.edu.tw/statistica.

3.2. Inference via resampling

Since the matrices Γ andΣ take complicated analytical forms and involve the

unknown conditional error density function, it is impractical to directly estimate

http://www.stat.sinica.edu.tw/statistica
http://www.stat.sinica.edu.tw/statistica
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them to obtain the variance estimate of β̂LBJ . Jin, Lin, and Ying (2006) proposed

a resampling procedure for estimating the variance of the regular Buckley-James

estimator and showed its validity. We adopt a similar resampling approach for

variance estimation of the local Buckley-James estimator, as follows.

We first generate positive random variablesWi, i = 1, 2, . . . , n, with E(Wi) =

Var (Wi) = 1; these are used to introduce random perturbation into the local

Buckley-James estimation. Thus, take

L∗(b) =
{ n∑

i=1

Wi(Xi − X̄n)
⊗2

}−1[ n∑
i=1

Wi(Xi − X̄n){Ỹ ∗
i (b)− Ȳ ∗

n (b)}
]
,

where

Ỹ ∗
i (b) = δiYi + (1− δi)

[∫∞
ẽi(b)

udF̂ ∗
b (u|XT

i b)

1− F̂ ∗
b {ẽi(b)|XT

i b}
+XT

i b
]
,

F̂ ∗
b (t|XT

i b) = 1−
n∏

j:ẽj(b)≤t

[
1− WjBnj(X

T
i b)δj∑n

k=1WkI{ẽk(b) ≥ ẽj(b)}Bnk(X
T
i b)

]
,

and Ȳ ∗
n (b) = n−1

∑n
i=1 Ỹ

∗
i (b). Here F̂ ∗

b (t|XT
i b) is a randomly perturbed version

of the local Kaplan-Meier estimate, Ỹ ∗
i (b) is the imputed survival time based on

F̂ ∗
b (t|XT

i b), and L∗(b) is the result of a perturbed least squares estimation.

Starting from the initial estimate β̂LBJ , β̂
∗ is obtained by iteratively updat-

ing L∗(·) from the previous estimate till the algorithm converges. As in Jin, Lin,

and Ying (2006), it can be shown that given the observed data,
√
n(β̂∗ − β̂LBJ)

converges to the same limiting distribution as
√
n(β̂LBJ − β). The proof of this

follows the proof of Theorem 1, and thus is omitted in the paper. By repeat-

ing the above resampling scheme N times, we obtain the resampled estimates

β̂∗
k, k = 1, 2, . . . , N . The sample variance of {β̂∗

k, k = 1, 2, . . . , N} provides a

consistent variance estimate of β̂LBJ .

4. Simulation Study

In the first simulation study, we compare the finite sample performance of

the Buckley-James (BJ) estimator, the Weighted Least Squares (WLS) estimator

of Liu and Lu (2009), and our proposed local Buckley-James (LBJ) estimator in

various situations. In Scenario 1, data are generated with homoscedastic errors

and covariate-independent censoring. In Scenario 2, data are generated with het-

eroscedastic errors with covariate-independent censoring. Scenario 3 is based on

the simulation setting in Liu and Lu (2009), which assumes heteroscedastic error

and covariate-independent censoring but with more covariates. In Scenario 4,

data are generated with heteroscedastic errors with covariate-dependent censor-

ing.
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For Scenarios 1, 2, and 4, we generated Ti, the log survival time, from the

model

Ti = XT
i β + σ(XT

i β)ϵi, i = 1, . . . , n, (4.1)

where Xi = (Xi1, Xi2)
T , Xi1 ∼ Unif(-1,1), and Xi2 ∼ Bernoulli(0.5). Here

we chose β = (β1, β2)
T = (1, 1)T and σ(XT

i β) = exp(−0.3 − XT
i β) for Sce-

narios 2 and 4, while σ(XT
i β) = 0.7 for Scenario 1. We considered two dif-

ferent families of error distribution for ϵi: standard normal and centered stan-

dard extreme distributions. For Scenario 3, Ti was generated from (4.1) with

Xi = (1, Xi1, Xi2, Xi3, Xi4)
T , where Xi1 ∼ Unif(-1,1), Xi2 = Xi1/3 + 2Xi5/3

with Xi5 ∼ Triangle(-2,2) being independent of Xi1, and Xi3 and Xi4 indepen-

dent Bernoulli random variables with success probability 0.5, both independent

of Xi1 and Xi2. Here β = (6,−1, 2, 1,−1)T , σ(XT
i β) = exp(3.52 − XT

i β), and

ϵi ∼ N(0, 1).

For Scenarios 1, 2, and 3, the censoring time Ci was N(c1, 2). For Scenario 4,

the censoring time Ci was N(c2, 2) if Xi2 = 1, and N(c3, 2) if Xi2 = 0. Constants

ci, i = 1, · · · , 3 were chosen to yield censoring proportions 20% and 40%: c1 = 2.4,

c2 = 1.6, and c3 = 2.9 for 20% censoring; c1 = 1.1, c2 = 0.6, and c3 = 1.9 for 40%

censoring. For each setting, we considered two sample sizes: n = 200 and 400. For

the proposed LBJ method, the bandwidth parameter was hn = 4sd(XT β̂0)n
−1/3,

where sd(XT β̂0) is the standard deviation of the linear index XT β̂0, and β̂0
refers to the initial estimator in the LBJ algorithm. The variance of the LBJ

estimator was computed based on 500 resamplings using the proposed resampling

method with perturbation variables generated from the standard exponential

distribution.

Tables 1−4 summarize the simulation results of three different methods in the

four scenarios. In the tables, bias is the mean bias averaged over 500 simulations,

sd is the Monte Carlo standard deviation, se is the mean estimated standard er-

ror obtained from the resampling procedure, and covp is the empirical coverage

probability of the Wald-type 95% confidence interval. In Scenario 1, with ho-

moscedastic error and covariate independent censoring, all three methods give

essentially unbiased estimation. The resampling procedure for the LBJ method

works reasonably well. The resampling standard errors are close to the Monte

Carlo standard deviations, and the confidence intervals have coverage probabili-

ties close to the 95% nominal level. Not surprisingly, BJ is slightly more efficient

than LBJ as the i.i.d. error assumption is satisfied in this scenario. Both BJ and

LBJ estimators tend to be more efficient than WLS. One possible explanation

is that the imputation procedure in LBJ utilizes the information from the cen-

sored data more efficiently than WLS, which is partly dependent on the inverse

probability weighting principle. In Scenario 2, with heteroscedastic errors, the
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Table 1. Simulation Scenario 1: Homoscedastic Error and Covariate Inde-
pendent Censoring.

LBJ BJ WLS
n CP Coef bias sd se covp bias sd bias sd

Normal Error
20% β1 0.004 0.095 0.096 0.958 0.002 0.092 0.001 0.149

200 β2 0.002 0.110 0.112 0.934 -0.001 0.108 0.013 0.159
40% β1 0.002 0.102 0.107 0.948 0.002 0.101 -0.012 0.232

β2 -0.003 0.122 0.124 0.944 -0.002 0.120 0.018 0.274
20% β1 0.005 0.068 0.070 0.932 0.004 0.068 0.005 0.101

400 β2 0.006 0.078 0.082 0.942 0.004 0.078 0.003 0.109
40% β1 0.007 0.079 0.079 0.948 0.005 0.076 -0.003 0.168

β2 0.005 0.094 0.091 0.948 0.004 0.088 -0.005 0.184
Extreme Error

20% β1 0.006 0.094 0.094 0.954 0.006 0.096 0.009 0.148
200 β2 -0.003 0.112 0.109 0.942 -0.003 0.114 0.004 0.158

40% β1 0.006 0.107 0.106 0.948 0.004 0.109 0.012 0.245
β2 -0.003 0.130 0.123 0.944 -0.005 0.132 0.011 0.269

20% β1 -0.003 0.066 0.066 0.952 -0.003 0.067 -0.004 0.096
400 β2 -0.002 0.076 0.077 0.954 -0.002 0.077 -0.005 0.109

40% β1 -0.004 0.077 0.075 0.930 -0.005 0.081 -0.012 0.164
β2 -0.007 0.088 0.087 0.926 -0.007 0.092 -0.014 0.182

BJ: Buckley-James estimator; LBJ: local Buckley-James estimator; WLS: weighted least squares estimator; bias: mean

bias averaged over 500 simulations; sd: the Monte Carlo standard deviation; se: the mean estimated standard error

obtained from the resampling procedure; covp: the coverage probability of the resampling 95% confidence interval.

Table 2. Simulation Scenario 2: Heteroscedastic Error and Covariate Inde-
pendent Censoring.

LBJ BJ WLS
n CP Coef bias sd se covp bias sd bias sd

Normal Error
20% β1 0.015 0.117 0.124 0.928 0.066 0.119 0.019 0.162

200 β2 0.009 0.116 0.122 0.936 0.059 0.118 0.032 0.167
40% β1 0.034 0.126 0.134 0.924 0.137 0.137 0.016 0.255

β2 0.025 0.130 0.133 0.920 0.126 0.138 0.044 0.288
20% β1 0.015 0.084 0.091 0.946 0.065 0.088 0.015 0.111

400 β2 0.012 0.082 0.089 0.954 0.061 0.086 0.012 0.112
40% β1 0.026 0.090 0.099 0.940 0.129 0.099 0.014 0.184

β2 0.019 0.087 0.097 0.946 0.120 0.097 0.009 0.190
Extreme Error

20% β1 0.012 0.121 0.124 0.936 0.057 0.128 0.017 0.158
200 β2 0.003 0.119 0.121 0.924 0.046 0.127 0.015 0.162

40% β1 0.024 0.129 0.131 0.946 0.124 0.150 0.018 0.263
β2 0.012 0.129 0.130 0.948 0.110 0.147 0.022 0.279

20% β1 0.001 0.085 0.088 0.944 0.044 0.091 -0.002 0.105
400 β2 -0.001 0.082 0.085 0.944 0.042 0.088 -0.003 0.116

40% β1 0.008 0.092 0.094 0.940 0.106 0.109 -0.008 0.177
β2 0.002 0.089 0.091 0.950 0.100 0.106 -0.010 0.190

BJ: Buckley-James estimator; LBJ: local Buckley-James estimator; WLS: weighted least squares estimator; bias: mean

bias averaged over 500 simulations; sd: the Monte Carlo standard deviation; se: the mean estimated standard error

obtained from the resampling procedure; covp: the coverage probability of the resampling 95% confidence interval.
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Table 3. Simulation Scenario 3: Heteroscedastic Error and Covariate-
Independent Censoring with 4 covariates.

LBJ BJ WLS LS
bias sd se covp bias sd bias sd bias sd

Normal Error
n=200; cp=20%

β1 -0.007 0.136 0.112 0.944 -0.069 0.148 -0.003 0.113 0.004 0.168
β2 0.006 0.226 0.199 0.936 0.120 0.254 0.012 0.204 -0.003 0.280
β3 0.009 0.162 0.151 0.934 0.069 0.167 0.017 0.204 0.006 0.262
β4 0.002 0.154 0.145 0.950 -0.082 0.171 -0.023 0.199 0.003 0.241

n=200; cp=40%
β1 -0.016 0.150 0.127 0.938 -0.135 0.189 -0.005 0.215 0.010 0.251
β2 0.025 0.245 0.222 0.928 0.243 0.331 0.018 0.381 -0.014 0.431
β3 0.027 0.191 0.179 0.930 0.142 0.217 0.012 0.346 0.003 0.411
β4 0.002 0.155 0.166 0.950 -0.170 0.222 -0.024 0.385 0.008 0.420

n=400; cp=20%
β1 -0.009 0.093 0.094 0.958 -0.060 0.106 -0.009 0.079 -0.007 0.113
β2 0.005 0.173 0.163 0.956 0.105 0.194 0.010 0.145 0.004 0.202
β3 0.006 0.117 0.120 0.962 0.060 0.122 0.007 0.135 0.006 0.178
β4 0.002 0.108 0.115 0.960 -0.072 0.128 -0.015 0.134 -0.008 0.165

n=400; cp=40%
β1 -0.017 0.108 0.105 0.960 -0.113 0.139 -0.016 0.155 -0.009 0.165
β2 0.017 0.194 0.180 0.948 0.205 0.255 0.003 0.260 -0.011 0.285
β3 0.017 0.140 0.141 0.950 0.117 0.156 0.006 0.247 0.002 0.292
β4 0.002 0.117 0.127 0.940 -0.143 0.172 -0.019 0.258 -0.013 0.289

BJ: Buckley-James estimator; LBJ: local Buckley-James estimator; WLS: weighted least squares estimator; LS: least

squares estimator; bias: mean bias averaged over 500 simulations; sd: the Monte Carlo standard deviation; se: the mean

estimated standard error obtained from the resampling procedure; covp: the coverage probability of the resampling 95%

confidence interval.

Table 4. Simulation Scenario 4: Heteroscedastic Error and Covariate De-
pendent Censoring.

LBJ BJ WLS
n CP Coef bias sd se covp bias sd bias sd

Normal Error
20% β1 0.016 0.117 0.124 0.926 0.076 0.118 0.055 0.148

200 β2 0.000 0.123 0.129 0.938 0.051 0.126 0.331 0.180
40% β1 0.036 0.124 0.128 0.926 0.145 0.132 0.051 0.252

β2 0.020 0.128 0.134 0.936 0.115 0.137 0.690 0.286
20% β1 0.009 0.085 0.096 0.948 0.068 0.081 0.043 0.109

400 β2 0.001 0.082 0.096 0.972 0.048 0.080 0.338 0.120
40% β1 0.024 0.088 0.101 0.940 0.135 0.091 0.030 0.181

β2 0.013 0.088 0.105 0.956 0.109 0.093 0.695 0.188
Extreme Error

20% β1 0.011 0.114 0.121 0.966 0.063 0.120 0.056 0.153
200 β2 0.003 0.113 0.120 0.962 0.045 0.120 0.340 0.181

40% β1 0.027 0.125 0.128 0.946 0.138 0.145 0.057 0.248
β2 0.010 0.124 0.129 0.954 0.101 0.142 0.692 0.281

20% β1 0.005 0.076 0.087 0.956 0.058 0.081 0.039 0.106
400 β2 -0.002 0.078 0.085 0.954 0.037 0.084 0.333 0.127

40% β1 0.013 0.083 0.094 0.964 0.124 0.099 0.019 0.172
β2 0.000 0.085 0.093 0.946 0.090 0.101 0.682 0.200

BJ: Buckley-James estimator; LBJ: local Buckley-James estimator; WLS: weighted least squares estimator; bias: mean

bias averaged over 500 simulations; sd: the Monte Carlo standard deviation; se: the mean estimated standard error

obtained from the resampling procedure; covp: the coverage probability of the resampling 95% confidence interval.
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estimates from BJ are clearly biased, and the bias is more prominent with heav-

ier censoring. In contrast, both LBJ and WLS give unbiased estimations. As in

Scenario 1, LBJ tends to be more efficient than WLS. The design of Scenario 3

is the same as the example used in Liu and Lu (2009). For comparison, in Table

3 we also include the results of the unweighted version (LS) of the weighted least

squares method. Compared with LS, WLS accounts for the heteroscedasticity

by performing a weighted least squares based on the nonparametric estimates of

the error conditional variance, and leads to more efficient estimation. For the

light censoring (20%), WLS and LBJ estimates have similar performances. For

heavier censoring (40%), LBJ estimates have smaller variances than WLS, which

agrees with our observations in Scenarios 1-2. Scenario 4 presents a more com-

plicated design, where the errors are heteroscedastic and the censoring depends

on the covariates, violating assumptions required by BJ and WLS. As observed

in Scenarios 2-3, BJ estimates show systematic biases. The WLS estimates are

also biased, especially for the estimation of β2, the coefficient of the covariate

that affects the censoring distribution.

We conducted a second simulation study to compare our proposed method

with that of Heuchenne and Van Keilegom (2007), denoted by HV. We considered

the same simulation setting for the normal heteroscedastic regression model with

one predictor as studied in Table 3 for model (12) of Heuchenne and Van Keilegom

(2007). The simulation results are summarized in Table 5, with results for the

BJ and HV estimators copied from Table 3 of Heuchenne and Van Keilegom

(2007). We see that here the LBJ and HV methods perform similarly in terms of

efficiency. The method of Heuchenne and Van Keilegom (2007) does rely on the

nonparametric estimation of the conditional distribution of Ti given a univariate

covariate, and is relatively difficult to generalize to multiple covariates due to the

curse of dimensionality in nonparametric estimation.

The proposed LBJ method works competitively well in our simulations, for

homoscedastic or heteroscedastic error, and covariate-dependent or covariate-

independent censoring. It tends to be more efficient than WLS, possibly due to

the efficient imputation step of the LBJ method.

5. Breast Cancer Data Analysis

To illustrate our method, we analyzed a breast cancer data set. The breast

cancer data is from a clinical trial with three treatment arms of adjunct thera-

pies for breast cancer (Farewell (1986)). Besides the observed survival times and

censoring indicator, the data set also contains indicators for two treatments, trt1

and trt2 (control arm is set as the baseline), clinical stage I indicator (an early

stage indicator, equals 1 with tumor size smaller than 2 cm and no positive mov-

able axillary nodes), and the number of lymph nodes having disease involvement.



874 LEI PANG, WENBIN LU AND HUIXIA JUDY WANG

Table 5. Comparison with Heuchenne and Van Keilegom’s method.

β0 β1

Bias Var MSE Bias Var MSE
α0=0.7, α1=9.85, ρ=1, γ=1

BJ 0.085 0.007 0.014 0.181 0.049 0.082
HV 0.063 0.006 0.010 0.135 0.048 0.066
LBJ 0.035 0.007 0.009 -0.077 0.063 0.069

α0=1.5, α1=9.5, ρ=2, γ=2
BJ 0.166 0.027 0.054 0.366 0.197 0.331
HV 0.100 0.023 0.033 -0.266 0.190 0.260
LBJ 0.055 0.028 0.031 -0.141 0.231 0.251

α0=2.4, α1=10, ρ=4, γ=3
BJ 0.230 0.061 0.114 0.475 0.466 0.692
HV 0.119 0.052 0.066 -0.326 0.444 0.550
LBJ 0.088 0.055 0.063 -0.154 0.482 0.505

α0=2.6, α1=10, ρ=4, γ=5
BJ 0.465 0.172 0.388 0.967 1.200 2.130
HV 0.201 0.136 0.177 -0.569 1.160 1.480
LBJ 0.198 0.168 0.207 -0.512 1.430 1.692

BJ: Buckley-James estimator; LBJ: local Buckley-James estimator; HV:

Heuchenne and Van Keilegom’s estimator; Bias: mean bias averaged over 500

simulations; Var: the Monte Carlo variance of 500 estimates; MSE: the mean

squared error of 500 estimates.

The data set contains 139 records with 44 events (censoring proportion is about

68%). To simplify the analysis, we transformed the number of lymph nodes to a

binary variable corresponding to lymph nodes having disease involvement.

As a preliminary analysis, we used the BJ method to fit the data and obtain

the estimator β̂BJ . With Yi − XT
i β̂BJ as the estimated residual and XT

i β̂BJ

as the estimated linear index, Yi the observed log survival time, we plotted the

centered residuals against the estimated linear indices, as shown in panel (a)

of Figure 1. Although the residual plot does not truthfully describe the error

heteroscedasticity since it plots censored residuals together with uncensored ones,

it suggests the existence of error heteroscedasticity. Based on the plot, we can

see that the estimated linear indices mainly focus around 7 values. To better

illustrate the error heteroscedasticity, we plotted the standard deviations of the

fitted residuals around these values. The plot is given in panel (b) of Figure 1,

and shows that the residual variance is not a constant but rather depends on the

linear index in some nonlinear fashion.

We applied our method to the breast cancer data, and compared it with

the BJ and WLS methods. The results from methods BJ, LBJ, and WLS are

summarized in Table 6. Methods BJ and LBJ give similar coefficient estimates.

For predictors trt2 and clinical stage I, the WLS estimates are different from those

of BJ and LBJ. In general, the LBJ estimates have smaller standard errors than
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(a) Breast Cancer Data Analysis - Residual Plot (b) Residual Error Heteroscedasticity

Figure 1. Residual and error heteroscedasticity plots for breast cancer data.

Table 6. Data analysis results: point estimation, standard error and p-value.

LBJ BJ WLS
coeff se p-val coeff se p-val coeff se p-val

trt1 0.506 0.192 0.008 0.480 0.224 0.032 0.416 0.223 0.062
trt2 0.471 0.184 0.010 0.449 0.207 0.030 0.277 0.200 0.167
stage 0.297 0.148 0.045 0.298 0.150 0.048 0.477 0.187 0.011
node -0.811 0.226 0.000 -0.696 0.301 0.021 -0.747 0.185 0.000

trt1 and trt2 are the two treatment indicators, stage is the clinical stage I indicator, and node is the lymph nodes

involvement indicator. The control arm (both trt1 and trt2 equal zero) is treated as baseline in our analysis. BJ:

Buckley-James estimator; LBJ: local Buckley-James estimator; WLS: weighted least squares estimator.

the BJ estimates, resulting in smaller p-values across all variables. LBJ and BJ

identify all covariates as significant, while WLS fails to identify the significant

effectiveness of Treatment 2. Using the same data set, previous analyses by

Farewell (1986), Peng and Dear (2000), and Lu (2010) suggested that Treatment 1

is significantly beneficial in short-term survival while Treatment 2 is significantly

beneficial in long-term survival, and that clinical stage I is significantly associated

with both short-term and long-term survivals. Compared to WLS, the results

from the proposed LBJ method are more in line with these analyses.

6. Discussion

In this paper, we developed a new estimation method for the semiparamet-

ric accelerated failure time model with heteroscedastic random errors. Compared

with most existing methods, our proposed method is more flexible, and it allows

both heteroscedasticity and covariate-dependent censoring. The proposed LBJ

estimator does not require estimating the nonparametric heteroscedasticity func-

tion σ(·), which is computationally appealing. To further improve the efficiency
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of the LBJ estimator, one might consider a weighted least squares estimation

approach by incorporating the nonparametric estimation of σ(·).
Motivated by survival studies and by the generalized linear model, we as-

sumed that the error variance is related to the linear mean survival function

XT
i β through a nonparametric link function σ(·). The essence of the proposed

idea can be adapted for models with more general forms of heteroscedasticity, for

instance, by allowing the conditional variance to depend on the index XT
i γ with

γ a p-dimensional vector possibly different from β. Further research is needed in

this direction.
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