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Abstract: An important problem in multivariate statistics is the estimation of co-

variance matrices. We consider a class of nonparametric covariance models in which

the entries in the covariance matrix depend on covariates. Previously, the locally

constant approach was used for estimating this matrix due to its simplicity. How-

ever, to ensure the positive definiteness of the resulting estimator, a single band-

width parameter was used for estimating all the elements in this matrix. We propose

to use the locally linear method, a technique known to outperform local constant

estimation, for estimating the elements after the modified Cholesky decomposition.

The proposed estimator is guaranteed to be positive definite, allows different de-

grees of smoothing for different elements, possesses good theoretical properties, and

performs well in numerical studies. An application to the Boston housing data is

provided to illustrate the finite-sample performance of the proposed method.

Key words and phrases: Covariance matrix, local constant estimator, local linear

estimator, modified Cholesky decomposition.

1. Introduction

Estimation of covariance matrices is a problem of fundamental importance

in multivariate statistics. A great deal of research has been done in developing

models and approaches for estimation when the structure is complicated (Pourah-

madi (1999); Fan, Huang, and Li (2007)) and dimensionality is large (Bickel and

Levina (2008); Levina, Rothman, and Zhu (2008)). A major difficulty in mod-

elling covariances, as opposed to the mean, is that the resulting estimates must

be positive definite. This requirement puts severe restriction on the feasibility of

developing flexible models and any associated estimation method.

A usual assumption is that covariances between the variables are constant.

This is seldom true. Consider, for example, a genetic network that is used for

studying genes interactions. It is conceivable that correlations between these

genes depend on such biomedical factors as blood pressure, hormone level and

other important biomedical factors, possibly as functions of time (Kolar et al.

(2010)). In finance, covariances between different assets are constantly changing

in response to policies and markets, or simply time (Engle (2002)). In this
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paper, we consider a flexible nonparametric covariance model that allows entries

in the covariance matrix to depend on covariates in a data-adaptive fashion. Fan,

Huang, and Li (2007) studied a model that only allows marginal variances to be

covariate-dependent. Yin et al. (2010) proposed the Nadaraya-Watson kernel

estimator for this model.

In particular, Yin et al. (2010) employed a locally constant argument in form-

ing an estimator. To ensure that the local constant estimator is positive definite, a

single bandwidth is used for estimating all the components. In practice, different

components of the nonparametric covariance matrix may have different degrees

of smoothness. Moreover, locally linear estimators are superior compared to the

locally constant ones in terms of smaller biases, higher statistical efficiency in

an asymptotic minimax sense, and better boundary properties (Fan and Gijbels

(1996)). Though it is much more difficult to develop local linear estimators for

covariance matrices. As pointed out by Yin et al. (2010), it is a major challenge

to develop local linear estimators for these matrices that are positive definite.

We apply local linear kernel regression to each component after the modified

Cholesky decomposition of the nonparametric covariance matrix (Pourahmadi

(1999); Leng, Zhang, and Pan (2010)) and obtain the so-called local linear es-

timator of such a matrix. We show that the proposed estimator is guaranteed

to be positive definite, allows different degrees of smoothness for different com-

ponents, possesses good theoretical properties and performs well in numerical

studies. In the longitudinal data context where variables are naturally ordered,

Wu and Pourahmadi (2003) applied locally constant estimation to smooth rows

or columns in this decomposition. For the spectral estimator of a multivariate

stationary time series, Dai and Guo (2004) proposed to smooth the Cholesky de-

composition of an initial estimate of the multivariate spectrum, and Rosen and

Stoffer (2007) proposed a Bayesian approach to estimate the components of mod-

ified Cholesky decomposition of the inverse of the spectral matrix. We organize

our paper as follows. In Section 2, based on the modified Cholesky decompo-

sition, we propose a local linear estimator of the conditional covariance matrix.

The asymptotic properties of the estimators are given in Section 3. In Section 4,

we report on simulation studies conducted to evaluate the performances of the

proposed method. The proposed approach is further illustrated with a dataset.

A brief discussion is presented in Section 5. Two lemmas and the detailed proofs

of Theorems 1, 2, and 3 are in the Supplementary Material.

2. Local Linear Estimation

Let Y =(y1, . . . , yp)
T be a p-dimensional random vector and U=(u1, . . . , uq)

T

be the associated index random vector. We model the conditional mean and the

conditional covariance of Y given U as m(U) = (m1(U), . . . ,mp(U))T and Σ(U),
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respectively. Suppose (Yi, Ui) with Yi = (yi1, . . . , yip)
T is a random sample from

the population (Y, U) with Y |U ∼ N(m(U),Σ(U)), for i = 1, . . . , n. We are

interested in the estimation of the conditional covariance matrix Σ(u). In this

paper, we only consider q = 1.

We assume that the mean function m(u) is estimated by m̂(u) and discuss

how to estimate it at the end of this section. Given U = u, Yin et al. (2010)

proposed to estimate Σ(u) by minimizing
n∑

i=1

Kh(Ui − u)
[
{Yi −m(u)}TΣ−1(u){Yi −m(u)}+ log(|Σ(u)|)

]
, (2.1)

where Kh(u) = h−1K(u/h) with K(·) being a kernel function and h any ap-

propriate bandwidth. The resulting estimator, known as the Nadaraya-Watson

kernel estimator or the local constant estimator, of the conditional covariance

matrix is

Σ̂LC(u) =
[ n∑

i=1

Kh(Ui − u){Yi −m(Ui)}{Yi −m(Ui)}T
]{ n∑

i=1

Kh(Ui − u)
}−1

.

To ensure the positive definiteness of the local constant estimator, the same

bandwidth h is used for smoothing all the entries (Claeskens and Aerts (2000)).

However, different components of Σ(u) may have different degrees of smooth-

ness. We seek locally linear estimators as more desirable than the local constant

estimators in terms of smaller biases, higher statistical efficiency in an asymptot-

ical minimax sense and better boundary properties (Fan (1993); Fan and Gijbels

(1996)). A natural question arises on how to develop such estimators for covari-

ance matrices that are positive definite.

To guarantee the positive definiteness of the estimated conditional covari-

ance matrix, we make use of the modified Cholesky decomposition by decom-

posing Σ(u) as P (u)Σ(u)P (u)T = D(u), where P (u) is a lower unitriangu-

lar matrix with the (j, l)-th below diagonal entry being −ϕjl(u) and D(u) =

diag(σ2
1(u), . . . , σ

2
p(u)). This decomposition has a clear statistical interpretation

(Pourahmadi (1999)). The below diagonal entries of P (Ui) are the negatives of

the autoregressive coefficients ϕjl(Ui) in the autoregressive models

ŷij = mj(Ui) +

j−1∑
l=1

ϕjl(Ui){yil −ml(Ui)}.

Thus the ordinary regression coefficients of the linear regression of yij on its pre-

decessors yi(j−1), . . ., yi1 are the conditional (given Ui) autoregressive coefficients

ϕjl(Ui). The diagonal entries σ
2
j (Ui) of D(Ui) are the conditional innovation vari-

ances σ2
j (Ui) = var(ϵij |Ui) with ϵij = yij − ŷij . This decomposition is attractive
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in that ϕjl(u) and log{σ2
j (u)} are unconstrained. Let νj(u) := log{σ2

j (u)}. If

we have estimators ϕ̂jl(u) and ν̂j(u) of ϕjl(u) and νj(u), we immediately obtain

estimators P̂ (u) and D̂(u) of P (u) and D(u), and an estimator of Σ(u) can be ob-

tained as Σ̂(u) = P̂−1(u)D̂(u)P̂−1(u)T , which is positive definite. The modified

Cholesky decomposition was first studied in longitudinal data when the order of

the multivariate variables was known. For our problem, it is used as an interme-

diate step in estimating Σ(u) when variables need not be ordered. We illustrate

later that the ordering of the variables has little effect on the performance of the

estimator.

By the modified Cholesky decomposition of Σ(Ui), Σ
−1(Ui)=P (Ui)

TD−1(Ui)

P (Ui), the objective function (2.1) becomes
n∑

i=1

Kh(Ui−u)
[
{Yi−m(Ui)}TP (Ui)

TD−1(Ui)P (Ui){Yi−m(Ui)}+log(|D(Ui)|)
]
,

(2.2)

which is equal to
p∑

j=1

n∑
i=1

Kh(Ui − u)

{
[yij−mj(Ui)−

∑j−1
l=1 ϕjl(Ui){yil−ml(Ui)}]2

σ2
j (Ui)

+ log σ2
j (Ui)

}
.

(2.3)

Here the notation
∑0

l=1 means zero throughout this paper.

Because of the orthogonality between the mean and the covariance matrix

in normal regression (Claeskens and Aerts (2000); Ye and Pan (2006)), we can

replace m(u) in (2.2) or (2.3) by some consistent estimate m̂(u) for estimating

the autoregressive coefficient functions ϕjl(u). If D(u) is taken in (2.2) or (2.3)

to be locally constant, then the innovation variance functions do not affect the

estimation of the autoregressive coefficient functions, leading to the usual local

likelihood

n∑
i=1

Kh(Ui−u)
[
yij−m̂j(Ui)−

j−1∑
l=1

{ϕjl(u)+ϕjl(u)
′
(Ui−u)}{yil−m̂l(Ui)}

]2
. (2.4)

If r̂i := Yi − m̂(Ui), then r̂ij = yij − m̂j(Ui). If X
(j)
i := (r̂i1, . . . , r̂i(j−1), (Ui −

u)r̂i1, . . . , (Ui − u)r̂i(j−1)), Φj(u) := (ϕj1(u), . . . , ϕj(j−1)(u))
T , then minimization

of (2.4) leads to the locally linear estimator of Φj(u),

Φ̂j(u) = (I(j−1),0(j−1))
{ n∑

i=1

Kh(Ui − u)X
(j)T
i X

(j)
i

}−1
n∑

i=1

Kh(Ui − u)X
(j)T
i r̂ij ,

(2.5)

where I(j−1) is a (j− 1)× (j− 1) identity matrix and 0(j−1) is a (j− 1)× (j− 1)

zero matrix. With Φ̂j(u), for j = 2, . . . , p, we obtain the locally linear estimator

P̂ (u) of P (u).
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From (2.3), we use the following to estimate the innovation variance σ2
j (u):

n∑
i=1

Kh(Ui − u)
{[

yij −mj(Ui)−
∑j−1

l=1 ϕjl(Ui){yil −ml(Ui)}
]2

σ2
j (Ui)

+ log σ2
j (Ui)

}
.

(2.6)

We fix mj(u) ≡ m̂j(u) and set ϕjl(u) ≡ ϕ̂jl(u). Define ϵ̂ij := yij − m̂j(Ui) −∑j−1
l=1 ϕ̂jl(Ui){yil − m̂l(Ui)}. Then (2.6) becomes

n∑
i=1

Kh(Ui − u)
{ ϵ̂2ij
σ2
j (Ui)

+ log σ2
j (Ui)

}
. (2.7)

Due to the orthogonality among the mean, the autoregressive coefficient and

the innovation variance (Pourahmadi (2000)), it is reasonable to use (2.7) to

estimate the innovation variances. Unfortunately, the explicit introduction of

local linearity into the estimation of σ2
j (u) via (2.7) does not guarantee positivity.

However, log σ2
j (u) is unconstrained. We follow Yu and Jones (2004) to overcome

this difficulty by modeling log σ2
j (u) as locally linear, and then minimizing

n∑
i=1

Kh(Ui − u)
{
ϵ̂2ij exp{−ν(u)− ν

′
(u)(Ui − u)}+ ν(u) + ν

′
(u)(Ui − u)

}
(2.8)

to obtain the local linear estimator of the innovation variance σ̂2
j (u) = eν̂(u).

Then we have the local linear estimator of D(u), D̂(u). By the modified Cholesky

decomposition, a locally linear estimator of Σ(u) is basically Σ̂(u) = P̂−1(u)D̂(u)

P̂−1(u)T , which is positive definite.

In (2.5) and (2.8), we use the same bandwidth h but this is unnecessary.

To adapt to different smoothness, we can use different bandwidths for different

components of the conditional covariance matrix. In particular, we can introduce

different bandwidths for all Φ̂j(u) (for j = 2, . . . , p) as in (2.5), and all σ̂2
j (u) (for

j = 1, . . . , p) as in (2.8). To choose the right amount of smoothness, we use

leave-one-out cross validation for estimating the autoregressive coefficient Φj(u)

(for j = 2, . . . , p),

ĥAR
j = argminh

n∑
i=1

[
yij − m̂j(Ui)−

j−1∑
l=1

ϕ̂jl(Ui;h)
(−i){yil − m̂l(Ui)}

]2
,

where ϕ̂jl(u;h)
(−i) is the estimate of ϕjl(u) obtained by leaving out the ith ob-

servation according to (2.5) with the bandwidth h. Similarly, the leave-one-

out cross-validation bandwidth for estimating the innovation variance σ2
j (u) (for

j = 1, . . . , p) is given by
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ĥIVj = argminh

n∑
i=1

{ ϵ̂2ij

σ̂2
j (Ui;h)(−i)

+ log{σ̂2
j (Ui;h)

(−i)}
}
,

where σ̂2
j (u;h)

(−i) is the estimate of σ2
j (u) derived without the ith observation

according to (2.8) with the bandwidth h.
We now discuss the estimation of m(u). We use a local linear estimator for

the conditional mean m(u). If we take Σ(u) in (2.1) to be the identity matrix Ip,
the mean function m(·) is estimated by by minimizing

n∑
i=1

Kh(Ui − u)
[
{Yi −m0 −m1(Ui − u)}T {Yi −m0 −m1(Ui − u)}

]
,

which yields the local linear estimator of m(u),

m̂(u) = (Ip,0p)
{ n∑

i=1

Kh(Ui − u)

(
1 (Ui − u)

(Ui − u) (Ui − u)2

)
⊗ Ip

}−1

×
n∑

i=1

Kh(Ui − u){(1 (Ui − u))T ⊗ Ip}Yi.

3. Asymptotic Results

We study the asymptotic properties of the proposed estimators in Theorem
1 and Theorem 2 in this section. We investigate the global convergence of the
proposed conditional covariance matrix estimator under the Kullback-Leibler loss
(Yuan and Lin (2007); Levina, Rothman, and Zhu (2008)) and the Frobenius loss
(Bickel and Levina (2008)) in Theorem 3. Some technical conditions are imposed;
they may not be the weakest possible conditions, but are imposed to facilitate
the proofs.

Regularity conditions.

(a) U1, . . . , Un are independently and identically sampled from a density f(·) with
compact support Ω; f is twice continuously differentiable, and is bounded
away from 0 on its support.

(b) The kernel function K(·) is a symmetric density function about 0. There
exists some s > 0 such that

∫
K(u)2+sujdu < ∞, for j = 0, 1, 2. Moreover,

supuK(u) < K1 < ∞ and supu |K
′
(u)| < K2 < ∞.

(c) The bandwidth satisfies h → 0 and nh5 → c > 0 for some c > 0, as n → ∞.

(d) The mean function m(u), Φj(u) (j = 2, . . . , p), and the innovation variance
function σ2

j (u) (j = 1, . . . , p) have continuous second order derivatives.

Let Σ(u)(j−1,j−1) denote the (j−1)-th main submatrix of Σ(u) for j = 2, . . . p.

Let µ2 :=
∫
u2K(u)du, γ0 :=

∫
K2(u)du, and cn := h2 + {log(1/h)/(nh)}1/2.

Define ri := Yi−m(Ui), so rij = yij −mj(Ui). Define ϵij := rij −
∑j−1

l=1 ϕjl(Ui)ril.
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Theorem 1. If (a)−(d) hold, we have

Φ̂j(u)− Φj(u) = f−1(u){Σ(u)(j−1,j−1)}−1 1

n

n∑
i=1

Kh(Ui − u)


ri1
·
·
·

ri(j−1)

 ϵij

+
1

2
µ2Φ

′′
j (u)h

2 + op(cn), (3.1)

which holds uniformly in u, for j = 2, . . . , p.

Theorem 2. If (a)−(d) hold, we have

σ̂2
j (u)− σ2

j (u) = f−1(u)
1

n

n∑
i=1

Kh(Ui − u)
{
ϵ2ij − σ2

j (Ui)
}

+
1

2
µ2[log{σ2

j (u)}]
′′
σ2
j (u)h

2 + op(cn)

which holds uniformly in u, for j = 1, . . . , p.

Remark 1. The first term of (3.1) dominates the asymptotic variance of Φ̂j(u)

while the second term dominates the asymptotic bias. The asymptotic variance

and the asymptotic bias of Φ̂j(u) are both independent of m̂(u). We have that

the asymptotic result of Φ̂j(u) does not change when we replace m̂(u) by the

Nadaraya-Watson kernel estimator m̂LC(u) in (2.5) from the proof of Theorem

1. Further, the asymptotic variance and the asymptotic bias of Φ̂j(u) using

m̂(u) or m̂LC(u) are equal to the asymptotic variance and the asymptotic bias of

the estimator of Φj(u) based on the true conditional mean m(u). Similarly, the

asymptotic variance and the asymptotic bias of σ̂2
j (u) are independent of m̂(u).

We now investigate the accuracy in estimating the covariance matrix Σ(u).

We define the Kullback-Leibler loss and the Frobenius loss to evaluate it:

L(Σ(u), Σ̂(u))KL = E
[
trace{Σ(u)Σ̂−1(u)} − log |Σ(u)Σ̂−1(u)|

]
− p,

L(Σ(u), Σ̂(u))F = E
[
trace[{Σ̂−1(u)− Σ−1(u)}2]

]
.

Theorem 3. Under (a)−(d), we have

L(Σ(u), Σ̂(u))KL =
1

4
µ2
2h

4trace
{
P

′′
(u)TP

′′
(u)Σ(u)D−1(u) +

1

2
D2

B1(u)
}

+
γ0

nhf(u)
trace

{
P ∗(u)Σ(u)D−1(u) + I

}
+ o(h4 +

1

nh
),

where P ∗(u) is a diagonal matrix with first diagonal entry 0 and j-th diagonal

entry
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σ2
j (u)trace[{Σ(u)(j−1,j−1)}−1] for j = 2, . . . , p, while DB1(u) is a diagonal matrix

with j-th diagonal entry [log{σ2
j (u)}]

′′
, and

L(Σ(u), Σ̂(u))F

=
1

4
µ2
2h

4trace
{
2P

′′
(u)P

′′
(u)P (u)TP (u)TD−2(u) + 2P

′′
(u)TP

′′
(u)Σ−1(u)D−1(u)

+Σ−2(u)D2
B1(u) + 2P

′′
(u)Σ−1(u)P (u)D−1(u)DB1(u)

}
+

γ0
nhf(u)

trace
{
P ∗(u)Σ−1(u)D−1(u) + 2Σ−2(u)

}
+ o(h4 +

1

nh
).

Remark 2. The accuracy of Σ̂(u) does not depend on m̂(u). Furthermore, the

accuracy of the estimator for the conditional covariance matrix based on m̂(u)

or m̂LC(u) is the same as the one based on the true conditional mean m(u).

Remark 3. Our proposed estimator of the nonparametric covariance matrix has

convergence rate h4 + 1/(nh) under the Kullback-Leibler loss and the Frobenius

loss, in which 1/(nh) comes from the asymptotic variance term and h4 comes

from the asymptotic bias term. This is the familiar bias-variance trade-off and

the optimal convergence rate is achieved when h ∝ n−1/5.

Our proposed estimator is permutation invariant in a loose sense. First, the

rate of convergence in Theorem 3 does not depend on the ordering of the vari-

ables, although different orderings give different scaling constants in the asymp-

totic bias and variance term. Second, our approach is based on the local linear

estimating procedure, and allows one to apply different degrees of smoothness to

different components of the decomposition, making our approach more adaptive

than the local constant approach. Third, our numerical results suggest that the

accuracy of our proposed estimators changes little when variables are permuted;

see Study 1-4 in the next section. We conclude that, although our proposed

method uses the modified Cholesky decomposition which depends on the order-

ing of the variables as an intermediate in estimating Σ(u), the ordering has little

effect on performance. Rothman et al. (2008) proposed a different approach for

estimating permutation-invariant concentration matrices.

4. Numeric Studies

In this section, we report on several simulation studies to evaluate the finite

sample performances of our proposed estimators in Sections 2, and illustrate the

proposed approach on a data set. For brevity, we refer to our approach as the

local linear estimator (LL) and that of Yin et al. (2010) as the local constant

estimator (LC).
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For each simulation study, we generated 200 datasets, each consisting of n =

300 observations. We sampled Ui, i = 1, . . . , n, independently from the truncated

normal distribution with density function f0(u) = exp(−u2/2)/
∫ 1
−1 exp(−t2/2)dt,

for −1 ≤ u ≤ 1 and zero elsewhere. The response variable was generated accord-

ing to Yi ∼ N(m(Ui),Σ(Ui)). Since our emphasis is on estimating the conditional

covariance matrix Σ(u), we used the local linear estimate m̂(u) for estimating

the mean function in both methods. For all simulations, we set p = 5. We

used the Kullback-Leibler and Frobenius losses as the criteria to compare the

two estimators. Specifically, for each dataset, we calculated the median of n

Kullback-Leibler losses and Frobenius losses for each method, defined as

Median Kullback-Leibler Loss = median{▽KL(Ui), i = 1, . . . , n},
Median Frobenius Loss = median{▽F (Ui), i = 1, . . . , n},

where ▽KL(u) and ▽F (u) are the Kullback-Leibler and Frobenius losses for

an estimator Σ̂(u). For brevity, “Median Kullback-Leibler Loss” and “Median

Frobenius Loss” are referred to as MKLL and MFL, respectively. In order to

overcome the impact of the covariance matrix estimators on boundary points, we

summarize the simulation results using the sample median instead of the sample

mean to be consistent with Yin et al. (2010). For all the studies, we look at

the original order Yi = (yi1, yi2, yi3, yi4, yi5)
T and a random permutation of Yi

for each generated dataset; this is useful for investigating the sensitivity of the

proposed method to permutation of the variables.

Study 1. We considered a nonparametric covariance model by setting the

mean function as m(u) = 0 = (0, 0, 0, 0, 0)T and Σ(u) = P−1(u)D(u)P−1(u)T

where D(u) is a diagonal matrix with diagonal entries (exp(u/2), cos(πu) +

1.1, exp(u/2), cos(πu) + 1.1, exp(−u/2)) and

P (u) =


1 0 0 0 0

−ϕ(u) 1 0 0 0

−ϕ(u)/2 −ϕ(u)/2 1 0 0

−ϕ(u)/4 −ϕ(u)/4 −ϕ(u)/4 1 0

−ϕ(u))/8 −ϕ(u)/8 −ϕ(u)/8 −ϕ(u)/8 1

 .

Here ϕ(u) is the density of the standard normal distribution. For this example,

we assumed that m(u) was known.

Study 2. The model used in the this study was identical to the model in Study

1, except that the mean function m(u) was set to (cos(u), sin(u), cos(u), sin(u),

cos(u))T . This study was to investigate how the estimation of the mean function

m(u) affected the estimation of the covariance function Σ(u).
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Study 3. The mean function was set as m(u) = 0 = (0, 0, 0, 0, 0)T and the con-

ditional covariance matrix had an AR(1) structure, Σ(u) = D1/2(u)R(u)D1/2(u),

where D(u) is defined in Study 1 and

R(u) =


1 ϕ(u) ϕ2(u) ϕ3(u) ϕ4(u)

ϕ(u) 1 ϕ(u) ϕ2(u) ϕ3(u)

ϕ2(u) ϕ(u) 1 ϕ(u) ϕ2(u)

ϕ3(u) ϕ2(u) ϕ(u) 1 ϕ(u)

ϕ4(u) ϕ3(u) ϕ2(u) ϕ(u) 1

 .

This study together with Study 1 and Study 2 investigated the performance

of the proposed method when the variables had a natural ordering. The other

purpose of this study was to investigate how the proposed method performed

when the true covariance matrix did not admit an explicit modified Cholesky

decomposition.

Study 4. The mean function was set as m(u) = 0 = (0, 0, 0, 0, 0)T and the con-

ditional covariance matrix had an exchangeable structure, Σ(u) = D1/2(u)R(u)

D1/2(u), where D(u) is defined in Study 1 and

R(u) =


1 ϕ(u) ϕ(u) ϕ(u) ϕ(u)

ϕ(u) 1 ϕ(u) ϕ(u) ϕ(u)

ϕ(u) ϕ(u) 1 ϕ(u) ϕ(u)

ϕ(u) ϕ(u) ϕ(u) 1 ϕ(u)

ϕ(u) ϕ(u) ϕ(u) ϕ(u) 1

 .

This study was designed to investigate the performance of the proposed method

when the variables had no natural ordering. This study also investigated how

the proposed method performed when the true covariance matrix did not have

an explicit modified Cholesky decomposition.

Study 5. The mean function was set as m(u) = 0 = (0, 0, 0, 0, 0)T and Σ(u) =

P−1(u)D(u)P−1(u)T where D(u) is identical to that of Study 1 and

P (u) =


1 0 0 0 0

− cos(u) 1 0 0 0

− cos(u) − sin(u) 1 0 0

− cos(u) − sin(u) − cos(u) 1 0

− cos(u) − sin(u) − cos(u) − sin(u) 1

 .

Here the correlations between y4 and y5 were larger than 0.958 when 0.5 < U ≤ 1.

This study was used to show that high correlations among components of Y affect

the performance of the proposed estimator.
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Figure 1. Box-plots of 200 median Kullback-Leibler losses (MKLLs) and
200 median Frobenius losses (MFLs) over 200 datasets for the local linear
approach (LL) and the local constant approach (LC) for the five simulation
studies.

The results for the above five simulation studies are summarized in Figure

1, where “LL1” is the LL method using the original order, and “LL2” is the

LL method after a random permutation of the variables. First, studies 1–4 show

that the proposed local linear method outperforms the local constant estimator in

terms of the Kullback-Leibler and Frobenius losses, sometimes by a large margin.

Second, the estimation of the mean function does not change this pattern from
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the results of Study 2. Third, the results of Study 1–4 indicate that the superior

performance of the local linear estimator continues with permuted variables, and

that the Kullback-Leibler and Frobenius losses of the proposed estimators were

not seriously affected by the permutation. Fourth, even if the generating covari-

ance matrix did not admit a clear modified Cholesky decomposition, the local

linear method continued to outperform in studies 3 and 4. Fifth, even though

the variables have no natural ordering, the local linear estimating method based

on the modified Cholesky decomposition works very well in Study 4. Finally,

when we permuted the variables randomly, Study 5 has the local linear method

performing worse than the local constant approach. This is caused by the high

correlation between y4 and y5 in estimating the conditional autoregressive coef-

ficients. It was previously observed that this could yield biased and inefficient

estimators (Kumar (1975)).

Boston Housing Data

We illustrate the proposed local linear method by an application to the

Boston housing dataset that contains a total of 506 observations (Fan and Huang

(2005); Yin et al. (2010)). We considered five social economic variables: crime

rate (y1), full-value property-tax rate (y2), pupil-teacher ratio (y3), median value

of owner-occupied homes (y4) and average number of rooms per dwelling (y5).

Let Y = (y1, y2, y3, y4, y5)
T and take the index random variable as the square root

of the percentage of lower status (U). The y-variables were standardized before

analysis. The conditional covariance model is denoted as Var(Y |U) = Σ(U), and

we investigated the change of the correlation structure of Y in response to a

change in the percentage of lower status.

A total of 450 observations were randomly chosen as training data and the

remaining 56 observations were used as testing data. Using the training data,

we obtained the local linear and the local constant estimators of the conditional

covariance matrix. For a fair comparison, we used the local linear estimator

m̂(·) for estimating the mean in both methods, based on the training data. The

prediction performances were measured by the log-likelihood-like loss measure

∆ =
1

n∗

n∗∑
i=1

[
{Y ∗

i − m̂(U∗
i )}T Σ̂−1(U∗

i ){Y ∗
i − m̂(U∗

i )}+ log(|Σ̂(U∗
i )|)

]
,

where Σ̂(·) is the covariance matrix estimator based on the training data and (Y ∗
i ,

U∗
i ) (i = 1, . . . , n∗) is the testing data. This procedure was replicated 100 times.

The median of the 100 ∆s was 0.300 when the local constant method was used to

estimate Σ(u), and the median was 0.024 when the local linear method is used.

We also note that the median of the 100 ∆s was 1.560 if the covariance estimator
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was assumed constant and was estimated via n−1
∑n

i=1{Yi−m̂(Ui)}{Yi−m̂(Ui)}T
where (Yi, Ui) (i = 1, . . . , n) were from the training data. This discrepancy

suggests that it is preferable to take a nonparametric modelling approach to

estimate the covariance matrix of the five social economic variables.

Since the variables in Y = (y1, y2, y3, y4, y5)
T have no natural ordering, we

investigated the impact of permutation and found that the proposed local linear

method still outperformed the local constant method. For each data in the above

100 runs, we randomly permuted the order of the variables and calculated the

∆ quantity as before. The median of the 100 ∆s was 0.052 for the local linear

covariance estimator, smaller than the 0.300 for the local constant estimator and

1.560 for the global constant covariance estimator.

5. Discussion

The Cholesky decomposition of covariance is considered appropriate when

variables have a natural ordering (Pourahmadi (1999, 2000); Levina, Rothman,

and Zhu (2008)). We show, however, that serving as an intermediate step, the

decomposition continues to be useful for estimating covariances, even when vari-

ables have no natural ordering. It is of interest to extend the current work to

estimate multiple covariance matrices (Guo et al. (2011)), to deal with structured

matrices (Levina, Rothman, and Zhu (2008)), and to investigate alternative de-

compositions for this task (Rothman, Levina, and Zhu (2010); Zhang and Leng

(2012)).

In the paper, we only consider the estimation of a conditional covariance

matrix when q = 1 and, in principle, the technique can be generalized to q > 1.

However, multivariate kernel smoothing may suffer from the curse of dimension-

ality, and is less useful (Fan and Gijbels (1996)). To overcome the dimensionality

problem, one can try a semiparametric model for each entry of the conditional

covariance matrix, which combines the flexibility of nonparametric regression and

parsimony of linear regression. Further studies along this line are needed.
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