A Supplementary Document of "A Systematic Approach for the Construction of Definitive Screening Designs"

Frederick Kin Hing Phoa ${ }^{1}$ and Dennis K.J. Lin ${ }^{2}$
${ }^{1}$ Institute of Statistical Science, Academia Sinica, Taiwan, R.O.C.
${ }^{2}$ Department of Statistics, Pennsylvania State University, U.S.A.

S1 Proof of Theorem 1

Consider that C has the following structure:

$$
\mathrm{C}=\left(\begin{array}{cccc}
0 & \delta & \overrightarrow{\delta^{\prime}} & \overrightarrow{\delta^{\prime}} \tag{S1.1}\\
1 & 0 & \overrightarrow{\delta^{\prime}} & -\vec{\delta}^{\prime} \\
\overrightarrow{1} & \overrightarrow{1} & T & S \delta \\
\overrightarrow{1} & -\overrightarrow{1} & S & -T \delta
\end{array}\right)
$$

Since S is circulant by Lemma 1 and T is also circulant by Lemma 2 under condition (1), we have
$\mathrm{C}^{\prime} C=\left(\begin{array}{cccc}2 n+1 & 0 & \overrightarrow{1^{\prime}}(\delta+s+t) & \overrightarrow{1^{\prime}}(-\delta+s \delta-t \delta) \\ 0 & 2 n+1 & \overrightarrow{1^{\prime}}(\delta-s+t) & \overrightarrow{1^{\prime}}(1+s \delta+t \delta) \\ \overrightarrow{1}(\delta+s+t) & \overrightarrow{1}(\delta-s+t) & 21_{n \times n}+\left(T^{2}+S^{2}\right) & 0 \\ \overrightarrow{1^{\prime}}(-\delta+s \delta-t \delta) & \overrightarrow{1}(1+s \delta+t \delta) & 0 & 21_{n \times n}+\left(T^{2}+S^{2}\right)\end{array}\right)$
where $\overrightarrow{1}, \delta, s$ and t are defined in section $3,1_{n \times n}$ is a $n \times n$ matrix that all entries are 1. Since S and T are circulant, $S T$ is circulant and $S T=T S$. This leads to the zeros in the $(3 ; 4)$ - and $(4 ; 3)$-locations of $C^{\prime} C$, which are $(T S \delta-S T \delta)$ and $(S T \delta-T S \delta)$ before evaluations. If C is a conference matrix, it must fulfill $C^{\prime} C=(m-1) I$, where $m-1=2 n+1$ in our case. Therefore, C'C has to be diagonal, i.e., all off-diagonal locations have to be all zeros. For those locations with s and t, when n is even $(\delta=$ 1), equations in those locations are reduced to a problem of solving the simultaneous equations $1+s+t=0$ and $1-s+t=0$, and the solution falls on the linear line $s+t=-1$. The preferred choice of $s=0$ and $t=-1$ guarantees the balanced selection
of +1 and -1 in S. When n is odd $(\delta=-1)$, the solution to the simultaneous equations $-1+s+t=0$ and $1-s+t=0$ falls on the linear line $s+t=1$. The preferred choice of $s=1$ and $t=0$ guarantees the balanced selection of +1 and -1 in T. These preferred choices of solutions are condition (2). Lastly, both (3;3)- and (4;4)-locations have to be diagonal matrices with diagonal entries $2 n+1$, denoted as $I_{n}(2 n+1)$. In order to achieve this goal, $T^{2}+S^{2}=I_{n}(2 n+1)-21_{n \times n}$. The resulting matrix has $2 n-1$ in its diagonal entries and -2 in its off-diagonal entries. The values in the diagonal entries are obvious and they are $\sum_{i=1}^{n}\left(t_{i}^{2}+s_{i}^{2}\right)$. The first term sums up to be $n-1$ because $t_{1}=0$ and the second term sums up to be n. The values in the off-diagonal entries of $T^{2}+S^{2}$ are not trivial. First, notice that T and S are symmetric and circulant, so do T^{2}, S^{2} and $T^{2}+S^{2}$. This reduces the problem to that for $k=1 ; \ldots ; n-1, \operatorname{all}(1 ; 1+k)-$ entries are -2 . Applying condition (3) with $k=1$ to ($1 ; 2$)-entry leads to

$$
\begin{equation*}
\left(t_{1} t_{2}+s_{1} s_{2}\right)+\left(t_{2} t_{3}+s_{2} s_{3}\right)+\cdots+\left(t_{n} t_{1}+s_{n} s_{1}\right)=-2 \tag{S1.3}
\end{equation*}
$$

Applying condition (3) with $k=2$ to $(1 ; 3)$-entry leads to

$$
\begin{equation*}
\left(t_{1} t_{3}+s_{1} s_{3}\right)+\left(t_{2} t_{4}+s_{2} s_{4}\right)+\cdots+\left(t_{n} t_{2}+s_{n} s_{2}\right)=-2 \tag{S1.4}
\end{equation*}
$$

By repeatedly applying condition (3) to all ($1 ; 1+k$)-entry lead to -2 for all integers $k<$ $\frac{n+1}{2}$. Furthermore, since all values in $(1 ; 1+k)$-entries are equal to those in $(1 ; n+1-k)$ entries, this means the first column of $T^{2}+S^{2}$ is a vector $(2 n+1 ;-2 ; \ldots ;-2)$. The circulant property of $T^{2}+S^{2}$ ensures that all off-diagonal entries are -2 . This completes the proof of Theorem 1, showing that C is a $(2 n+2) \times(2 n+2)$ conference matrix.

S2 Proof of Theorem 3

Consider that C has the following structure:

$$
C=\left(\begin{array}{ccc}
0 & -\vec{\delta} & -\vec{\delta} \tag{S2.1}\\
\overrightarrow{1} & T & S \delta \\
-\overrightarrow{1} & S & -T \delta
\end{array}\right)
$$

Since S is circulant by Lemma 1 and T is circulant by Lemma 2 under condition (1), we have

$$
\mathrm{C}^{\prime} C=\left(\begin{array}{ccc}
2 n & \overrightarrow{1^{\prime}}(-s+t) & \overrightarrow{1^{\prime}} \delta(s+t) \tag{S2.2}\\
\overrightarrow{1}(-s+t) & 1_{n \times n}+\left(T^{2}+S^{2}\right) & 1_{n \times n} \\
\overrightarrow{1} \delta(s+t) & 1_{n \times n} & 1_{n \times n}+\left(T^{2}+S^{2}\right)
\end{array}\right)
$$

where $\overrightarrow{1}, \delta, s$ and t are defined in section $3,1_{n \times n}$ is a $n \times n$ matrix that all entries are 1. Similar to the argument int he proof of Theorem 1, the circulant properties of
S and T implies $T S=S T$, and this leads to $1_{n \times n}$ in the $(2 ; 3)$ - and (3;2)-locations of $C^{\prime} C$, where the cancellations of ($\mathrm{ST} \delta-\mathrm{TS} \delta$) and $(T S \delta-S T \delta)$ take places respectively. Under condition (2), no matter n is even or odd, $-s+t=\delta(s+t)=-1$. This means all entries in the first row and the first column, except the $(1 ; 1)$-location, are -1 . Lastly, to evaluate $1_{n \times n}+\left(T^{2}+S^{2}\right)$ in the $(2 ; 2)$ - and $(3 ; 3)$-locations, we borrow some results in the proof of Theorem 1. When condition (3) holds, $T^{2}+S^{2}$ is a $n \times n$ matrix such that its diagonal entries are $2 n-1$ and its off-diagonal entries are -2 . When a $1_{n \times n}$ is added, the resulting matrix has its diagonal entries $2 n$ and its off-diagonal entries -1 , which is the A matrix defined in Theorem 3. The proof is completed.

S3 Proof of Theorem 4

The goal is to derive the determinant of $C^{\prime} C$ and show that they can be expressed in the form of the total product of two sequences. The simplest way to calculate the determinant of a square matrix is to rewrite the matrix into reduced row echelon form, which is a upper triangular matrix. Then the determinant is simply the trace of the matrix.
About the three sequences, the elements of $\{a\}$ are the first $n+1$ diagonal entries of the resulting upper triangular matrix, the elements of $\{o\}$ are the second to the $(n+2)$ th entries of the last column of the matrix and the last $n-1$ elements of fbg are the last $n-1$ diagonal entries of the resulting upper triangular matrix. Notice that the first diagonal entry is $2 n$. To derive the initial condition, let R_{1} and R_{2} be the first and second row of $C^{\prime} C$. By substituting $(-1) R_{1} /(2 n)-R_{2}$ to R_{2}, the first entry becomes zero and the second entry, which is a_{1}, becomes $2 n-1 /(2 n)$. The last entry in R_{2}, which is o_{1}, becomes $1-1 /(2 n)$. b_{1} is implicit at this point, is set to be equivalent to a_{1}. Following the standard operations to reduced row echelon form, two observations are important. First, at the i stage, i.e., R_{i+1} row is always substituted by $\left(k_{i}^{2}\right) R_{i} / a_{i}$ for $i \leq n+1$, or $\left(k_{i}^{2} R_{i}\right) / b_{i-1}$ for $i>n+1$, where k_{i} is the entry below and right to the diagonal entry of R_{i}. Furthermore, for $i \leq n+1, a_{i-1}-k_{i}=2 n+1$, and for $i>n+1$, $b_{i-1}-k_{i}=2 n+1$. These two facts help in simplifying the derivations. Consider the standard operation to reduced row echelon form is done at i stage, a_{i} can be expressed as $a_{i-1}-\frac{k_{i}^{2}}{a_{i-1}}$. The substitution $k_{i}=a_{i-1}-(2 n+1)$ and some algebra lead to $a_{i}=$ $(2 n+1)\left(2-\frac{2 n+1}{a_{i-1}}\right)$. Next, o_{i} can be expressed as $o_{i-1}-\frac{k_{i} o_{i-1}}{a_{i-1}}$. The substitution of k_{i} and some algebra lead to $o_{i}=o_{i-1}\left(\frac{2_{n+1}}{a_{i-1}}\right)$.

The derivation of the first $n+1$ elements in $\{b\}$ is not as trivial as the other two because it is not explicitly shown in the final result. Notice that these $n+1$ elements track the change of last $n-1$ diagonal entries during the first $n+1$ operations. With this concept, any of the last $n-1$ rows, instead of the R_{i-1}, is considered in the i stage. Then b_{i} can be expressed as $b_{i-1}-\frac{o_{i}^{2}}{a_{i-1}}$. The substitution of $o_{i-1}=\frac{o_{i} a_{i-1}}{2_{n+1}}$ and some algebra lead to $b_{i}=b_{i-1}-\frac{o_{i}^{2} a_{i-1}}{\left(2_{n+1}\right)^{2}}$ for $i \leq n+1$. For the rest $n-1$ elements of $\{b\}$, similar idea from the elements of $\{a\}$ applies and thus $(2 n+1)\left(2-\frac{2_{n+1}}{b_{i-1}}\right)$.

At this point, the matrix $C^{\prime} C$ becomes reduced row echelon form and it is a upper triangular matrix, and its diagonal elements are $\left(2 n, a_{1}, \ldots, a_{n+1}, b_{n+2}, \ldots, b_{2} n\right)$. Then the determinant of $C^{\prime} C$ is simply the product of all thse diagonal elements, and thus the D-effiency of D can be obtained. This completes the proof.

