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S1 Proof of Theorem 1

Consider that C has the following structure:

C =


0 δ ~δ′ ~δ′

1 0 ~δ′ −~δ′
~1 ~1 T Sδ
~1 −~1 S −Tδ

 (S1.1)

Since S is circulant by Lemma 1 and T is also circulant by Lemma 2 under condition
(1), we have

C′C =


2n+ 1 0 ~1′(δ + s+ t) ~1′(−δ + sδ − tδ)

0 2n+ 1 ~1′(δ − s+ t) ~1′(1 + sδ + tδ)
~1(δ + s+ t) ~1(δ − s+ t) 21n×n + (T 2 + S2 ) 0

~1′(−δ + sδ − tδ) ~1(1 + sδ + tδ) 0 21n×n + (T 2 + S2 )


(S1.2)

where ~1, δ, s and t are defined in section 3, 1n×n is a n × n matrix that all entries
are 1. Since S and T are circulant, ST is circulant and ST = TS. This leads to the
zeros in the (3; 4)- and (4; 3)-locations of C ′C, which are (TSδ−STδ) and (STδ−TSδ)
before evaluations. If C is a conference matrix, it must fulfill C ′C = (m − 1)I, where
m − 1 = 2n + 1 in our case. Therefore, C’C has to be diagonal, i.e., all off-diagonal
locations have to be all zeros. For those locations with s and t, when n is even (δ =
1), equations in those locations are reduced to a problem of solving the simultaneous
equations 1 + s + t = 0 and 1 − s + t = 0, and the solution falls on the linear line
s+ t = −1. The preferred choice of s = 0 and t = −1 guarantees the balanced selection
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of +1 and −1 in S . When n is odd (δ = −1), the solution to the simultaneous equations
−1 + s+ t = 0 and 1− s+ t = 0 falls on the linear line s+ t = 1. The preferred choice of
s = 1 and t = 0 guarantees the balanced selection of +1 and −1 in T. These preferred
choices of solutions are condition (2). Lastly, both (3; 3)- and (4; 4)-locations have to
be diagonal matrices with diagonal entries 2n + 1, denoted as In(2n + 1). In order to
achieve this goal, T 2 + S2 = In(2n+ 1)− 21n×n. The resulting matrix has 2n− 1 in its
diagonal entries and −2 in its off-diagonal entries. The values in the diagonal entries are
obvious and they are

∑n
i=1(t2i + s2i ). The first term sums up to be n− 1 because t1 = 0

and the second term sums up to be n. The values in the off-diagonal entries of T 2 + S2

are not trivial. First, notice that T and S are symmetric and circulant, so do T 2, S2

and T 2 +S2. This reduces the problem to that for k = 1; . . . ;n−1, all(1; 1 +k)− entries
are −2. Applying condition (3) with k = 1 to (1; 2)-entry leads to

(t1t2 + s1s2) + (t2t3 + s2s3) + · · ·+ (tnt1 + sns1) = −2. (S1.3)

Applying condition (3) with k = 2 to (1; 3)-entry leads to

(t1t3 + s1s3) + (t2t4 + s2s4) + · · ·+ (tnt2 + sns2) = −2. (S1.4)

By repeatedly applying condition (3) to all (1; 1+k)-entry lead to −2 for all integers k <
n+1
2 . Furthermore, since all values in (1; 1+k)-entries are equal to those in (1;n+1−k)-

entries, this means the first column of T 2 + S2 is a vector (2n + 1;−2; . . . ;−2). The
circulant property of T 2 +S2 ensures that all off-diagonal entries are −2. This completes
the proof of Theorem 1, showing that C is a (2n+ 2)× (2n+ 2) conference matrix.

S2 Proof of Theorem 3

Consider that C has the following structure:

C =

 0 −~δ −~δ
~1 T Sδ

−~1 S −Tδ

 (S2.1)

Since S is circulant by Lemma 1 and T is circulant by Lemma 2 under condition (1), we
have

C′C =

 2n ~1′(−s+ t) ~1′δ(s+ t)
~1(−s+ t) 1n×n + (T 2 + S2 ) 1n×n
~1δ(s+ t) 1n×n 1n×n + (T 2 + S2 )

 (S2.2)

where ~1, δ, s and t are defined in section 3, 1n×n is a n× n matrix that all entries
are 1. Similar to the argument int he proof of Theorem 1, the circulant properties of
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S and T implies TS = ST , and this leads to 1n×n in the (2; 3)- and (3; 2)-locations of
C ′C, where the cancellations of (STδ -TSδ) and (TSδ − STδ) take places respectively.
Under condition (2), no matter n is even or odd, −s+ t = δ(s+ t) = −1. This means all
entries in the first row and the first column, except the (1; 1)-location, are −1. Lastly,
to evaluate 1n×n + (T 2 + S2) in the (2; 2)- and (3; 3)-locations, we borrow some results
in the proof of Theorem 1. When condition (3) holds, T 2 + S2 is a n × n matrix such
that its diagonal entries are 2n− 1 and its off-diagonal entries are −2. When a 1n×n is
added, the resulting matrix has its diagonal entries 2n and its off-diagonal entries −1,
which is theA matrix defined in Theorem 3. The proof is completed.

S3 Proof of Theorem 4

The goal is to derive the determinant of C ′C and show that they can be expressed
in the form of the total product of two sequences. The simplest way to calculate the
determinant of a square matrix is to rewrite the matrix into reduced row echelon form,
which is a upper triangular matrix. Then the determinant is simply the trace of the
matrix.
About the three sequences, the elements of {a} are the first n+ 1 diagonal entries of the
resulting upper triangular matrix, the elements of {o} are the second to the (n + 2)th
entries of the last column of the matrix and the last n − 1 elements of fbg are the last
n − 1 diagonal entries of the resulting upper triangular matrix. Notice that the first
diagonal entry is 2n. To derive the initial condition, let R1 and R2 be the first and
second row of C ′C. By substituting (−1)R1/(2n) − R2 to R2, the first entry becomes
zero and the second entry, which is a1, becomes 2n − 1/(2n). The last entry in R2,
which is o1, becomes 1 − 1/(2n). b1 is implicit at this point, is set to be equivalent to
a1. Following the standard operations to reduced row echelon form, two observations
are important. First, at the i stage, i.e., Ri+1 row is always substituted by (k2i )Ri/ai
for i ≤ n+ 1, or (k2iRi)/bi−1 for i > n+ 1, where ki is the entry below and right to the
diagonal entry of Ri. Furthermore, for i ≤ n+ 1, ai−1 − ki = 2n+ 1, and for i > n+ 1,
bi−1 − ki = 2n + 1. These two facts help in simplifying the derivations. Consider the
standard operation to reduced row echelon form is done at i stage, ai can be expressed

as ai−1 − k2
i

ai−1
. The substitution ki = ai−1 − (2n + 1) and some algebra lead to ai =

(2n + 1)(2 − 2n+1
ai−1

). Next, oi can be expressed as oi−1 − kioi−1

ai−1
. The substitution of ki

and some algebra lead to oi = oi−1( 2n+1

ai−1
).

The derivation of the first n + 1 elements in {b} is not as trivial as the other two
because it is not explicitly shown in the final result. Notice that these n + 1 elements
track the change of last n − 1 diagonal entries during the first n + 1 operations. With
this concept, any of the last n− 1 rows, instead of the Ri−1, is considered in the i stage.

Then bi can be expressed as bi−1 − o2i
ai−1

. The substitution of oi−1 = oiai−1

2n+1
and some

algebra lead to bi = bi−1 − o2iai−1

(2n+1)2
for i ≤ n + 1. For the rest n − 1 elements of {b},

similar idea from the elements of {a} applies and thus (2n+ 1)(2− 2n+1

bi−1
).
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At this point, the matrix C ′C becomes reduced row echelon form and it is a upper
triangular matrix, and its diagonal elements are (2n, a1, . . . , an+1, bn+2, . . . , b2n). Then
the determinant of C ′C is simply the product of all thse diagonal elements, and thus the
D-effiency of D can be obtained. This completes the proof.


