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S1 PROOF LEMMA 1

Proof. The proof of (i) has been provided by Lemma 1 in Lopuhaä and Nane (2013).

The NPMLE λ̂npx;βq is obtained by maximizing the (pseudo) loglikelihood func-

tion in (3.1) over all 0 ď λ0pTp1qq ď . . . ď λ0pTpnqq. As argued in Lopuhaä and

Nane (2013), the estimator has to be a nondecreasing step function, that is zero

for x ă Tp1q, constant on the interval rTpiq, Tpi`1qq, for i “ 1, . . . , n ´ 1, and can

be chosen arbitrarily large for x ě Tpnq. Then, for fixed β P Rp, the (pseudo)

loglikelihood function in (3.1) reduces to

n´1
ÿ

i“1

∆piq log λ0pTpiqq ´
n
ÿ

i“2

eβ
1Zpiq

i´1
ÿ

j“1

“

Tpj`1q ´ Tpjq
‰

λ0pTpjqq

“

n´1
ÿ

i“1

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

.

(S1.1)

Let λi “ λ0pTpiqq, for i “ 1, . . . , n´ 1, and λ “ pλ1, . . . , λn´1q. Then, finding the

NPMLE reduces to maximizing

φpλq “
n´1
ÿ

i“1

#

∆piq log λi ´ λi
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

, (S1.2)

over the set 0 ď λ1 ď . . . ď λn´1. The NPMLE corresponds thus to a vector

λ̂ “ pλ̂1, . . . , λ̂n´1q that maximizes φ over 0 ď λ1 ď . . . ď λn´1. To prove (ii), we

first derive the Fenchel conditions of the estimator. Thus, we will show that the
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estimator λ̂npx;βq maximizes the (pseudo) loglikelihood function in (3.1) over

the class of nondecreasing baseline hazard functions if and only if

ÿ

jěi

$

&

%

∆pjq

λ̂j
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ď 0, (S1.3)

for i “ 1, 2, . . . , n´ 1, and

n´1
ÿ

j“1

$

&

%

∆pjq

λ̂j
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

λ̂j “ 0. (S1.4)

The NPMLE λ̂npx;βq is thus uniquely determined by these Fenchel conditions.

The rest of the proof focuses on deriving the Fenchel conditions (S1.3) and (S1.4)

and on establishing (3.6).

First, note that the function φ in (S1.2) is concave and that the vector of

partial derivatives ∇φpλq “ p∇1φpλq, . . . ,∇n´1φpλqq is given by

∇φpλq “

˜

∆p1q

λ1
´
“

Tp2q ´ Tp1q
‰

n
ÿ

l“2

eβ
1Zplq , . . . ,

∆pn´1q

λn´1
´
“

Tpnq ´ Tpn´1q
‰

eβ
1Zpnq

¸

.

Define now the functions gipλq “ λi´1 ´ λi, for i “ 1, . . . , n´ 1 and λ0 “ 0, and

the vector gpλq “ pg1pλq, . . . , gn´1pλqq. Moreover, define the matrix of partial

derivatives by

G “

ˆ

Bgipλq

Bλj

˙

, for i “ 1, . . . , n´ 1; j “ 1, . . . , n´ 1. (S1.5)

Let φ̃pλq “ ´φpλq. Then, maximizing (S1.2) over all 0 ď λ1 ď . . . ď λn´1 is

equivalent with minimizing φ̃pλq under the restriction that all components of the

vector gpλq are negative. An adaptation of the Karush-Kuhn-Tucker theorem

(e.g., see Theorem 8.1 in Groeneboom (1998)) states that λ̂ minimizes φ̃ over all

vectors λ such that gipλq ď 0, for all i “ 1, . . . , n´ 1, if and only if the following

conditions hold

∇φ̃pλ̂q `GTα “ 0, (S1.6)

gpλ̂q ` w “ 0, (S1.7)

xα,wy “ 0, (S1.8)
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for α “ pα1, . . . , αn´1q, with αi ě 0, i “ 1, . . . , n ´ 1, and w “ pw1, . . . , wn´1q,

with wi ě 0, for i “ 1, . . . , n´ 1. The first condition (S1.6), yields that

αi “ ´
ÿ

jěi

∇jφpλ̂q “ ´
ÿ

jěi

$

&

%

∆pjq

λ̂j
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

. (S1.9)

Since αi ě 0, for all i “ 1, . . . , n´ 1, condition (S1.3) is immediate. From (S1.7),

w “ ´gpλ̂q “ pλ̂1 ´ λ̂0, λ̂2 ´ λ̂1, . . . , λ̂n´1 ´ λ̂n´2q, with λ̂0 “ 0. Note that the

condition wi ě 0 implies that λ̂i´1 ď λ̂i, for all i “ 1, . . . , n´ 1, which is trivially

satisfied. Finally, by (S1.8),

n´1
ÿ

i“1

pλ̂i ´ λ̂i´1q
ÿ

jěi

∇jφpλ̂q “ 0,

which re-writes exactly to (S1.4).

To derive the expression in (3.6), we prove first that (S1.3) and (S1.4) imply

that

n´1
ÿ

j“1

$

&

%

∆pjq

λ̂j
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

“ 0. (S1.10)

Condition (S1.3) gives that
řn´1
j“1 ∇jφpλ̂q ď 0. In addition, as the maximizer λ̂

is nondecreasing,

λ̂1

n´1
ÿ

j“1

∇jφpλ̂q “ ´∇2φpλ̂qλ̂2 ´∇3φpλ̂qλ̂3 ´ . . .´∇n´1φpλ̂qλ̂n´1

`∇2φpλ̂qλ̂1 `∇3φpλ̂qλ̂1 ` . . .`∇n´1φpλ̂qλ̂1

“

n´1
ÿ

i“2

pλ̂i´1 ´ λ̂iq
ÿ

jěi

∇jφpλ̂q ě 0.

This shows (S1.10). Now letB1, . . . , Bk be blocks of indices on which λ̂ is constant

such that B1 Y . . .YBk “ t1, . . . , n´ 1u and let vnjpβq be the value of λ̂ on the

block Bj , with j “ 1, . . . , k. If k “ 1, then the expression of vn1 is immediate

from (S1.10). Moreover, observe that, by (S1.8),
řn´1
i“1 αi

´

λ̂i ´ λ̂i´1

¯

“ 0, and

since αi ě 0 and λ̂i ě λ̂i´1, for any i “ 1, . . . , n ´ 1, it will follow that αi “ 0,

whenever λ̂i´1 ă λ̂i. Hence, for k ě 2, there exist k ´ 1 α’s that are zero.
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Then (3.6) follows by (S1.9) and (S1.10). For example, for k ě 3, choose any two

consecutive αi that are zero. From (S1.9), we get that by subtracting these αi’s,

ÿ

iPBj

∇iφpλ̂q “
ÿ

iPBj

#

∆piq

vnjpβq
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

“ 0.

As vnjpβq is constant on Bj , this yields (3.6).

S2 PROOF LEMMA 2

Proof. We will derive the Karush-Kuhn-Tucker (KKT) conditions, that uniquely

determine the constrained NPMLE, and which implicitly provide the character-

ization in (ii). To prove the lemma, we will show that the estimator proposed

in (i) satisfies these conditions.

The constrained NPMLE estimator is obtained by maximizing the objective

function (3.1) over 0 ď λ0pTp1qq ď . . . ď λ0pTpmqq ď θ0 ď λ0pTpm`1qq ď . . . ď

λ0pTpn´1qq. In line with the reasoning for the unconstrained estimator, it can be

argued that the constrained estimator has to be a nondecreasing step function

that is zero for x ă Tp1q, constant on rTpiq, Tpi`1qq, for i “ 1, . . . , n ´ 1, is equal

to θ0 on the interval rx0, Tpm`1qq, and can be chosen arbitrarily large for x ě Tpnq.

Therefore, for a fixed β P R, the (pseudo) loglikelihood function in (3.1) reduces

to

m´1
ÿ

i“1

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

`∆pmq log λ0pTpmqq

´
 

λ0pTpmqq
“

x0 ´ Tpmq
‰

´ θ0
“

Tpm`1q ´ x0
‰(

n
ÿ

l“m`1

eβ
1Zplq

`

n´1
ÿ

i“m`1

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

.

(S2.1)

By letting λi “ λ0pTpiqq, for i “ 1, . . . , n ´ 1, and λ “ pλ1, . . . , λn´1q, we then
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want to maximize

φ0pλq “
m´1
ÿ

i“1

#

∆piq log λi ´ λi
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

`∆pmq log λm ´ λm
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

`

n´1
ÿ

i“m`1

#

∆piq log λi ´ λi
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

,

(S2.2)

over the set 0 ď λ1 ď . . . ď λm ď θ0 ď λm`1 ď . . . ď λn´1. Let the vector

λ̂c “ pλ̂c1, . . . , λ̂
c
n´1q denote the constrained NPMLE under the null hypothesis

H0 : λ0px0q “ θ0. We will show next that λ̂c maximizes the objective function

in (S2.2) over the class of nondecreasing baseline hazard functions, under the null

hypothesis, if and only if the following conditions are satisfied

ÿ

jďi

$

&

%

∆pjq

λ̂cj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ě 0, for i “ 1, . . . ,m´ 1, (S2.3)

m´1
ÿ

j“1

$

&

%

∆pjq

λ̂cj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

`
∆pmq

λ̂cm
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq ě 0,

(S2.4)

ÿ

jěi

$

&

%

∆pjq

λ̂cj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ď 0, for i “ m` 1, . . . , n´ 1, (S2.5)

and

n´1
ÿ

j“1
j‰m

!∆pjq

λ̂cj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

)´

λ̂cj ´ θ0

¯

`

#

∆pmq

λ̂cm
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

+

´

λ̂cm ´ θ0

¯

“ 0.

(S2.6)

The NPMLE λ̂c is thus uniquely determined by these conditions. To prove (i),

we will show that λ̂0n defined in (3.7) verifies the Karush-Kuhn-Tucker (KKT)
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conditions (S2.3)-(S2.6). Therefore, λ̂0n is the unique maximizer of φ0pλq in (S2.2),

over the set 0 ď λ1 ď . . . ď λm ď θ0 ď λm`1 ď . . . ď λn´1. As it will be seen

further, despite bothersome calculations, the distinct form of the likelihood grants

a unified framework for deriving the KKT conditions, that uses all the follow-up

times, unlike the reasoning in Banerjee and Wellner (2001), where the (pseudo)

loglikelihood is split and arguments are carried both to the left and to the right

of x0.

Similar to the unconstrained case, observe that the function φ0 is concave

and that the vector of partial derivatives is ∇φ0pλq “ p∇1φ
0pλq, . . . ,∇n´1φ

0pλqq,

with

∇iφ
0pλq “

∆piq

λi
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq ,

for i “ 1, . . . ,m´ 1,m` 1, . . . , n´ 1, and

∇mφ
0pλq “

∆pmq

λm
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq .

Moreover, define the vector gpλq “ pg1pλq, . . . , gn´1pλqq, with

gipλq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λi ´ λi`1 i “ 1, . . . ,m´ 1,

λm ´ θ0 i “ m,

θ0 ´ λm`1 i “ m` 1,

λi´1 ´ λi i “ m` 2, . . . , n´ 1,

and consider the matrix of partial derivatives defined in (S1.5). Computations as

in (S1.9) can be derived to show that condition (S1.6) yields (S2.3)-(S2.5), upon

noting that

αi “

$

&

%

ř

jďi∇jφ
0pλ̂cq i “ 1, . . . ,m,

´
ř

jěi∇jφ
0pλ̂cq i “ m` 1, . . . , n´ 1.

(S2.7)

Condition (S1.7) gives that w “ pλ̂c2´λ̂
c
1, . . . , θ0´λ̂

c
m, λ̂

c
m`1´θ0, . . . , λ̂

c
n´1´λ̂

c
n´2q,

which together with (S1.8) and (S2.7), yields (S2.6). Moreover, (S1.8) gives that

m´1
ÿ

i“1

αi

´

λ̂ci`1 ´ λ̂
c
i

¯

`αm

´

θ0 ´ λ̂
c
m

¯

`αm`1

´

λ̂cm`1 ´ θ0

¯

`

n´1
ÿ

m`2

αi

´

λ̂ci ´ λ̂
c
i´1

¯

“ 0.



LIKELIHOOD RATIO TESTS IN THE COX MODEL 7

Obviously, αi “ 0 if λ̂ci ă λ̂ci`1, for i “ 1, . . . ,m ´ 1,m ` 1, . . . , n ´ 1, and (3.8)

can be derived as in the proof of Lemma 1. For the block B0
p containing m, we

get that

ÿ

iPB0
pztmu

#

∆piq

v0nppβq
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

`
∆pmq

v0nppβq
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq “ 0,

which gives exactly (3.9). Therefore showing that the estimator λ̂0n defined

in (3.7) satisfies the KKT conditions (S2.3)-(S2.6) also proves (ii).

Recall that λ̂0n is minpλ̂Li , θ0q, for i “ 1, . . . ,m, and that λ̂Li is the un-

constrained estimator when considering only the follow-up times Tp1q, . . . , Tpmq.

Moreover, λ̂0n is maxpλ̂Ri , θ0q, for i “ m ` 1, . . . , n ´ 1, where λ̂Ri is the uncon-

strained estimator when considering only the follow-up times Tpmq, . . . , Tpn´1q.

Note that (S1.10) together with (S1.3) imply that

ÿ

jďi

$

&

%

∆pjq

λ̂j
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ě 0, for i “ 1, . . . , n´ 1. (S2.8)

The condition holds for i “ 1, . . . ,m´ 1, and, moreover,

ÿ

jďi

#

∆pjq

minpλ̂Lj , θ0q
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

+

ě
ÿ

jďi

$

&

%

∆pjq

λ̂Lj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ě 0,

for i “ 1, . . . ,m´ 1. Therefore, minpλ̂Li , θq, for i “ 1, . . . ,m´ 1 satisfies (S2.3).

Furthermore, (S2.8) holds for i “ m, which implies that

m´1
ÿ

j“1

$

&

%

∆pjq

minpλ̂Lj , θ0q
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

`

$

&

%

∆pmq

minpλ̂Lm, θ0q
´
“

x0 ´ Tpmq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ě

m
ÿ

j“1

$

&

%

∆pjq

minpλ̂Lj , θ0q
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ě 0,
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hence λ̂0n satisfies (S2.4) as well. It is straightforward that maxpλ̂Ri , θ0q, for

i “ m ` 1, . . . , n ´ 1 satisfies (S2.5), since, by definition, λ̂Ri satisfies (S1.3), for

i “ m` 1, . . . , n´ 1, and

ÿ

jěi

$

&

%

∆pjq

maxpλ̂Rj , θ0q
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ď
ÿ

jěi

$

&

%

∆pjq

λ̂Rj
´
“

Tpj`1q ´ Tpjq
‰

n
ÿ

l“j`1

eβ
1Zplq

,

.

-

ď 0.

Finally, to check if λ̂0n verifies the condition (S2.6), we will argue on the blocks

of indices on which λ̂n, and hence λ̂Li and λ̂Ri are constant. By (3.6), for each

block Bj , with j “ 1, . . . , k, on which the unconstrained estimator has the con-

stant value vnjpβq,

ÿ

iPBj

#

∆piq

vnjpβq
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

vnjpβq “ 0,

and

ÿ

iPBj

#

∆piq

vnjpβq
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

“ 0.

Then, on each block Bj that does not contain m, we can write

ÿ

iPBj

#

∆piq

λ̂i
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

λ̂i

“ θ0
ÿ

iPBj

#

∆piq

λ̂i
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

,

(S2.9)

and this holds for λ̂Li , as well as for λ̂Ri . It is straightforward that minpλ̂Li , θ0q, for

i “ 1, . . . ,m, and maxpλ̂Ri , θ0q, for i “ m` 1, . . . , n´ 1 satisfy this relationship.

For the block Bp that contains m, we have
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ÿ

iPBpztmu

#

∆piq

λ̂Li
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

λ̂Li

`

!∆pmq

λ̂Lm
´
“

Tpm`1q ´ x0
‰

n
ÿ

l“m`1

eβ
1Zplq ´

“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

)

λ̂Lm

“θ0
ÿ

iPBpztmu

#

∆piq

λ̂Li
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

` θ0

#

∆pmq

λ̂m
´
“

Tpm`1q ´ x0
‰

n
ÿ

l“m`1

eβ
1Zplq ´

“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

+

.

Constraining λ̂Lm to be θ0 on the interval rx0, Tpm`1qq yields

ÿ

iPBpztmu

#

∆piq

λ̂Li
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

λ̂Li

`

!∆pmq

λ̂Lm
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

)

λ̂Lm

“ θ0
ÿ

iPBpztmu

#

∆piq

λ̂Li
´
“

Tpi`1q ´ Tpiq
‰

n
ÿ

l“i`1

eβ
1Zplq

+

` θ0

#

∆pmq

λ̂Lm
´
“

x0 ´ Tpmq
‰

n
ÿ

l“m`1

eβ
1Zplq

+

.

(S2.10)

Once more, for i P Bp, minpλ̂Li , θ0q satisfies this relationship. Summing over all

blocks in (S2.9) and (S2.10) completes the proof.

S3 PROOF LEMMA 5

Proof. Note that the processes Xn and Yn are monotone. By making use of

Corollary 2 in Huang and Zhang (1994) and the remark above the corollary, it

suffices to prove that the finite dimensional marginals of the process pXn, Ynq

converge to the finite dimensional marginals of the process pga,b, g
0
a,bq, in order

to prove the lemma.

For x ě Tp1q, let

xWnpxq “Wnpβ̂n, xq ´Wnpβ̂n, Tp1qq,
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where Wn is defined in (3.3), and where β̂n is the maximum partial likelihood

estimator. For fixed x0 and x P r´k, ks, with 0 ă k ă 8, define the process

Znpxq “
n2{3

Φpβ0, x0q

!

Vnpx0 ` n
´1{3xq ´ Vnpx0q

´ λ0px0q
”

xWnpx0 ` n
´1{3xq ´xWnpx0q

ı )

,

(S3.1)

where Vn is defined in (3.4). For a and b defined in (4.3), Zn converges weakly

to Xa,b, as processes in BlocpRq, by Lemma 8 in Lopuhaä and Nane (2013).

Define now

Snpxq “
n1{3

Φpβ0, x0q

!

xWnpx0 ` n
´1{3xq ´xWnpx0q

)

. (S3.2)

From the proof of Lemma 9 in Lopuhaä and Nane (2013), Snpxq converges almost

surely to the deterministic function x, uniformly on every compact set.

Following the approach in Groeneboom (1985), Lopuhaä and Nane (2013)

obtained the asymptotic distribution of the unconstrained maximum likelihood

estimator λ̂n by considering the inverse process

Unpzq “ argmin
xPrTp1q,Tpnqs

!

Vnpxq ´ zxWnpxq
)

, (S3.3)

for z ą 0, where the argmin function represents the supremum of times at which

the minimum is attained. Since the argmin is invariant under addition of and

multiplication with positive constants, it follows that

n1{3
”

Unpθ0 ` n
´1{3zq ´ x0

ı

“ argmin
xPInpx0q

tZnpxq ´ Snpxqzu ,

where Inpx0q “ r´n1{3px0 ´ Tp1qq, n
1{3pTpnq ´ x0qs. For z ą 0, the switching

relationship λ̂npxq ď z holds if and only if Unpzq ě x, with probability one. This

translates, in the context of this lemma, to

n1{3
”

λ̂npx0 ` n
´1{3xq ´ θ0

ı

ď z ô n1{3
”

Unpθ0 ` n
´1{3zq ´ x0

ı

ě x,

for 0 ă x0 ă τH and θ0 ą 0, with probability one. The switching rela-

tionship is thus Xnpxq ď z ô n1{3
“

Unpθ0 ` n
´1{3zq ´ x0

‰

ě x. Hence find-

ing the limiting distribution of Xnpxq resumes to finding the limiting distri-

bution of n1{3
“

Unpθ0 ` n
´1{3zq ´ x0

‰

. By applying Theorem 2.7 in Kim and

Pollard (1990), it follows that, for every z ą 0,
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n1{3
”

Unpθ0 ` n
´1{3zq ´ x0

ı

d
ÝÑ Upzq,

as inferred in the proof of Theorem 2 in Lopuhaä and Nane (2013), where Upzq “

sup tt P R : Xa,bptq ´ zt is minimalu. It will result that, for every x P r´k, ks,

P pXnpxq ď zq “ P
´

n1{3
”

λ̂npx0 ` n
´1{3xq ´ θ0

ı

ď z
¯

“ P
´

n1{3
”

Unpθ0 ` n
´1{3zq ´ x0

ı

ě x
¯

Ñ P pUpzq ě xq .

Using the switching relationship on the limiting process, it can be deduced that

Upzq ě xô ga,bpxq ď z, with probability one, and thus Xnpxq
d
ÝÑ ga,bpxq.

In order to prove the same type of result for Ynpxq, consider first the following

process

rYnpxq “ n1{3
´

λ̃npx0 ` n
´1{3xq ´ θ0

¯

, (S3.4)

where, for x0 P p0, τHq, such that Tpmq ă x0 ă Tpm`1q,

λ̃npxq “

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

0 x ă Tp1q,

λ̂Li Tpiq ď x ă Tpi`1q, for i “ 1, . . . ,m´ 1

λ̂Lm Tpmq ď x ă x0,

0 x0 ď x ă Tpm`1q,

λ̂Ri Tpiq ď x ă Tpi`1q, for i “ m` 1, . . . , n´ 1

8 x ě Tpnq,

with λ̂Li and λ̂Ri defined in Lemma 2. For this, we have considered up to x0

an unconstrained estimator which is constructed based on the sample points

Tp1q, . . . , Tpm`1q. Moreover, to the right of x0, we have considered an uncon-

strained estimator based on the points Tpm`1q, . . . , Tpnq. It is not difficult to see

that

Ynpxq “

$

’

’

’

&

’

’

’

%

min
´

rYnpxq, 0
¯

x ă 0,

0 x “ 0,

max
´

rYnpxq, 0
¯

x ą 0.

(S3.5)

For z ą 0, define the inverse processes
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ULn pzq “ argmin
xPrTp1q,Tpm`1qs

!

Vnpxq ´ zxWnpxq
)

,

URn pzq “ argmin
xPrTpm`1q,Tpnqs

!

Vnpxq ´ zxWnpxq
)

Take x ă x0. The switching relationship for λ̃n is given by λ̃npxq ď z if and only

if ULn pzq ě x, with probability one, which gives that

n1{3
”

λ̃npx0 ` n
´1{3xq ´ θ0

ı

ď z ô n1{3
”

ULn pθ0 ` n
´1{3zq ´ x0

ı

ě x,

with probability one. Moreover,

n1{3
”

ULn pθ0 ` n
´1{3zq ´ x0

ı

“ argmin
xPILn px0q

tZnpxq ´ Snpxqzu ,

where ILn px0q “ r´n
1{3px0 ´ Tp1qq, n

1{3pTpm`1q ´ x0qs. Denote by

Znpz, xq “ Znpxq ´ Snpxqz.

As for the unconstrained estimator, we aim to apply Theorem 2.7 in Kim and

Pollard (1990). As Theorem 2.7 in Kim and Pollard (1990) applies to the argmax

of processes on the whole real line, we extend the above process in the following

manner

Z´n pz, xq “

$

’

’

’

&

’

’

’

%

Znpz,´n
1{3px0 ´ Tp1qqq x ă ´n1{3px0 ´ Tp1qq,

Znpz, xq ´n1{3px0 ´ Tp1qq ď x ď n1{3pTpm`1q ´ x0q,

Znpz, n
1{3pTpm`1q ´ x0qq ` 1 x ą n1{3pTpm`1q ´ x0q.

Then, Z´n pz, xq P BlocpRq and

n1{3
”

ULn pθ0 ` n
´1{3zq ´ x0

ı

“ argmin
xPR

 

Z´n pz, xq
(

“ argmax
xPR

 

´Z´n pz, xq
(

.

Since λ0px0q “ θ0 ą 0 and λ0 is continuously differentiable in a neighborhood

of x0, it follows by a Taylor expansion and by Lemma 2.5 in Devroye (1981)

that n1{3pTpm`1q ´ x0q “ Oppn
´1 log nq. Therefore, by virtue of Lemma 8 and

Lemma 9 in Lopuhaä and Nane (2013), the process x ÞÑ ´Z´n pz, xq converges

weakly to Z´pxq P CmaxpRq, for any fixed z, where

Z´n pz, xq “

$

&

%

´Xa,bpxq ` zx x ď 0,

1 x ą 0,
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for a and b defined in (4.3). Hence, the first condition of Theorem 2.7 in Kim and

Pollard (1990) is verified. The second condition follows directly from Lemma 11

in Lopuhaä and Nane (2013), while the third condition is trivially fulfilled. Thus,

for any z fixed,

n1{3
”

ULn pθ0 ` n
´1{3zq ´ x0

ı

d
ÝÑ U´pzq,

where U´pzq “ sup tt ď 0 : Xa,bptq ´ zt is minimalu. Concluding, for x ă 0,

P
´

rYnpxq ď z
¯

“ P
´

n1{3
”

λ̃npx0 ` n
´1{3xq ´ θ0

ı

ď z
¯

“ P
´

n1{3
”

ULn pθ0 ` n
´1{3zq ´ x0

ı

ě x
¯

Ñ P
`

U´pzq ě x
˘

.

The switching relationship for the limiting process gives that U´pzq ě x ô

DLpXa,bqpxq ď z, with probability one, where DLpXa,bqpxq has been defined as

the left-hand slope of the GCM of Xa,b, at a point x ă 0. Hence, for x ă 0,

rYnpxq
d
ÝÑ DLpXa,bqpxq.

Completely analogous, rYnpxq
d
ÝÑ DRpXa,bqpxq, for x ą 0. By continuous

mapping theorem and by (S4.2), it can be concluded that for fixed x P r´k, ks,

Ynpxq
d
ÝÑ g0a,bpxq,

where g0a,b has been defined in (3.12).

Our next objective is to apply Theorem 6.1 in Huang and Wellner (1995).

The first condition of Theorem 6.1 is trivially fulfilled. The second condition

follows by Lemma 11 in Lopuhaä and Nane (2013), while the third condition

follows by the definition of the inverse processes. Hence, for fixed x,

P pXnpxq ď z, Ynpxq ď zq Ñ P
`

ga,bpxq ď z, g0a,bpxq ď z
˘

,

for a and b defined in (4.3). The arguments for one dimensional marginal con-

vergence can be extended to the finite dimensional convergence, as in the proof

of Theorem 3.6.2 in Banerjee (2000), by making use of Lemma 3.6.10 in Baner-

jee (2000). Hence, we can conclude that the finite dimensional marginals of

the process pXn, Ynq converge to the finite dimensional marginals of the process

pga,b, g
0
a,bq. This completes the proof.
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S4 Nonincreasing baseline hazard

The characterization of the unconstrained and the constrained NPMLE es-

timators of a nonincreasing baseline hazard function follows analogously to the

characterization of the nondecreasing estimators. The unconstrained NPMLE

λ̂npx;βq is obtained by maximizing the (pseudo) likelihood function in (3.1) over

all λ0pTp1qq ě . . . ě λpTpnqq ě 0. Lopuhaä and Nane (2013) showed that the

likelihood is maximized by a nonincreasing step function that is constant on

pTpi´1q, Tpiqs, for i “ 1, . . . , n and where Tp0q “ 0. The (pseudo) loglikelihood

in (3.1) becomes then

n
ÿ

i“1

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpiq ´ Tpi´1q
‰

n
ÿ

l“i

eβ
1Zplq

+

. (S4.1)

The lemmas below provide the characterization of the unconstrained estimator

λ̂npx;βq and the constrained estimator λ̂0npx;βq. Their proofs follow by argu-

ments similar to those in the proofs of Lemma 1 and Lemma 2, as well as the

necessary and sufficient conditions that uniquely characterize these estimators..

LEMMA 1. Let Tp1q ă . . . ă Tpnq be the ordered follow-up times and consider

a fixed β P Rp.

(i) Let Wn be defined in (3.3) and let

V̄npxq “

ż

δtu ď xu dPnpu, δ, zq. (S4.2)

Then, the NPMLE λ̂npx;βq of a nonincreasing baseline hazard function λ0

is given by

λ̂npx;βq “

$

&

%

λ̂i Tpi´1q ă x ď Tpiq, for i “ 1, . . . , n,

0 x ą Tpnq,

for i “ 1, . . . , n, with Tp0q “ 0 and where λ̂i is the left derivative of the least

concave majorant (LCM) at the point Pi of the cumulative sum diagram

(CSD) consisting of the points

Pj “
´

Wnpβ, Tpjqq, V̄npTpjqq
¯

, (S4.3)

for j “ 1, . . . , n and P0 “ p0, 0q.
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(ii) Let B1, . . . , Bk be blocks of indices such that λ̂npx;βq is constant on each

block and B1 Y . . . Y Bk “ t1, . . . , nu. Denote by vnjpβq, the value of the

estimator on block Bj. Then

vnjpβq “

ř

iPBj
∆piq

ř

iPBj

“

Tpiq ´ Tpi´1q
‰
řn
l“i eβ

1Zplq
.

In fact, for x ě Tpnq, λ̂npx;βq can take any value smaller than λ̂n, the

left derivative of the LCM at the point Pn of the CSD. As before, we propose

λ̂npxq “ λ̂npx; β̂nq as the estimator of λ0 and v̂nj “ vnjpβ̂nq, where β̂n denotes

the maximum partial likelihood estimator of β0. Fenchel conditions as in (S1.3)

and (S1.4) can be derived analogously.

The NPMLE estimator λ̂0n maximizes the (pseudo) loglikelihood function

in (S4.1) over the set λ0pTp1qq ě . . . ě λ0pTpmqq ě θ0 ě λ0pTpm`1qq ě . . . ě

λ0pTpnqq ě 0. It can be argued that the constrained estimator has to be a

nonincreasing step function that is constant on pTpi´1q, Tpiqs, for i “ 1, . . . , n,

is θ0 on the interval pTpmq, x0s, and is zero for x ě Tpnq. Hence, the (pseudo)

loglikelihood function becomes

m
ÿ

i“1

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpiq ´ Tpi´1q
‰

n
ÿ

l“i

eβ
1Zplq

+

`∆pm`1q log λ0pTpm`1qq

´
 

θ0
“

x0 ´ Tpmq
‰

´ λ0pTpm`1qq
“

Tpm`1q ´ x0
‰(

n
ÿ

l“m`1

eβ
1Zplq

`

n
ÿ

i“m`2

#

∆piq log λ0pTpiqq ´ λ0pTpiqq
“

Tpiq ´ Tpi´1q
‰

n
ÿ

l“i

eβ
1Zplq

+

.

The characterization of the constrained NPMLE λ̂0n is provided with the next

lemma.

LEMMA 2. Let x0 P p0, τHq fixed, such that Tpmq ă x0 ă Tpm`1q, for a given

1 ď m ď n´ 1. Consider a fixed β P Rp.

(i) For i “ 1, . . . ,m, let λ̂Li to be the left derivative of the LCM at the point PLi

of the CSD consisting of the points PLj “ Pj, for j “ 1, . . . ,m, with Pj

defined in (S4.3), and PL0 “ p0, 0q. Moreover, for i “ m ` 1, . . . , n, let λ̂Ri
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be the left derivative of the LCM at the point PRi of the CSD consisting of

the points PRj “ Pj, for j “ m, . . . , n, with Pj defined in (S4.3). Then, the

NPMLE λ̂0npx;βq of a nonincreasing baseline hazard function λ0, under the

null hypothesis H0 : λ0 “ θ0, is given by

λ̂0npx;βq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

λ̂0i Tpi´1q ă x ď Tpiq, for i P t1, . . . nuztm` 1u,

θ0 Tpmq ă x ď x0,

λ̂0m`1 x0 ă x ď Tpm`1q,

0 x ą Tpnq,

(S4.4)

where Tp0q “ 0 and where λ̂0i “ maxpλ̂Li , θ0q, for i “ 1, . . . ,m, and λ̂0i “

minpλ̂Ri , θ0q, for i “ m` 1, . . . , n.

(ii) For k ě 1, let B0
1 , . . . , B

0
k be blocks of indices such that λ̂0npx;βq is constant

on each block and B0
1 Y . . .Y B

0
k “ t1, . . . , nu. There is one block, say B0

r ,

on which λ̂0npx;βq is θ0, and one block, say B0
p , that contains m` 1. On all

other blocks B0
j , denote by v0njpβq the value of λ̂0npx;βq on block B0

j . Then,

v0njpβq “

ř

iPB0
j

∆piq
ř

iPB0
j

“

Tpjq ´ Tpj´1q
‰
řn
l“j eβ

1Zplq
.

On the block B0
p , that contains m` 1,

v0nppβq

“

ř

iPB0
p

∆piq
ř

iPB0
pztm`1u

“

Tpiq ´ Tpi´1q
‰
řn
l“i`1 eβ

1Zplq ` rTpm`1q ´ x0s
řn
l“m`1 eβ

1Zplq
.

We propose λ̂0npxq “ λ̂0npx; β̂nq as the constrained estimator of a nonincreas-

ing baseline hazard function λ0, as well as v̂0nj “ v0njpβ̂nq on blocks of indices

where the estimator is constant. The Fenchel conditions corresponding to (S2.3)-

(S2.6) can be derived in the same manner as for the constrained estimator in the

nondecreasing case.

Let slolcmpf, Iq be the left-hand slope of the LCM of the restriction of the

real-valued function f to the interval I. Denote by slolcmpfq “ slolcmpf,Rq. For
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a, b ą 0, let X̄a,bptq “ aWptq ´ bt2, where W is a standard two-sided Brownian

motion originating from zero. Denote by La,b the LCM of X̄a,b and let

la,bptq “ slolcmpX̄a,bqptq, (S4.5)

be the left-hand slope of La,b, at point t. Additionally, set

slolcm0pfq “ max pslolcmpf, p´8, 0sq, 0q 1p´8,0s`min pslolcmpf, p0,8qq, 0q 1p0,8q.

For t ď 0, construct the LCM of X̄a,b, that will be denoted by LLa,b and take its

left-hand slope at point t, denoted by DLpX̄a,bqptq. When the slopes fall behind

zero, replace them by zero. In the same manner, for t ą 0, denote the LCM

of X̄a,b by LRa,b and its slope at point t by DRpX̄a,bqptq. Replace the slopes by

zero when they exceed zero. This slope process will be denoted by l0a,b, which is

thus given by

l0a,bptq “

$

’

’

’

&

’

’

’

%

max
`

DLpX̄a,bqptq, 0
˘

t ă 0,

0 t “ 0,

min
`

DRpX̄a,bqptq, 0
˘

t ą 0.

(S4.6)

Observe that l0a,bptq “ slolcm0pX̄a,bqptq.

By making use of results in Lopuhaä and Nane (2013), a completely similar

result holds in the nonincreasing setting.

LEMMA 3. Assume (A1) and (A2) and let x0 P p0, τHq. Suppose that λ0 is non-

increasing on r0,8q and continuously differentiable in a neighborhood of x0, with

λ0px0q ‰ 0 and λ10px0q ă 0. Moreover, assume that the functions x Ñ Φpβ0, xq

and Hucpxq, defined in (4.1) and above (4.1), are continuously differentiable in

a neighborhood of x0.

Then, for a and b defined in (4.3), pXn, Ynq converge jointly to
´

la,b, l
0
a,b

¯

in

Lˆ L, where the processes la,b and l0a,b have been defined in (S4.5) and (S4.6).

The asymptotic distribution of the likelihood ratio statistic in the nonin-

creasing baseline hazard setting can be derived completely analogous.

THEOREM 1. Suppose (A1) and (A2) hold and let x0 P p0, τHq. Assume

that λ0 is nonincresing on r0,8q and continuously differentiable in a neighbor-

hood of x0, with λ0px0q ‰ 0 and λ10px0q ă 0. Moreover, assume that Hucpxq and
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xÑ Φpβ0, xq, defined in (4.1) and above (4.1), are continuously differentiable in

a neighborhood of x0. Let 2 log ξnpθ0q be the likelihood ratio statistic for testing

H0 : λ0px0q “ θ0, as defined in (3.2). Then,

2 log ξnpθ0q
d
ÝÑ D.

Proof. Following the same reasoning as in the proof of Theorem 1 and by Lemma 8,

it can be deduced that

2 log ξnpθ0q
d
ÝÑ

1

a2

ż

”

pla,bpxqq
2 ´

`

l0a,bpxq
˘2
ı

 

x P D̄a,b

(

dx,

where D̄a,b is the set on which la,b and l0a,b differ. By continuous mapping theorem,

it suffices to show that, for t fixed, la,bpX̄a,bqptq has the same distribution as

ga,bpXa,bqptq and l0a,bpX̄a,bqptq has the same distribution as g0a,bpXa,bqptq. It is

noteworthy that

slolcmpX̄a,bqptq “ ´slogcmp´X̄a,bqptq.

Thus, by Brownian motion properties and continuous mapping theorem,

P pla,bptq ď zq “ P
`

´slogmcp´aWptq ` t2q ď z
˘

“ P
`

´slogmcpaWptq ` t2q ď z
˘

“ P p´ga,bptq ď zq .

Concluding, la,bpX̄a,bqptq
d
“ ´ga,bpXa,bqptq, and a similar reasoning can be applied

to show that l0a,bpX̄a,bqptq
d
“ ´ g0a,bpXa,bqptq. The proof is then immediate, by

continuous mapping theorem.
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