Statistica Sinica (2013): Supplement 1

A LIKELTHOOD RATIO TEST FOR MONOTONE BASELINE
HAZARD FUNCTIONS IN THE COX MODEL

Gabriela F. Nane

Delft University of Technology

Supplementary material

S1 PROOF LEMMA 1

Proof. The proof of (i) has been provided by Lemma 1 in Lopuhaé and Nane (2013).
The NPMLE A, (z; 3) is obtained by maximizing the (pseudo) loglikelihood func-
tion in (3.1) over all 0 < Ao(T(1)) < ... < Ao(T(y)). As argued in Lopuhad and
Nane (2013), the estimator has to be a nondecreasing step function, that is zero
for x < T(y), constant on the interval [T(i),T(iH)), fort=1,...,n—1, and can
be chosen arbitrarily large for > T(,y. Then, for fixed 3 € RP, the (pseudo)
loglikelihood function in (3.1) reduces to

n—1

ZA(Z log A\ (T Z L) Z (G+1) — /\0( G))

i=1

B (S1.1)
Z {A@ log Mo (T(s)) = Ao(L(ay) [Tis) — Z ¢ Zm}
i=1 l i+1
Let A = Xo(T(;)), for i = 1,. —1,and A = (A1,..., Ap—1). Then, finding the
NPMLE reduces to maximizing
n—1
o) = ] {A(i) log i = Xi [T(it1) — Z o’ Z”)} (51.2)
i=1 I=i+1
over the set 0 < A\; < ... < \,—1. The NPMLE corresponds thus to a vector
A= (A,..., A\y_1) that maximizes ¢ over 0 < A\; < ... < An_1. To prove (i), we

first derive the Fenchel conditions of the estimator. Thus, we will show that the
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estimator A, (z;3) maximizes the (pseudo) loglikelihood function in (3.1) over

the class of nondecreasing baseline hazard functions if and only if

Ay u /
D=2 - [Ty = 1) Y, 0 ¢ <o, (S1.3)
=i )‘j I=j+1
fori=1,2,...,n—1, and
n—1 A, n , ~
PIR e LTI 1 P B WU PV (51.4)
j=1 Aj l=j+1

The NPMLE j\n(m, B) is thus uniquely determined by these Fenchel conditions.
The rest of the proof focuses on deriving the Fenchel conditions (S1.3) and (S1.4)
and on establishing (3.6).

First, note that the function ¢ in (S1.2) is concave and that the vector of
partial derivatives Vo(\) = (V1d(N), ..., V,u_10(N\)) is given by

A no A ,
Vo(A) = (;11) — [Tio) ~ Ty] Y70, S5 = [Ty = Ty ] Z“”) :
=2

n—1

Define now the functions g;(A\) = \j—1 — A\, fori=1,...,n—1 and \g = 0, and
the vector g(A) = (g1(A\),...,9n—1(A)). Moreover, define the matrix of partial

derivatives by

G = 09i(N) , fori=1,...,n—-1;5=1,...,n—1 (51.5)
O\j

Let ¢(\) = —¢()\). Then, maximizing (S1.2) over all 0 < A\; < ... < A\, is
equivalent with minimizing gz~5()\) under the restriction that all components of the
vector g(\) are negative. An adaptation of the Karush-Kuhn-Tucker theorem
(e.g., see Theorem 8.1 in Groeneboom (1998)) states that A minimizes ¢ over all
vectors A such that g;(\) <0, for all i = 1,...,n — 1, if and only if the following

conditions hold
Vo(\) +GTa =0, (S1.6)
g(A) +w =0, (S1.7)

{o,w) =0, (S1.8)
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for a = (a1,...,ap—1), with a; 2 0,i=1,...,n— 1, and w = (wy,...,wp—1),
with w; =0, for i = 1,...,n — 1. The first condition (S1.6), yields that

. A L ,
o = — Z V]gb(/\) = — Z A(j) - [T(j+1) - T(j)] 2 e’B Zw . (819)
Jj=i Jj=i )‘j I=j+1

Since a; = 0, for all i = 1,...,n—1, condition (S1.3) is immediate. From (S1.7),
w = —g(S\) = (5\1 — 5\0,5\2 — 5\1, .. .,;\n_l — j\n_g), with 5\0 = 0. Note that the
condition w; = 0 implies that i1 < ;\i, foralli =1,...,n—1, which is trivially
satisfied. Finally, by (S1.8),

n—1 R R R

Z ()‘z - )\2—1) Z v]¢(A) =0,

i=1 j=i

which re-writes exactly to (S1.4).
To derive the expression in (3.6), we prove first that (S1.3) and (S1.4) imply
that

A . " /
D [Ty = Ty] Y ™40 b =0, (51.10)
Aj I=j+1

n—1
j=1
Condition (S1.3) gives that Z;:ll Vj¢(5\) < 0. In addition, as the maximizer \

is nondecreasing,

n—1

MDY IVi6(A) = = Vag(MAs — Vad(MAz — ... = Vi_10(M) Ay
j=1
20N+ V3d(MA1 + ...+ Ve 16(AM) A

+V
n—1 ) )
= YA =) D V,6(N) = 0.

i=2 j=i
This shows (S1.10). Now let By, ..., By be blocks of indices on which A is constant
such that By u...u By = {1,...,n — 1} and let v,;(3) be the value of A on the
block B;, with j = 1,...,k. If £ = 1, then the expression of v, is immediate
from (S1.10). Moreover, observe that, by (S1.8), 2?2_11 o <5\2 - 5\2-_1) =0, and
since a; = 0 and \; > S\i_l, for any ¢ = 1,...,n — 1, it will follow that a; = 0,

whenever S\i_l < /A\z Hence, for & > 2, there exist £k — 1 «o’s that are zero.
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Then (3.6) follows by (S1.9) and (S1.10). For example, for k > 3, choose any two

consecutive «; that are zero. From (S1.9), we get that by subtracting these «;’s,

Z Vlgﬁ(j\) = Z A(Z) - [ (i+1) T(z Z eB Zm \ =,
Unj(ﬂ)

iEBj ’iEBj l=i+1

As v,j(B) is constant on By, this yields (3.6). O

S2 PROOF LEMMA 2

Proof. We will derive the Karush-Kuhn-Tucker (KKT) conditions, that uniquely
determine the constrained NPMLE, and which implicitly provide the character-
ization in (ii). To prove the lemma, we will show that the estimator proposed
in (i) satisfies these conditions.

The constrained NPMLE estimator is obtained by maximizing the objective
function (3.1) over 0 < Ao(T(1)) < ... < Mo(Tm)) < 0o < Mo(T(ms1)) < --- <
Ao(T(n—1))- In line with the reasoning for the unconstrained estimator, it can be
argued that the constrained estimator has to be a nondecreasing step function
that is zero for x < Ty), constant on [T{;), T(j11)), for i = 1,...,n — 1, is equal
to 0g on the interval [zg, T(;;,41)), and can be chosen arbitrarily large for x > T(,).
Therefore, for a fixed 8 € R, the (pseudo) loglikelihood function in (3.1) reduces

to

m—1
=1

{ (@) 10g Xo(T()) — Xo(T(iy) [T Z e Zu }
l=i+1

+ A(m) log Ao (T(m))

L (S2.1)
— {X0(Tim)) [0 = Timy| = b0 [Tims1) — 0]} D, 770
I=m+1
+ Z {Au log Ao(T(3)) = 2o (T(y)) [Tii1) — Z e Zw}
1=m+1 l=i+1

By letting A\; = Xo(T{3)), for i = 1,...,n — 1, and A = (A1,..., A1), we then
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want to maximize

mz: { alog i — A [T, (i+1) Z eBIZU)}

l=i+1
n
+ Ay 0g A = Ay [0 = Ty ] D, 7700 (S2.2)
l=m+1
+ Z { i log Ai — X [Ty 2 eBZm}
i=m+1 l=i+1
over the set 0 < A < ... < A\, < 0p < Mpy1 < ... < A\y_1. Let the vector
A = (X¢,...,X¢_,) denote the constrained NPMLE under the null hypothesis

Hy : Ao(z0) = 0p. We will show next that ¢ maximizes the objective function
in (S2.2) over the class of nondecreasing baseline hazard functions, under the null

hypothesis, if and only if the following conditions are satisfied

A .
}: Ag)"[ 5+1) }: Y >0, fori=1,....,m—1, (S2.3)
i<i | A I=j+1
m—1 A
2 A(cj - [T(41) — Z o720
j=1 )\] l=j+1 (824)
Al S
+ A(c L {20 — Ti] 2 =0,
)\m l=m+1
Ag)

—[T41) — Ty 2 %0 Y <0, fori=m+1,...,n—1, (S2.5)
J=i 7 l=j+1

SR - my] 3] @) (i)

j=1 J l=j+1
jEm (S2.6)
A(m) ~
+4{ = [z0 = Tim Z eﬁzm} Ao, —0) =0
{ )\TCW I=m+1 ( )

The NPMLE )¢ is thus uniquely determined by these conditions. To prove (i),
we will show that A0 defined in (3.7) verifies the Karush-Kuhn-Tucker (KKT)
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conditions (S2.3)-(S2.6). Therefore, A2 is the unique maximizer of ¢°(\) in (S2.2),
over the set 0 < A1 < ... < Ay, <09 < Appg1 < ... < A1 As it will be seen
further, despite bothersome calculations, the distinct form of the likelihood grants
a unified framework for deriving the KKT conditions, that uses all the follow-up
times, unlike the reasoning in Banerjee and Wellner (2001), where the (pseudo)
loglikelihood is split and arguments are carried both to the left and to the right
of xg.

Similar to the unconstrained case, observe that the function ¢ is concave
and that the vector of partial derivatives is Vé?(\) = (V1¢°(A), ..., Va_16°(N)),
with

A .
Vig?(A) = )\(‘) — [Ty — Tty Z e 4

l=i+1
fori=1,....m—1m+1,...,n—1, and
A
Vm(bo()‘):ﬂ :EO_T(m Z eﬁZ(z)
Am
l=m+1

Moreover, define the vector g(A) = (g1(A), ..., gn—1(X)), with

)\i_/\i+1 i=1,...,m—1,
)\m—eo i:m,
0o — Ama1 t=m+1,

\)\i—l_/\i i=m+2,....,n—1,

and consider the matrix of partial derivatives defined in (S1.5). Computations as
in (S1.9) can be derived to show that condition (S1.6) yields (S2.3)-(S2.5), upon
noting that

Va0 i =1,...,m,
o = Z]SZ J(Z)( ) t m (327)

=35 Vie® () i=m+1,...n—1.
Condition (S1.7) gives that w = (A§—A§, ..., 00—A%, XS4 1 =00, -, AS_ 1 —AS_y),
which together with (S1.8) and (S2.7), yields (52.6). Moreover, (S1.8) gives that

1 n—1

mZ ( )+am (90 — )\fn) +Qma1 (;\fnﬂ — 90> + Z o (5\5 — Afil) =0.

1=1 m-+2
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Obviously, a; = 0 if 5\f < 5\f+1, fori=1,....m—1m+1,...,n—1, and (3.8)
can be derived as in the proof of Lemma 1. For the block Bg containing m, we
get that

Ag
> {Uo ((é) = [Tlasn) = Z e,@zm}

ieBY\{m} L 7P lz+1
Am)
B'Zay _
+ a:o— e” 70 =0,
ol 2

which gives exactly (3.9). Therefore showing that the estimator 5\2 defined
n (3.7) satisfies the KKT conditions (S2.3)-(52.6) also proves (ii).
Recall that 5\% is min(S\ZL,GO), for i = 1,...,m, and that S\ZL is the un-

constrained estimator when considering only the follow-up times 1{y), ..., T(;)-
Moreover, 5\% is max(jle,@o), fore =m+1,...,n— 1, where 5\? is the uncon-
strained estimator when considering only the follow-up times T(,,), ..., T(n—1)-

Note that (S1.10) together with (S1.3) imply that

Ag)

> N [T(+1) — T3] Z Pt >0, fori=1,...,n—1. (S2.8)
j<i J I=j+1
The condition holds for ¢ = 1,...,m — 1, and, moreover,
Ag) z
— [T — T) o7
]Zgi {mm()\f o) l;l
Ag) z
N Z [V [Ti5+1) 2 7wt >0
J<i 7 l=j+1

fori=1,...,m — 1. Therefore, min(ﬂfﬁ), fori=1,...,m — 1 satisfies (52.3).
Furthermore, (S2.8) holds for ¢ = m, which implies that

[ (+1) — ]) Z 7w

7=1 I=j+1
By g,] 3 0
min(AL , 6p) 15
() B'Z
S 3 I 70 | >0,
3211 mln(/\jL, 6o) v . %1
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hence A0 satisfies (S2.4) as well. It is straightforward that max(;\ZR,Go), for
i=m+1,...,n— 1 satisfies (S2.5), since, by definition, 5\1R satisfies (S1.3), for
i=m+1,...,n—1, and

A

(4) [ 5Z(l)

% p i+1) e
; max()\f‘,eo) U l;l
A
(4) 8'Z
<24 = [Ty — 1) Ze ©r<0

j>i )‘f I=j+1

Finally, to check if X verifies the condition (S2.6), we will argue on the blocks
of indices on which \,, and hence 5\{3 and S\ZR are constant. By (3.6), for each
block Bj, with j = 1,...,k, on which the unconstrained estimator has the con-

stant value vy;(3),

Ag
Z{vj(é)‘[ o =T Zew}“’” oo
ieB; U7

l=i+1

and

Ag
2 {Unj((g) [Ty = Ty Z o } "

i€ B, I=i+1

Then, on each block B; that does not contain m, we can write

Z {AA@ [ (i+1) z) Z o Z(”}
ieB; Ai I=i+1
= 0o Z { z+1 1) Z eﬁl }

i€B; l=i+1

(52.9)

and this holds for S\ZL, as well as for S\ZR It is straightforward that min(j\iL, 6o), for
1=1,...,m, and max(j\ZR, o), for i =m +1,...,n — 1 satisfy this relationship.

For the block B, that contains m, we have
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A N
2 {XL — [Ty = Ti] 2. ¢ ZW}/\f

ieBp\{m} l=i+1
A(m) TR
Ag
Y {;ﬁ—[ T 2}
i€Bp\{m} i I=i+1
A(m) S A S A
+90{ < = [Tanery —20] Q) o770 = [w0 = Tn] D) 7705
Am l=§+1 l=§+1

Constraining A% to be 6 on the interval [zo, Tim+1)) yields

52, n) 5 e

1€Bp\{m} l=i+1
Bim) _
_ B'Z)
+{ j\fn $0 T(m l ;-HG }
(52.10)
AN
()
= o Z {;\L — [Ty — T Z eﬁzm}
i€By\{m} ) l=i+1
Agm
+ 6o X(L) (20 — Ty Z 7w
m l=m+1

Once more, for i € By, min(j\f,ﬂo) satisfies this relationship. Summing over all
blocks in (S2.9) and (S2.10) completes the proof. O

S3 PROOF LEMMA 5

Proof. Note that the processes X,, and Y,, are monotone. By making use of
Corollary 2 in Huang and Zhang (1994) and the remark above the corollary, it
suffices to prove that the finite dimensional marginals of the process (X,,Y,)
converge to the finite dimensional marginals of the process (gq,p, g&b), in order
to prove the lemma.

For z = T(y), let
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where W, is defined in (3.3), and where Bn is the maximum partial likelihood

estimator. For fixed zg and = € [k, k], with 0 < k < o0, define the process

2/3
Zn(x) = 5 { Val@o + n7"*z) = Va(x0)

(B, 20) (S3.1)

~ (o) [I//[\/n(xo Vg - T//I\/n(wo)] }

where V,, is defined in (3.4). For a and b defined in (4.3), Z, converges weakly
to Xgup, as processes in Bj,.(R), by Lemma 8 in Lopuhaéd and Nane (2013).
Define now

1/3

—~

Sule) = = n {Wn(xo Y3y - Wn(xg)} . (S3.2)

(Bos o)
From the proof of Lemma 9 in Lopuhaé and Nane (2013), S,,(x) converges almost
surely to the deterministic function x, uniformly on every compact set.

Following the approach in Groeneboom (1985), Lopuhad and Nane (2013)
obtained the asymptotic distribution of the unconstrained maximum likelihood
estimator A, by considering the inverse process

U,(z) = argmin {Vn(l') - zI//I\/n(x)} ) (S3.3)
IE[T(1)7T(n)]

for z > 0, where the argmin function represents the supremum of times at which
the minimum is attained. Since the argmin is invariant under addition of and
multiplication with positive constants, it follows that
nt/3 [Un(ﬂo +n3z) — :co] = argmin {Zy(z) — Sp(x)z},
z€ln(z0)
where I,,(zo) = [-n'/3(z — T(l)),n1/3(T(n) — x0)]. For z > 0, the switching
relationship A, (z) < z holds if and only if U, (z) > x, with probability one. This

translates, in the context of this lemma, to
n!/? [S\n(l“o +n i) — 90] <zenl? [Un(90 +n ) — l’o] >z,

for 0 < g < 7 and 0y > 0, with probability one. The switching rela-
tionship is thus X, (z) < z < n!/3 [Un (60 + n=13z) — zo|] > z. Hence find-
ing the limiting distribution of X, (z) resumes to finding the limiting distri-
bution of n'/3 [Un(Go +n32) — xo]. By applying Theorem 2.7 in Kim and
Pollard (1990), it follows that, for every z > 0,
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_ d
n'/3 [Un(Go +n3z) — xo] — U(z),

as inferred in the proof of Theorem 2 in Lopuhaé and Nane (2013), where U(z) =
sup {t € R : X, (t) — 2t is minimal}. It will result that, for every x € [—k, k],

P(Xp(x)<z)=P (n1/3 [Xn(mo +n V) — 00] < z)
=P (n1/3 [Un(Qo + nil/gz) — xo] > x)
— P(U(z) = x).

Using the switching relationship on the limiting process, it can be deduced that
U(z) =z < gqp(x) < 2z, with probability one, and thus X, (x) 4, Ga,b(T).
In order to prove the same type of result for Y;,(x), consider first the following

process
Yo (z) = n'/? (5\n(l‘0 +n ) — 00) , (S3.4)

where, for 29 € (0,7x), such that T(,,) < xo < T(m+1),

-

0 CE<T(1),
S\ZL T(i)<x<T(i+1),fori:1,...,m—1
A7Ln T(m)<l‘<l’0,

0 zo<z<Tis1)s

ATy <@ < Ty fori=m+1,...,n—1

o0 xr = T(n)v

with S\ZL and j\ﬁ defined in Lemma 2. For this, we have considered up to zg

an unconstrained estimator which is constructed based on the sample points

Tays -+ Tm+1)- Moreover, to the right of zg, we have considered an uncon-
strained estimator based on the points T(,,,1), ..., (). It is not difficult to see
that

min (ffn(x), O) x <0,
Yo(z) =40 z=0, (S3.5)
max (}N/n(x), ()) x> 0.

For z > 0, define the inverse processes
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UL(z) = argmin Vi(x) — ZT//I\/n(:L')} ,
2€[T(1):T(m+1)]

UR(z) =  argmin {Vn(w) - zl//[\/n(aj)}
xE[T(m+1),T(n)]

Take z < xg. The switching relationship for ), is given by A, (z) < z if and only
if UL(2) > 2, with probability one, which gives that

n'/3 [S\n(xo +n 3 — 00] <zenl [Uf(@o +n3z) — xo] > x,
with probability one. Moreover,

n'/3 [U#(@o +nM3z) — xo] = argmin {Z,(x) — Sy (x)z},

xelkl(xo)
where IL(zo) = [-n'/3 (2o — T(l)),n1/3(T(m+1) — xp)]. Denote by
Zn(zax) = Zn(x) - Sn(x)z

As for the unconstrained estimator, we aim to apply Theorem 2.7 in Kim and
Pollard (1990). As Theorem 2.7 in Kim and Pollard (1990) applies to the argmax
of processes on the whole real line, we extend the above process in the following

manner
Zn(z, —n1/3($0 — T(l))) T < —n1/3($0 — T(l)),
Zy (2,%) = | Zn(z,1) —nt/3(zg — Toy) <o < n1/3(T(m+1) — Zp),

Zn(z,n1/3(T(m+1) — Qj‘o)) +1 x> n1/3(T(m+1) — 1‘0).
Then, Z, (z,x) € Bi,.(R) and

n'/3 [Uf(@o +n3z) — xo] = argmin {Z, (z,z)} = argmax {—Z,, (z,2)} .
zeR zeR

Since \g(zo) = 0p > 0 and A is continuously differentiable in a neighborhood
of zp, it follows by a Taylor expansion and by Lemma 2.5 in Devroye (1981)
that nl/g(T(mH) — x9) = Op(n~tlogn). Therefore, by virtue of Lemma 8 and
Lemma 9 in Lopuhaéd and Nane (2013), the process = — —Z (z,z) converges
weakly to Z7(z) € Cpaz(R), for any fixed z, where

p —Xop(z) + 22 x<0,

n(2,7) =
1 x> 0,
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for a and b defined in (4.3). Hence, the first condition of Theorem 2.7 in Kim and
Pollard (1990) is verified. The second condition follows directly from Lemma 11
in Lopuhaé and Nane (2013), while the third condition is trivially fulfilled. Thus,

for any z fixed,
n'/3 [U,f(@o +nM3z) — 1:0] 4, U™ (2),
where U™ (z) = sup {t < 0: X, (t) — 2t is minimal}. Concluding, for z <0,
P (yn(@ < 2’) =P (n1/3 [S\n(xo +nBz) — 00] < z>
=P (n1/3 [U#(@o +n132) — xo] > a:)
— P (U (2) =2 2).

The switching relationship for the limiting process gives that U (z2) > z <
Dr(Xap)(z) < 2, with probability one, where Dr,(X,)(z) has been defined as
the left-hand slope of the GCM of X, at a point < 0. Hence, for x < 0,
V(@) 5 Dp(Xap)(2).

Completely analogous, Y, (z) 4, Dr(Xap)(x), for > 0. By continuous
mapping theorem and by (S4.2), it can be concluded that for fixed x € [k, k],

where gg,b has been defined in (3.12).

Our next objective is to apply Theorem 6.1 in Huang and Wellner (1995).
The first condition of Theorem 6.1 is trivially fulfilled. The second condition
follows by Lemma 11 in Lopuha#d and Nane (2013), while the third condition

follows by the definition of the inverse processes. Hence, for fixed =,
P(X,(z) <z, Yy(x)<2z)—> P (gavb(az) < z,gg’b(x) < z) )

for a and b defined in (4.3). The arguments for one dimensional marginal con-
vergence can be extended to the finite dimensional convergence, as in the proof
of Theorem 3.6.2 in Banerjee (2000), by making use of Lemma 3.6.10 in Baner-
jee (2000). Hence, we can conclude that the finite dimensional marginals of
the process (X,,,Y;,) converge to the finite dimensional marginals of the process

(Gap, 93,5)- This completes the proof. O
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S4  Nonincreasing baseline hazard

The characterization of the unconstrained and the constrained NPMLE es-
timators of a nonincreasing baseline hazard function follows analogously to the
characterization of the nondecreasing estimators. The unconstrained NPMLE
An(z; B) is obtained by maximizing the (pseudo) likelihood function in (3.1) over
all \o(T(1)) = ... = AMT{»)) = 0. Lopuhaéd and Nane (2013) showed that the
likelihood is maximized by a nonincreasing step function that is constant on
(T(i—1), T(p)], for @ = 1,...,n and where T{gy = 0. The (pseudo) loglikelihood
n (3.1) becomes then

n

Z {A(z) log )\Q(T(l)) — Ao(T(Z)) [T(z) — T(ifl)] Z eﬁ/Z(l)} . (84.1)

i=1 I=i
The lemmas below provide the characterization of the unconstrained estimator
S\H(J}; B) and the constrained estimator S\Q(x; B). Their proofs follow by argu-
ments similar to those in the proofs of Lemma 1 and Lemma 2, as well as the

necessary and sufficient conditions that uniquely characterize these estimators..

LEMMA 1. Let T(y) < ... < T(y) be the ordered follow-up times and consider
a fized € RP.

(i) Let W,, be defined in (3.3) and let

Vo(z) = Jé{u < z}dPy(u,d, 2). (54.2)
Then, the NPMLE j\n(l‘, B) of a nonincreasing baseline hazard function g
s given by
. Ai Ti_1y<ax<Ty, fori=1,...,n,
Ay =47 0 @

0 xr > T(n),

Jori=1,....n, with Txy = 0 and where \; is the left derivative of the least
concave magjorant (LCM) at the point P; of the cumulative sum diagram
(CSD) consisting of the points

P = (Wn(ﬂvT(j))7Vn(T(j)))7 (54.3)

forj=1,....,n and Py = (0,0).
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(ii) Let By,..., By be blocks of indices such that S\n(l'; B) is constant on each
block and By u ... u By = {1,...,n}. Denote by vy;(), the value of the

estimator on block B;. Then

ZieB Ag)
ZzeB [T — Tt 20 %W

Unj (/8) =

In fact, for z > T(,), Xn(x, B) can take any value smaller than An, the
left derivative of the LCM at the point P, of the CSD. As before, we propose
Xn(m) = S\n(a:,ﬁn) as the estimator of \g and 0,; = vnj(ﬁn), where /3’n denotes
the maximum partial likelihood estimator of 8y. Fenchel conditions as in (S1.3)
and (S1.4) can be derived analogously.

The NPMLE estimator A\° maximizes the (pseudo) loglikelihood function
n (S4.1) over the set X\o(T(1)) = ... = Mo(Tim)) = 0o = Mo(Timy1)) = - =
Ao(Tiny) = 0. It can be argued that the constrained estimator has to be a
nonincreasing step function that is constant on (T(;_1y, T3], for i = 1,...,n,
is fp on the interval (T(,,), o], and is zero for x > T{,y. Hence, the (pseudo)
loglikelihood function becomes

m

Z {A(z) log )\O(T(z)) - )\O(T(I)) T(z z 1) Zeﬁ (z)}

=1
+ Apnt1) log Mo (Tim1))
— {00 [z0 — Ty | = Mo (Tims1)) [Tims1) — %o} Z F2w

l=m+1

+ Z { i 1og Mo (T() — (L)) [Ty — Tiimny] D e’BIZ(”} :

t=m+2 =i

The characterization of the constrained NPMLE 5\2 is provided with the next

lemma.

LEMMA 2. Let g € (0,7q) fized, such that Tiyy < 20 < Ty, for a given
1<m<n-—1. Consider a fired 5 € RP.

(i) Fori=1,...,m, let S\ZL to be the left derivative of the LCM at the point PL
of the CSD consisting of the points PjL = Pj, for j = 1,...,m, with P;
defined in (S4.3), and P¥ = (0,0). Moreover, fori=m+1,...,n, let 5\?
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be the left derivative of the LCM at the point PE of the CSD consisting of
the points PjR = Pj, for j =m,...,n, with P; defined in (S4.3). Then, the
NPMLE 5\91(1’; B) of a nonincreasing baseline hazard function Ao, under the
null hypothesis Hy : A\g = 6g, is given by

( ~
A Ty <x <1y, forie{l,...n}\{m + 1},

90 T(m) <z < X,

N (w;8) = 1 (S4.4)
Ama1 20 <2 < Tinyry,
0 X > T(n),
where T(gy = 0 and where 5\? = max(;\iL,HO), fori=1,...,m, and 5\? =
min(j\fﬁo), fori=m+1,...,n.

(i) For k=1, let BY, ..., BY be blocks of indices such that X%(:U;ﬁ) is constant
on each block and BY U ... v BY = {1,...,n}. There is one block, say B,
on which 5\2(56; B) is 0y, and one block, say Bg, that contains m+1. On all
other blocks B?, denote by vgj (B) the value of ;\g(x;ﬁ) on block B?. Then,

ZlieB;J A(i)

On the block Bg, that contains m + 1,

2ieny A
ZieBg\{m—l—l} [T(’L) — T(z—l)] Z7=i+1 eﬁ’Z(l) + [T(m+1) — LEO] Z?zm-i-l 65’Z(l)

We propose A2 () = X0 (x; 3,) as the constrained estimator of a nonincreas-
ing baseline hazard function Ao, as well as ﬁgj = vgj(ﬁn) on blocks of indices
where the estimator is constant. The Fenchel conditions corresponding to (S2.3)-
(S2.6) can be derived in the same manner as for the constrained estimator in the
nondecreasing case.

Let slolem(f,I) be the left-hand slope of the LCM of the restriction of the

real-valued function f to the interval I. Denote by slolem(f) = slolem(f,R). For
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a,b >0, let X,p(t) = aW(t) — bt?, where W is a standard two-sided Brownian
motion originating from zero. Denote by L, the LCM of Xa,b and let

lap(t) = slolem(X,p)(), (54.5)
be the left-hand slope of L4, at point . Additionally, set
slolem”(f) = max (slolem(f, (—0,0]),0) 1(_q, o +min (slolem(f, (0, 0)),0) 1 (g o0)-

For t < 0, construct the LCM of Xa,bv that will be denoted by Lib and take its
left-hand slope at point ¢, denoted by Dp(X,p)(t). When the slopes fall behind
zero, replace them by zero. In the same manner, for ¢ > 0, denote the LCM
of X,p by Lf’b and its slope at point ¢ by Dg(X,p)(t). Replace the slopes by

zero when they exceed zero. This slope process will be denoted by {°

a.ps Which is

thus given by
max (Dr,(Xqp)(t),0) ¢ <0,
lop(t) =10 t=0, (S4.6)
min (DR(me)(t), 0) t > 0.

Observe that lgb(t) = slolem”(X, ;) (t).

By making use of results in Lopuhaéd and Nane (2013), a completely similar

result holds in the nonincreasing setting.

LEMMA 3. Assume (A1) and (A2) and let xy € (0, 7). Suppose that Ao is non-
increasing on [0,00) and continuously differentiable in a neighborhood of xq, with
Xo(zo) # 0 and Nj(zo) < 0. Moreover, assume that the functions x — ®(Bo, x)
and H"(z), defined in (4.1) and above (4.1), are continuously differentiable in
a neighborhood of x.

Then, for a and b defined in (4.3), (X,,Ys) converge jointly to (la,b,lg,b> n
L x L, where the processes lgy and lg,b have been defined in (S4.5) and (S4.6).

The asymptotic distribution of the likelihood ratio statistic in the nonin-

creasing baseline hazard setting can be derived completely analogous.

THEOREM 1. Suppose (A1) and (A2) hold and let xo € (0,7r). Assume
that \g is nonincresing on [0,00) and continuously differentiable in a neighbor-
hood of o, with Xo(z0) # 0 and N\j(xo) < 0. Moreover, assume that H"*(x) and
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x — ®(Po, x), defined in (4.1) and above (4.1), are continuously differentiable in
a neighborhood of xg. Let 21log&,(60y) be the likelihood ratio statistic for testing
Hy : Mo(zo) = 6o, as defined in (3.2). Then,

2log &, (0) 2> D

Proof. Following the same reasoning as in the proof of Theorem 1 and by Lemma 8,

it can be deduced that
1
2log &,(60) > cﬂﬂ(l“’b( )? = (19 4(x)) ]{xeDab} de,

where Da p is the set on which [, ; and l0 differ. By continuous mapping theorem,
it suffices to show that, for ¢ fixed, lab( Xap)(t) has the same distribution as
9ab(Xap)(t) and lgb( Xap)(t) has the same distribution as ggyb(Xa,b)(t). It is
noteworthy that

slolem (X,5)(t) = —slogem(—Xap) (1)
Thus, by Brownian motion properties and continuous mapping theorem,

P (lyp(t) < z) = P (—slogme(—aW(t) + t%) < 2)
= P (—slogme(aW(t) + t*) < z) = P (—gap(t) < 2).

Concluding, Iy p(Xap)(t) 4 —ga 5(Xap)(t), and a similar reasoning can be applied
to show that lgb()z%b)( )= - gg’b Xap)(t). The proof is then immediate, by

continuous mapping theorem. O
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