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S1. Important preliminary result

Lemma 1 contains a classical and simple, yet important result for the paper.

Lemma 1 (Bernstein inequality for Bernoulli random variables). Let X1, . . . , Xn be
i.i.d. observations from F , and we define pk = 1− F (ek) and p̂k = 1

n

∑n
i=1 1{Xi > ek}.

Let δ > 0 and also let n be large enough so that pk ≥ 4 log(2/δ)
n . Then with probability

1− δ,

|p̂k − pk| ≤ 2

√
pk log(2/δ)

n
. (S1.1)

Proof of Lemma 1. The proof is using Bernstein inequality (e.g. see Lemma 19.32 of Van
der Vaart (2000)) of the following form; for any bounded, measurable function g, we have
for every t > 0,

P

(∣∣∣∣∣√n
(

1

n

n∑
i=1

g(Xi)− Eg(X)

)∣∣∣∣∣ > t

)
≤ 2 exp

(
−1

4

t2

Eg2 + t||g||∞/
√
n

)
.

We use g(·) = 1{· > ek} and t = 2
√
pk log(2/δ) in the above inequality. Using the fact

that t = 2
√
pk log(2/δ) ≤

√
npk by the assumption of pk ≥ (4 log(2/δ))/n, we have

P
(√
n|p̂k − pk| > t

)
≤ 2 exp

(
−1

4

t2

pk + t/
√
n

)
≤ 2 max

[
exp

(
−1

4

t2

pk

)
, exp

(
−1

4

√
nt

)]
≤ 2 exp

(
−1

4

t2

pk

)
= δ,
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where the last equality follows by definition of t.

S2. Proof of Lemma 1

A. Since pk ≥ 16 log(2/δ)/n, we can use Lemma 1. Rewriting the inequality (S1.1), we
have with probability larger than 1− δ

log

(
1− 2

√
log(2/δ)

npk

)
≤ log(p̂k)− log(pk) ≤ log

(
1 + 2

√
log(2/δ)

npk

)
.

Then using the simple inequalities log(1+u) ≤ u, and log(1−u) ≥ (−3u)/2 for u < 1/2,

log(pk)− 3

√
log(2/δ)

npk
≤ log(p̂k) ≤ log(pk) + 2

√
log(2/δ)

npk
.

By using a similar inequality for log(p̂k+1), with probability larger than 1− 2δ,

∣∣α̂(k)− (log(pk)− log(pk+1))
∣∣ ≤ 3

√
log(2/δ)

npk
+ 3

√
log(2/δ)

npk+1

≤ 6

√
log(2/δ)

npk+1
. (S2.1)

B. By definition of second-order Pareto distributions, we have
∣∣pk − Ce−kα

∣∣ ≤
C ′e−kα(1+β), or equivalently, ∣∣∣∣ekαpkC

− 1

∣∣∣∣ ≤ C ′

C
e−kαβ .

Since we assume C′

C e
−kαβ ≤ 1/2, we have∣∣ log(pk)− log(C) + kα

∣∣ ≤ 3C ′

2C
e−kαβ .

A similar result also holds for pk+1, and thus∣∣ log(pk)− log(pk+1)− α
∣∣ ≤ 3C ′

C
e−kαβ . (S2.2)

Combining Equations (S2.1) and (S2.2), we obtain the large deviation inequality
(3.3)*1. Now, using the property of the second-order Pareto distributions, we can bound
pk+1 from below.

pk+1 ≥ Ce−(k+1)α

(
1− C ′

C
e−(k+1)αβ

)
≥ C

2
e−(k+1)α ≥ Ce−(k+1)α−1,

1*All the equation numbers without “S” are from the main text.
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where the second inequality comes from the assumption that e−kαβ ≤ C/(2C ′). By
substituting this into the inequality (3.3), the final inequality (3.4) follows.

S3. Proof of Theorem 1

The proof consists of the two steps—bounding the bias, and bounding the deviations of
the estimate—as in the proof of the Lemma 1.B.

First, we bound the bias (more precisely, a proxy for the bias) using the property
of the distribution class A. By definition, we know that for any ε such that C/2 > ε > 0,
there exists a constant B > 0 such that for x > B,∣∣1− F (x)− Cx−α

∣∣ ≤ εx−α.
Since kn → ∞ as n → ∞, for any n larger than some large enough N1 (i.e. such that
∀n ≥ N1, ekn > B), we have ∣∣pkn − Ce−knα∣∣ ≤ εe−knα, (S3.1)

which yields since ε < C/2,
∣∣ log(pkn)− log(C) + knα

∣∣ ≤ 3ε
2C using the same technique as

for the proof of Lemma 1. This holds also for kn + 1 and thus∣∣ log(pkn)− log(pkn+1)− α
∣∣ ≤ 3ε

C
. (S3.2)

Note also that Equation (S3.1) can be used to bound the pkn+1 below as follows.

pkn+1 ≥ (C − ε)e−(kn+1)α ≥ C

eα+1
e−knα. (S3.3)

Since (log(n)eknα)/n → 0 as n → ∞, we know that there exists N2 large enough, such
that for any n ≥ N2, pkn+1 ≥ 32 log(n)/n.

Then we can bound the proxy for the standard deviation using the result (3.2) in
Lemma 1.A. For n ≥ max(N1, N2), combining Equation (S3.2) and Equation (3.2) with
δ = 2/n2, we have with probability larger than 1− 4/n2,

∣∣α̂(kn)− α
∣∣ ≤ 6

√
log(n2)

npkn+1
+

3ε

C
.

Then we bound the first term in the right side of the above inequality using (S3.3). That
is,

6

√
log(n2)

npkn+1
≤ 6

√
eα+1

log(n2)

Cne−knα
≤ 6e(α/2)+1

√
C

√
log(n)eknα

n

By the assumption that (log(n)eknα)/n → 0, and since the above inequality holds
for any ε > 0, we conclude that αn converges in probability to α. Moreover, since∑
n(4/n2) <∞, Borel–Cantelli Lemma says that α̂(kn) converges to α almost surely.
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S4. Proof of Theorem 2

Let n satisfy the following,

n > max
(

(
2C ′

C
)

2β+1
β , (

32 log(2/δ)e2α

C
)

2β+1
2β

)
. (S4.1)

We let k∗ = k∗n such that k∗n :=
⌊
log(n

1
α(2β+1) ) + 1

⌋
. Note that for n larger than

(2C ′/C)
2β+1
β , we have e−k

∗αβ ≤ C/(2C ′). This implies, together with the second-order
Pareto assumption,

pk∗+1 ≥
C

2
n−

1
2β+1 e−2α ≥ 16 log(2/δ)

n

where the last inequality follows by assuming n ≥ ( 32 log(2/δ)e2α

C )
2β+1
2β .

By (3.4) and by the choice of kn, we have with probability larger than 1− 2δ,

∣∣α̂(k∗)− α
∣∣ ≤ (6

√
e2α+1

log(2/δ)

C
+

3C ′

C

)
n−

β
2β+1 .

S5. Proof of Theorem 3

The following lemma is a useful preliminary result for the proof of Theorem 3.

Lemma 2. We define K such that pK ≥ 16 log(2/δ)
n and also pK+1 <

16 log(2/δ)
n . Then

for any k ≥ K + 1, with probability larger than 1− δ,

p̂k ≤
24 log(2/δ)

n
. (S5.1)

Proof of Lemma 2. We let q := 16 log(2/δ)/n and define a Bernoulli random variable
Yi(q) (independent from X1, . . . , Xn) where P (Yi(q) = 1) = q for i = 1, . . . , n. Then
we compare mq := 1

n

∑n
i=1 Yi(q) and p̂K+1 = 1

n

∑n
i=1 1{Xi > eK+1}. Since q > pK+1,

the distribution of p̂K+1 is stochastically dominated by the distribution of mq (that is,
P (p̂K+1 > t) ≤ P (mq > t)). By Lemma 1, we have with probability larger than 1− δ,

|mq − q| ≤ 2

√
q log(2/δ)

n
=

8 log(2/δ)

n
.

Then by stochastic dominance, with probability 1− δ,

p̂K+1 ≤ q + 2

√
q log(2/δ)

n
=

24 log(2/δ)

n
.

Thus, for any k ≥ K + 1 using the monotonicity of p̂k (that is, p̂k ≥ p̂k+1), we obtain
that (S5.1) holds with probability larger than 1− δ as required.
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The proof is based on 5 steps. We first define an event ξ in (S5.4) of high probability
where the deviation of empirical probabilities p̂k from pk is well upper bounded (with
the same bound in the large deviation inequality in (S1.1) but without a probability
statement) for a given subset of indices k ≤ K, where K is of order of log n. Then we
define k̄ which is slightly smaller than the oracle k∗ and also k̄ ≤ K so that on ξ the
deviation of α̂(k̄) from α (i.e. |α̂(k̄)−α|) is upper bounded as in (S5.7). In the third step,

we show that p̂k̄+1 > 24 log(2/δ)/n on ξ so that k̄ is one possible index for k̂n. Also we

prove that k̂n ≤ k̄ in Step 4 which leads us to bound |α̂(k̄)−α̂(k̂n)| from above on ξ using

the definition of k̂n. This combined with the second step finally gives an upper bound
of |α̂(k̂n) − α| on ξ. More precisely, we prove that on the set ξ, we have |α̂(k̂n) − α| ≤
(B2+ 3C′

C )( n
log(2/δ) )−β/(2β+1) where B2 is a constant which will be defined in the last stage

of the proof. Then we can bound P(|α̂(k̂n)−α| ≥ (B2 + 3C′

C )( n
log(2/δ) )−β/(2β+1)) ≤ P(ξc)

which has a small probability.

Let F ∈ S(α, β, C,C ′) and 1/4 > δ > 0. Also we let n satisfy the following,

n > log
(2

δ

)
max

[
32
( 2C ′

C1+β

)1/β

,
(32e2α

C

) 2β+1
2β

,
(2C ′

C

) 2β+1
β

,
(96e2α

C

) 2β+1
β

]
. (S5.2)

Step 1: Definition of an event of high probability

First, we define K ∈ N such that pK ≥ 16 log(2/δ)
n > pK+1. By inverting the condition

for the second-order Pareto distributions, 16 log(2/δ)
n ≤ pK ≤ (C + C ′)e−Kα gives K ≤

1
α log

(
(C+C′)n

16 log(2/δ)

)
. Set u = 1

α log
(

Cn
32 log(2/δ)

)
− 1. Then since n > 32( 2C′

C1+β )1/β log(2/δ),

we know by definition of S that 1− F (eu+1) > 16 log(2/δ)
n . Using the fact that 1− F (ex)

is a decreasing function of x and 16 log(2/δ)
n > pK+1, we have u < K. Thus we obtain the

range of K by

1

α
log

(
Cn

32 log(2/δ)

)
− 1 < K ≤ 1

α
log

(
(C + C ′)n

16 log(2/δ)

)
. (S5.3)

We define the following event

ξ =
{
ω : ∀k ≤ K,

∣∣p̂k(ω)− pk
∣∣ ≤ 2

√
pk log(2/δ)

n
, p̂K+1(ω) ≤ 24 log(2/δ)

n

}
. (S5.4)

By definition, we have pK ≥ 16 log(2/δ)
n , which gives the Bernstein inequality (S1.1) with

probability 1 − δ for k ≤ K. In addition, Lemma 2 gives (S5.1) with probabiltiy 1 − δ.
Thus, an union bound implies that P(ξ) ≥ 1− (K + 1)δ. By monotonicity of p̂k, we have

on the event ξ, for any k ≥ K + 1, p̂k ≤ 24 log(2/δ)
n . This implies that on the event ξ, the

k, k′ considered in Equation (3.5) are smaller than K and in particular, we have k̂n ≤ K.

Step 2: Bounding the deviation of α̂(k) from α on ξ (where k ≤ K)
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We define k̄n = k̄ ∈ N such that

k̄ :=

⌊
log

(( n

log(2/δ)

) 1
α(2β+1)

)
+ 1

⌋
.

By definition of k̄, we know that k̄ < K. Indeed, by assuming n ≥ (32 e
2α

C )
2β+1
2β log(2/δ)

and by (S5.3),

k̄ ≤ log

(( n

log(2/δ)

) 1
α(2β+1)

)
+ 1 ≤ 1

α
log

(
Cn

32 log(2/δ)

)
− 1 < K.

Thus,
e−Kαβ ≤ e−k̄αβ ≤ C/(2C ′), (S5.5)

where the second inequality follows since n > log(2/δ)( 2C′

C )
2β+1
β .

Note also that k̄ ≤ k∗, where k∗ :=
⌊
log
(
n

1
α(2β+1)

)
+ 1
⌋

as before.

If k < K satisfies e−kαβ ≤ C/(2C ′), then since pk+1 ≥ pK ≥ (16 log(2/δ))/n, then
using the exactly same proof as for Lemma 1.B, we have on ξ that

|α̂(k)− α| ≤ 6

√
e(k+1)α+1 log(2/δ)

Cn
+

3C ′

C
e−kαβ . (S5.6)

Since e−k̄αβ ≤ C/(2C ′) by (S5.5) and k̄ < K, Equation (S5.6) is verified for k̄ on ξ.
Then by definition of k̄ in Equation (S5.6), we have on ξ that

|α̂(k̄)− α| ≤

(
6

√
e2α+1

C
+

3C ′

C

)(
n

log(2/δ)

)− β
2β+1

. (S5.7)

Step 3: Proof that p̂k̄+1 >
24 log(2/δ)

n on ξ

By definition, we have on ξ, using k̄ ≤ K − 1 and pk̄+1 ≥ pK ≥ (16 log(2/δ))/n,

p̂k̄+1 ≥ pk̄+1

(
1− 2

√
log(2/δ)

npk̄+1

)
≥
pk̄+1

2
.

Then using the second order Pareto property with (C ′/C)e−k̄αβ ≤ 1/2, we have pk̄+1 ≥
(Ce−(k̄+1)α)/2, which gives

p̂k̄+1 ≥
Ce−(k̄+1)α

4
≥ Ce−2α

4

(
log(2/δ)

n

)1/(2β+1)

, (S5.8)

where the second inequality follows from n > log(2/δ)( 2C′

C )
2β+1
β and from the definition

of k̄. Since n >
(

96e2α

C

) 2β+1
β

log(2/δ), we have shown that p̂k̄+1 is larger than 24 log(2/δ)
n

on ξ.



Adaptive and minimax optimal estimation of the tail coefficient S7

Step 4: Proof that k̂n ≤ k̄ on ξ

Suppose that k̂n > k̄. Then by definition of k̂n in (3.5), on ξ, there exists k > k̄ such

that p̂k+1 >
24 log(2/δ)

n (this imposes k < K on ξ) and

|α̂(k)− α̂(k̄)| > A(δ)

√
1

np̂k+1
≥ A(δ)√

2(C + C ′)

√
ekα

n
, (S5.9)

where the second inequality in the above follows by bounding p̂k+1 above by definition
of ξ,

p̂k+1 ≤ pk+1

(
1 + 2

√
log(2/δ)

npk+1

)
≤ 3

2
pk+1 ≤ 2(C + C ′)e−kα,

where the penultimate inequality is obtained by pk ≥ pK ≥ 16 log(2/δ)/n (since k ≤ K),
and the last inequality follows by definition of the second order Pareto condition.

Since k ≥ k̄ + 1, we bound e−kαβ ≤ e−k̄αβ ≤ C/(2C ′) by (S5.5). Also we have

pk+1 ≥ 16 log(2/δ)
n , since pk+1 ≥ pK . Equation (S5.6) is thus verified on ξ for such k > k̄.

Now using
√

ekα log(2/δ)
n > e−kαβ (since k > k̄), we have

|α̂(k)− α| ≤
(

6

√
eα+1

C
+

3C ′

C

)√ekα log(2/δ)

n
. (S5.10)

Equations (S5.9) and (S5.10) imply that on ξ,

|α̂(k̄)− α| >
( A(δ)√

2(C + C ′)
−
√

log(2/δ)
(
6

√
eα+1

C
+

3C ′

C

))√ekα

n

≥
(
6

√
e2α+1

C
+

3C ′

C

)( n

log(2/δ)

)− β
2β+1

,

since we assume that A(δ)√
2(C+C′)

≥ 2
√

log(2/δ)
(
6
√

e2α+1

C + 3C′

C

)
. This contradicts Equa-

tion (S5.7), and this means that on ξ, k̂n ≤ k̄.

Step 5: Large deviation inequality for an adaptive estimator

We have p̂k̄+1 ≥
24 log(2/δ)

n from Step 3, and k̂n ≤ k̄ from Step 4 on ξ. Thus by

definition of k̂n in (3.5), we have on ξ that

|α̂(k̄)− α̂(k̂n)| ≤ A(δ)

√
1

np̂k̄+1

≤ 2A(δ)

√
e2α

C

(
log

(
2

δ

))− 1
2(2β+1)

n−
β

2β+1

= 2A(δ)

√
e2α

C log(2/δ)

(
n

log(2/δ)

)− β
2β+1

, (S5.11)
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where the second inequality follows on ξ by Equation (S5.8).

Hence, Equations (S5.11) and (S5.7) imply that on ξ

|α̂(k̂n)− α| ≤

((
6

√
e2α+1

C
+

3C ′

C

)
+ 2A(δ)

√
e2α

C log(2/δ)

)(
n

log(2/δ)

)− β
2β+1

.

Denote B1 = 6
√

e2α+1

C log(2/δ) and B2 =
(
B1 + 2A(δ)

√
e2α

C

)
1√

log(2/δ)
. Then since

P(ξ) ≥ 1− (K + 1)δ, we have shown that

sup
F∈S

PF

(
|α̂(k̂n)− α| ≥

(
B2 +

3C ′

C

)( n

log(2/δ)

)− β
2β+1

)

≤ (K + 1)δ ≤
(

1

α
log

(
(C + C ′)n

16

)
+ 1

)
δ

where the last inequality follows by (S5.3). This concludes the proof.

S6. Proof of Corollary 1

Set

ε =

(
1 +

1

α1
log ((C2 + C ′)n)

)
δ,

A(ε) = 6
√

2(C2 + C ′)

√log

(
2

ε

(
1 +

log((C2 + C ′)n)

α1

))(
2

√
e2α2+1

C1
+
C ′

C1

) ,

(S6.1)

and plug δ = δ(ε) = ε/(1 + log((C2 + C ′)n))/α1) and A(ε) := A(δ(ε)) in the adaptive
method described in Theorem 3. Set

B3 := 6

√
e2α2+1

C1
+ 24

e2α2

C1

√
2e(C2 + C ′) + 12eα2

C ′

C1

√
2

(C2 + C ′)

C1
+

3C ′

C1
. (S6.2)

It holds for any α ∈ [α1, α2], C ∈ [C1, C2] and β > β1 that the constant in Theorem 3
can be bounded as

B2 +
3C ′

C
= 6

√
e2α+1

C
+ 12

√
2
e2α

C
(C2 + C ′)

(
2

√
e2α2+1

C1
+
C ′

C1

)
+

3C ′

C

≤ B3,

so B3 is a uniform bound on the constant in Theorem 3 for all considered values of
α,C, β. Also, the uniform condition for the sample size is derived from Equation (S5.2)
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by

n > log

(
2

ε

(
1 +

log((C2 + C ′)n)

α1

))
×max

[
32
( 2C̄ ′

C̄1+β1

1

) 1
β1
,
(2C̄ ′

C̄1

)2+ 1
β1
,
(32e2α2

C̄1

)1+ 1
2β1
,
(96e2α2

C̄1

)2+ 1
β1

]
, (S6.3)

where C̄1 = min(1, C1) and C̄ ′ = max(1, C ′).

S7. Proof of Theorem 4

We prove the minimax lower bound by Fano’s method (see e.g. Section 2.7 in Tsybakov
(2008)). We define a set of approximately log(n) functions Fi whose first and second order
parameters are respectively αi and βi. Until a point Ki, each distribution Fi matches
a Pareto distribution with the first order parameter α, which is the same for all of the
Fi. After this point Ki, Fi is Pareto with parameter αi. These functions satisfy several
specific properties summarized in Lemma 3. For instance, they are such that the for any

i 6= j, the distance between αi and αj is at least of order ( n
log log(n) )

− βi
2βi+1 . Moreover, the

Kullback Leibler (KL) divergence between Fi and Fj is small enough so that Fi and Fj
cannot be distinguishable as n increases. These two main properties enable us to apply
Fano’s lemma, which results in the lower bound of Theorem 4. For the proof, we assume
that n is sufficiently large.

Step 1: Construction of a finite set of distributions

Let α > 0 and β > 1. Let υ := min
(
1, α2

8 exp( 1
α(2β−1)

)

)
. Let M > 1 be an integer such

that

blog(n/ log(M))c+ 1 = M,

which implies that log(n)/2 < M < 2 log(n) for large n. Set for any integer 1 ≤ i ≤M

βi = β − i

M

γi =
βi

2βi + 1

(
1 +

log(υ)

log logM

)
Ki = n

1
α(2βi+1)

(
logM

)− γi
αβi =

( n

υ log(M)

) 1
α(2βi+1)

(S7.1)

ti = K−αβii = n
− βi

2βi+1
(

logM
)γi

=
( n

υ log(M)

)− βi
2βi+1

αi = α− ti = α− n−βi/(2βi+1)(log(M))γi .

By definition, for i < j, we have βi > βj , γi > γj , Ki < Kj , ti < tj and αi >
αj . By assuming n large enough, we suppose that γi > 0 for all i = 1, . . . ,M , and
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min(α,1/α)
2 n

βi
2βi+1 > M

βi
2βi+1 +1

. Also we have βi ≥ β − 1, Ki > 1, and α− ti ≥ α/2 =: α1

for large enough n.

Using these notation, we introduce the distribution

1− F0(x) = x−α, (S7.2)

and for any integer 1 ≤ i ≤M , we introduce perturbed versions of the distribution F0

1− Fi(x) = x−α1{1 ≤ x ≤ Ki}+K−tii x−α+ti1{x > Ki}. (S7.3)

We write {f0, f1, . . . , fM} for the densities associated with distributions {F0, F1, . . . , FM}
with respect to Lebesgue measure.

Step 2: Properties of the constructed distributions

The following lemma highlights important characteristics of distributions {Fi, i =
1, . . . ,M} and their parameters corresponding to the second order Pareto distributions.

Lemma 3. Let 1 ≤ i ≤ M and 1 ≤ j ≤ M . It holds that for Fi defined as (S7.3) and
using notation in (S7.1),

Fi ∈ S
(
α− ti, βi,K−tii ,

1

α(β − 1)

)
. (S7.4)

Moreover

exp
(
− 1

α(2β − 1)

)
≤ K−tji ≤ 1, (S7.5)

and if i 6= j,
|αi − αj | ≥ c(β) max(ti, tj), (S7.6)

where c(β) := 1− exp
(
− 1

2(2β+1)2

)
.

Step 3: Computation of the Kullback-Leibler (KL) divergence

In this step, we first compute the KL divergence between F0 and Fi, which is defined

as KL(F0, Fi) =
∫
f0(x) log f0(x)

fi(x) dx. Then we prove that it has the same order of the KL

divergence between Fi and F0. Second, we prove that the KL divergence between Fi and
Fj is at most of the same order of max {KL(F0, Fi),KL(Fj , F0)}.

Lemma 4 provides the order of the KL divergence between Fi and F0.

Lemma 4. Let 1 ≤ i ≤ M . It holds that for F0 in (S7.2), Fi in (S7.3) and using
notation in (S7.1),

max
(
KL(F0, Fi),KL(Fi, F0)

)
≤ 2t2iK

−α
i

α2
.

Using Lemma 4, we obtain bounds on the KL divergence between Fi and Fj in the
following lemma.
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Lemma 5. Let (i, j) ∈ {1, . . . ,M}2. It holds that for Fi in (S7.3) and using notation in
(S7.1),

KL(Fi, Fj) ≤
2 exp( 1

α(2β−1) )

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (S7.7)

Step 4: Use of Fano’s method.

Here we follow ideas in the Fano’s method using the above results in Step 1-3. Let
α̂ = α̂(X1, . . . , Xn) =: α̂(X) be an estimator of α. Then we define the following discrete
random variable

Z = Z(X) := arg min
j∈{1,...,M}

|α̂(X)− αj |,

which implies that |α̂ − αj | > c(β)tj/2 if Z 6= j by Equation (S7.6). Also we consider
another random variable Y , uniformly distributed on {1, . . . ,M} where X|Y = j ∼ Fnj .
By bounding the maximum by the average,

max
j∈{1,...,M}

PFj
(
|α̂− αj | ≥

c(β)tj
2

)
≥ 1

M

M∑
j=1

P (Z 6= j|Y = j)

= P(Z 6= Y )

≥ 1− 1

logM

 1

M2

∑
j,j′

KL(Fnj , F
n
j′) + log 2

 ,

where the last inequality is obtained by Fano’s inequality (see Section 2.1 in Cover and
Thomas (2012), or see Appendix in Subsection S9 for a proof of how this inequality is
derived).

Using the fact that KL(Fn1 , F
n
2 ) = nKL(F1, F2), and by Equation (S7.7),

1

M2

∑
j,j′

KL(Fnj , F
n
j′) ≤

n

M2

2 exp( 1
α(2β−1) )

α2

∑
j,j′

(
t2jK

−α
j + t2j′K

−α
j′

)
=

n

M

4 exp( 1
α(2β−1) )

α2

∑
j

t2jK
−α
j

=
n

M

4 exp( 1
α(2β−1) )

α2

∑
j

υ log(M)

n

=
4 exp( 1

α(2β−1) )

α2
(log(M))× υ ≤ 1

2
log(M).

where the second equality follows by t2jK
−α
j = K

−α(2βj+1)
j = υ log(M)

n and the last

inequality is by υ ≤ α2

8 exp( 1
α(2β−1)

)
. Hence, for a sufficiently large n, we have

max
j∈{1,...,M}

PFj
(
|α̂− αj | ≥

c(β)tj
2

)
≥ 1

4
.

More specifically, using c(β) := 1−exp(− 1
2(2β+1)2 ) ≥ 1

2(2β+1)2 and since tj =
(υ log(M)

n

) βj
2βj+1 ≥
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υ
βj

2βj+1

(
log
(

(log(n))/2
)

n

) βj
2βj+1

, we have

max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥ B(α, β, βj)

( log
(
(log(n))/2

)
n

) βj
2βj+1

)
≥ 1

4
,

where

B(α, β, βj) :=
1

4(2β + 1)2
min

[
1,
( α2

8 exp( 1
α(2β−1) )

) βj
2βj+1

]
. (S7.8)

By definition of {F1, . . . , FM}, we have (by Lemma 3)

{F1, . . . , FM} ⊂
{
F ∈ S(α∗, β∗, C, C̃ ′) : α∗ ∈ [α/2, α], β∗ ∈ [β − 1, β], C ∈ [C̃1, C̃2]

}
,

where C̃1(α, β) := exp
(
− 1
α(2β−1)

)
, C̃2 := 1, and C̃ ′(α, β) = 1

α(β−1) .

Then by bounding the supremum by the maximum over the finite subset, we finally
provide the following lower bound result.

sup
α∗∈[α/2,α],β∗∈[β−1,β]

C∈[C̃1,C̃2]

sup
F∈S(α∗,β∗,C,C̃′)

PF

(
|α̂− α∗| ≥ B(α, β, β∗)

( log
(
(log(n))/2

)
n

) β∗
2β∗+1

)

≥ max
j∈{1,...,M}

PFj

(
|α̂− αj | ≥ B(α, β, βj)

( log
(
(log(n))/2

)
n

) βj
2βj+1

)

≥ 1

4
.

By changing parametrization and setting α1 = α/2 and β1 = β − 1, we proved that

sup
α∗∈[α1,2α1],β∗∈[β1,∞)

C∈[C1,C2]

sup
F∈S(α∗,β∗,C,C′)

PF

(
|α̂− α∗| ≥ B4

( n

log
(

log(n)/2
))− β∗

2β∗+1

)
≥ 1/4,

where C ′ = C̃ ′(2α1, β1 + 1) and

C1 = C̃1(2α1, β1 + 1), C2 = 1, B4 = B(2α1, β1 + 1,∞). (S7.9)

This concludes the proof.

Proof of Lemma 3. (1) Proof of Equation (S7.4): For 1 ≤ i ≤M , Fi ∈ A(α−ti,K−tii )
by definition. For x > Ki, Fi satisfies the second-order Pareto condition. For any 1 ≤
x ≤ Ki, ∣∣∣1− Fi(x)−K−tii x−α+ti

∣∣∣ =
∣∣∣x−α −K−tii x−α+ti

∣∣∣ = x−α
∣∣∣1−K−tii xti

∣∣∣
≤ 2x−α

∣∣∣ti log(Ki/x)
∣∣∣.
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The last inequality is obtained since ∀u ∈ [0, 1], |e−u − 1| ≤ 2u and

ti log(Ki) ≤ n−
βi

2βi+1
(

logM
)γi( 1

α(2βi + 1)

)
log(n) ≤ 1

α
n
− βi

2βi+1 log(n)γi+1 ≤ 1

by assuming large n. Then for any 1 ≤ x ≤ Ki∣∣∣1− Fi(x)−K−tii x−α+ti
∣∣∣ ≤ 2x−αK−αβii log(Ki/x) = 2x−αx−αβi

(Ki

x

)−αβi
log(Ki/x)

≤ 2x−αx−αβi
(Ki

x

)−α(β−1)

log(Ki/x)

≤ 1

α(β − 1)
x−α(βi+1),

where the ultimate inequality follows from the fact that for any u ≥ 1, t > 0, we have
u−t log(u) ≤ 1/(et). Thus, we have shown the first result (S7.4).

(2) Proof of Equation (S7.5): Let 1 ≤ j ≤ M . Since Ki > 1 and tj > 0 for all

i = 1, . . . ,M and all j = 1, . . . ,M , we have K
−tj
i ≤ 1. By definition (S7.1) and bounding

M ≤ n,

K
−tj
i ≥

(
n

1
α(2βi+1)

)−n− βj
2βj+1

(
logM

)γj
= exp

(
− log(n)

α(2βi + 1)
n
−

βj
2βj+1

(
logM

)γj)
≥ exp

(
− log(n)1+γj

α(2β − 1)
n
−

βj
2βj+1

)
≥ exp

(
− 1

α(2β − 1)

)
,

where the final inequality follows for a sufficiently large n.

(3) Proof of Equation (S7.6): Consider now i < j. From (S7.4), each Fi corre-
sponds to the tail index αi = α− ti = α− (n/(υ log(M))−βi/(2βi+1). For i < j, we have
αi > αj and ti < tj as we described in the Step 1. Also, using βj − βi = (i− j)/M ,

|αi − αj | =
∣∣∣tj(1− ti

tj
)
∣∣∣ = tj

∣∣∣∣1− ( n

υ log(M)

)− βi
2βi+1 +

βj
2βj+1

∣∣∣∣
= tj

[
1−

( n

υ log(M)

) (i−j)/M
(2βi+1)(2βj+1)

]
= tj

[
1− exp

( (i− j)
M(2βi + 1)(2βj + 1)

log
( n

υ logM

))]
≥ tj

(
1− exp

( (i− j)
(2βi + 1)(2βj + 1)

(M − 1)

M

))
≥ tj

[
1− exp

(
(i− j)

2(2βi + 1)(2βj + 1)

)]
,

where the penultimate inequality is obtained since υ ≤ 1, and since log
(

n
log(M)

)
+ 1 ≥

M ≥ 2. This implies Equation (S7.6).
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Proof of Lemma 4. (1) KL divergence between F0 and Fi

Let 1 ≤ i ≤M . By definition of KL divergence,

KL(F0, Fi) =

∫ ∞
1

f0(x) log

(
f0(x)

fi(x)

)
dx

= −ti
∫ ∞
Ki

αx−α−1 log

((
α− ti
α

) 1
ti x

Ki

)
dx.

By the change of variable u =
(
α−ti
α

)1/ti
x/Ki, and letting ai =

(
α−ti
α

)1/ti
,

KL(F0, Fi) = −ti
∫ ∞
ai

α
(( α

α− ti
)1/ti

Kiu
)−α−1

log(u)du×
(( α

α− ti
)1/ti

Ki

)
= ti

(
a−1
i Ki

)−α ∫ ∞
ai

(−α)u−α−1 log(u)du.

Now by performing an integration by parts, we obtain

KL(F0, Fi) = ti

(
a−1
i Ki

)−α(
u−α log(u)

∣∣∞
ai
−
∫ ∞
ai

u−α−1du

)

= tiK
−α
i

(
log(1/ai)−

1

α

)
= K−αi

(
log

(
α

α− ti

)
− ti
α

)
.

Using α− ti ≥ α/2, we further upper bound this divergence

KL(F0, Fi) = K−αi

(
log

(
1 +

ti
α− ti

)
− ti
α

)
≤ K−αi

(
ti

α− ti
− ti
α

)
= K−αi

t2i
α(α− ti)

=
2t2iK

−α
i

α2
.

(2) KL divergence between Fi and F0

Similar calculations as above give

KL(Fi, F0) =

∫ ∞
1

fi(x) log
fi(x)

f0(x)
dx

= tia
−α+ti
i K−αi

∫ ∞
ai

(α− ti)u−α+ti−1 log(u)du

= K−αi

(
log

(
α− ti
α

)
+

ti
α− ti

)
≤ 2t2iK

−α
i

α2
.

Proof of Lemma 5. (1) KL divergence between Fi and Fj with i < j
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Consider the case i < j. First, note that

KL(Fi, Fj) :=

∫
fi(x) log

fi(x)

fj(x)
dx

= KL(Fi, F0) +

∫ ∞
Kj

fi(x) log
f0(x)

fj(x)
dx. (S7.10)

Thus it suffices to bound the second term
∫∞
Kj
fi log f0

fj
in (S7.10).

We use the similar calculations used in the proof of Lemma 4. With the notation
aj = (

α−tj
α )1/tj ,∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx = tjK

−ti
i K−α+ti

j a
α−tj
j

∫ ∞
aj

−(α− ti)u−α+ti−1 log(u)du

=
(Kj

Ki

)ti
K−αj a

ti−tj
j

(
log

1

aj
− 1

α− ti

)
≤ 2 exp

( 1

α(2β − 1)

)
t2jK

−α
j ,

where the final inequality follows by bounding (Kj/Ki)
ti ≤ exp

(
1

α(2β−1)

)
using Lemma

3, and by bounding a
ti−tj
j (log(1/aj)− 1/(α− ti)) ≤ t2j/α2 for a sufficiently large n.

Combining this upper bound with bounds onKL(F0, Fj) andKL(Fi, F0) in Lemma 4
and also with Equation (S7.10),

KL(Fi, Fj) ≤ KL(Fi, F0) + exp

(
1

α(2β − 1)

)
KL(F0, Fj)

≤
2 exp( 1

α(2β−1) )

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (S7.11)

(2) KL between Fi and Fj with i > j

Now we turn to the case i > j. In the same way as for Equation (S7.10), we have

KL(Fi, Fj) = KL(Fi, F0) +

∫ ∞
Kj

fi(x) log
f0(x)

fj(x)
dx. (S7.12)

For the second term, first note that log f0(x)
fj(x) is a decreasing function for any x ≥ Kj .

Also since ∀x ≥ Kj , Fi(x) ≤ F0(x), and since Fi(Kj) = F0(Kj), the measure associated
to Fi restricted to [Kj ,∞) stochastically dominates F0. This implies that∫ ∞

Kj

fi(x) log
f0(x)

fj(x)
dx ≤

∫ ∞
Kj

f0(x) log
f0(x)

fj(x)
dx.

Combining this with (S7.12) followed by Lemma 4, we have

KL(Fi, Fj) ≤ KL(Fi, F0) +KL(F0, Fj) ≤
2

α2

(
t2iK

−α
i + t2jK

−α
j

)
. (S7.13)

Finally, by Equations (S7.11) and (S7.13), we obtain the result (S7.7).
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S8. Remarks on the proof of Theorem 4

Remark 1. We only proved the results for certain sets of C1, C2, β1, β2, α1, α2, C
′. In

fact, it is possible to modify this result to hold for different ranges of parameters (al-
though, the ranges cannot be taken too tight, and C ′ cannot be taken too small). Note
that the narrower the intervals [C1, C2], [α1, α2], the larger β1 and the smaller C ′, the
better the result is. Here are possible modification:

1. Range of α: from the proof, one could take [α1, α1 + tM ] which is actually included
in [α1, α1 + n−ε] for some ε > 0. So without additional effort, the interval can be
taken at any position and the range of the interval can be made very small.

2. Range of β: for any β1 > 0, the result holds for [β1, β1 +1] (although it is stated for
[β1,∞) to match the upper bound). The constants in the proof could be modified
to consider a range [β1, β1 + ε] for any arbitrary small ε > 0, by constructing M
different βi’s uniformly spread on this interval.

3. Range of C: from the proof of the second result in Lemma 3, the tightest range of
C is [K−tMM ,K−t11 ] which is actually included in [1 − n−ε, 1] for some ε > 0. The
range could be changed to any [a − n−ε, a] for a > 0 by modifying distributions
Fi so that the new distrubutions have a domain starting from a−1/α instead of 1
in (S7.3). Then, the interval can be taken at any position a and the range of the
interval can be made very small.

However, C ′ is an upper bound which characterizes the amount of deviation with respect
to the Pareto assumption. It cannot be taken too small since if Fi’s are too close to Fj ’s,
they can not be distinguished.

S9. Appendix

Lemma 6 (Fano’s inequality). Suppose Y is a uniform random variable on {1, . . . ,M},
and let Z is a random variable of a function of X, where X|Y = j ∼ Pj with dPj/dν = pj
where ν is the dominating measure. Then

P (Z 6= Y ) ≥ 1− 1

logM

 1

M2

∑
j,j′

KL(Pj ,Pj′) + log 2

 .

Proof. Recall the definition of the entropy H(Y ) = −
∑
y p(y) log p(y) for a discrete ran-

dom variable Y with a probability mass function p(y). Also we denote H(Y |Z = z) by the
conditional entropy of Y given Z = z, and we defineH(Y |Z) = −

∑
x

∑
y p(y, z) log p(y|z).

Following the terminology used in the information theory, we define information between
Y and Z as the KL divergence between joint distribution and product of the marginal
distribution, i.e. I(Y,Z) = KL(PY,Z , PY × PZ) where we can show that

I(Y, Z) = KL(PY,Z , PY × PZ) = H(Y )−H(Y |Z) (S9.1)
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by splitting the probability distribution. Finally recall that for Z = Z(X), I(Y,Z) ≤
I(Y,X).

Consider the event E = 1{Z 6= Y }. By splitting the probabilities with different
order,

H(E, Y |Z) = H(Y |Z) +H(E|Y,Z) := (1)

= H(E|Z) +H(Y |E,Z) := (2),

where (1) = H(Y |Z) since E becomes a constant given Y and Z. Then we upper bound
(2) as follows,

(2) = H(E|Z) +H(Y |E,Z)

≤ H(E) +H(Y |E,Z)

= H(E) + P(E = 0)H(Y |E = 0, Y ) + P(E = 1)H(Y |E = 1, Z)

≤ log 2 + P(Z 6= Y ) logM.

Combining both (1) and (2), we have

H(Y |Z) ≤ log 2 + P(Z 6= Y ) logM,

in turn,

P(Z 6= Y ) ≥ 1

logM
(H(Y |Z)− log 2) . (S9.2)

Now, using the fact (S9.1),

H(Y |Z) = logM − I(Y,Z)

≥ logM − I(Y,X)

= logM −
∫ ∑

y

p(y)p(x|y) log
p(y)p(x|y)

p(x)p(y)

= logM −
∫ ∑

j

1

M
1{y = j}p(x|y) log

p(x|y)

p(x)

= logM − 1

M

M∑
j=1

∫
pj(x) log

pj(x)
1
M

∑
j′ pj′(x)

dx

≥ logM − 1

M2

∑
j,j′

KL(Pj ,Pj′), (S9.3)

where the penultimate equality is followed since p(x) =
∑
j P(Y = j)P(X = x|Y =

j) = 1
M

∑
j pj(x), and the last inequality is obtained by the concavity of the logarithm

function. Combining (S9.2) and (S9.3), we obtain

P(Z 6= Y ) ≥ 1− 1

logM

 1

M2

∑
j,j′

KL(Pj ,Pj′) + log 2

 .
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