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Abstract: We consider the problem of estimating the tail index α of a distribution

satisfying a (α, β) second-order Pareto-type condition, where β is the second-order

coefficient. When β is available, it was previously proved that α can be estimated

with the optimal rate n−β/(2β+1). When β is not available, estimating α with the

optimal rate is challenging ; so additional assumptions that imply the estimability

of β are usually made. We propose an adaptive estimator of α, and show that this

estimator attains the rate
(
n/ log log n

)−β/(2β+1)
without a priori knowledge of β

or additional assumptions. Moreover, we prove that a
(
log log n

)β/(2β+1)
factor is

unavoidable by obtaining the companion lower bound.

Key words and phrases: Adaptive estimation, extreme value index, minimax opti-

mal bounds, Pareto-type distributions.

1. Introduction

We consider the problem of estimating the tail index α of an (α, β) second-

order Pareto distribution F , given n i.i.d. observations X1, . . . , Xn. We assume

that for some α, β,C,C ′ > 0,∣∣1− F (x)− Cx−α
∣∣ ≤ C ′x−α(1+β), (1.1)

and write S(α, β) := S(α, β, C,C ′) for the set of distributions that satisfy this

property. Here the tail index α characterizes the heaviness of the tail, and β

represents the proximity between F and an α-Pareto distribution FP
α : x ∈

[C1/α,∞) → 1− Cx−α.

There is an abundant literature on the problem of estimating α. A popular

estimator is Hill’s estimator (Hill (1975)) (see also Pickands’ estimator (Pickands

(1975)). Hill (1975) considered α-Pareto distribution for the tail, and suggested

an estimator α̂H(r) of the tail index α based on the order statistics X(1) ≤ · · · ≤
X(n) where r is the fraction of order statistics from the tail,

α̂H(r) =

 1

⌊rn⌋

⌊rn⌋∑
i=1

log(X(n−i+1))

log(X(n−⌊rn⌋+1))

−1

. (1.2)
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For more details, see e.g., de Haan and Ferreira (2006).

The limiting distribution of Hill’s estimator was found by Hall (1982) when

β is known. Under a model that is quite similar to (1.1), he proved that if

rn1/(2β+1) → 0 as n → ∞,
√
nr(α̂H(r)−α) converges in distribution to N(0, α2).

He also considered a more restricted condition (the exact Hall condition, say)∣∣1− F (x)− Cx−α
∣∣ = C ′′x−α(1+β) + o(x−α(1+β)). (1.3)

Under (1.3), with the choice of the sample fraction r∗ = Cn−1/(2β+1) for some

constant C, Theorem 2 of Hall (1982) states that nβ/(2β+1)(α̂H(r∗) − α) con-

verges to a Gaussian distribution with finite mean and variance, depending on

the parameters of the true distribution.

The companion lower bound n−β/(2β+1), under (1.1), was proved by Hall and

Welsh (1984). Drees (2001) improved this result by obtaining sharp asymptotic

minimax bounds again when β is available. From these results, we know that

the second-order parameter β is crucial to understanding the behaviour of the

distribution. Indeed, it determines the rate of estimation of α as well as the

optimal sample fraction.

In general, β is unknown. To cope with this problem, Hall and Welsh (1985)

showed that, under (1.3), it is possible to estimate β in a consistent way, and thus

also to estimate the sample fraction r∗ consistently by r̂. Hall and Welsh (1985)

deduced from these results that α̂H(r̂) is asymptotically as efficient as α̂H(r∗) :

nβ/(2β+1)(α̂H(r̂) − α) converges to a Gaussian distribution with the same mean

and variance as those resulting from the choice r∗. Their result is pointwise,

but not uniform under (1.3), as opposed to the uniform convergence when β is

known.

This first result on adaptive estimation was extended in several ways. Gomes

et al. (2008) provided more precise ways to reduce the bias of the estimate of

α using the estimate of β by supposing a third order condition, and adaptive

estimates of α under the third order condition were considered in Gomes et al.

(2012). Other methods for estimating r∗ have been proposed, e.g., bootstrap

(Danielsson et al. (2001)) and regression (Beirlant et al. (1996)). Drees and

Kaufmann (1998) considered a method related to Lepski’s method (see Lepski

(1992) for more details in a functional estimation setting) by choosing the sample

fraction that balances the squared bias and the variance of the resulting estimate.

They proved that Hill’s estimate computed with this sample fraction is asymp-

totically as efficient as the oracle estimate if F satisfies a condition that is slightly

more restrictive than (1.3). Grama and Spokoiny (2008) consider a more general

setting than (1.1), but when they apply their results to the exact Hall model

(without little o), their estimator obtains the optimal rate up to a log(n) factor;

this is clearly sub-optimal, Hall and Welsh (1985).
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We focus here on deriving results for the setting (1.1). Many common distri-

butions (in particular some distributions with change points in the tail) belong to

it, and the construction of the lower bound in Hall and Welsh (1984) was proved

for this model. To the best of our knowledge though, either the existing results

hold in a more restrictive setting than (1.1), typically in a model that is close to

the model (1.3) (see e.g., Hall and Welsh (1985); Beirlant et al. (1996); Drees and

Kaufmann (1998); Danielsson et al. (2001); Gomes et al. (2008, 2012)), or the

convergence rates for (1.1) are worse than one could expect (see e.g., Grama and

Spokoiny (2008)). The set of distributions at (1.1) is significantly larger than

the set of distributions that satisfy (1.3). Adaptive estimation under (1.1) is

more involved since the second-order parameter β is not always estimable (even

a consistent estimator does not exist for all distributions in this model), and the

adaptive procedures based on estimating β or the oracle sample fraction r∗ as

in Hall and Welsh (1985) or Gomes et al. (2008, 2012) may not work on all the

functions satisfying (1.1).

We construct an adaptive estimator α̂ of α under (1.1) and prove that α̂

converges to α with the rate (n/ log log(n))−β/(2β+1). Thus, for an arbitrarily

small ϵ > 0, and some arbitrarily large range I1 for α and [β1,∞) for β, there

exist large constants D,E > 0 such that, for any n > D log(log(n)/ϵ),

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

(
|α̂− α| ≥ E

(
n

log(log(n)/ϵ)

)−β/(2β+1)
)

≤ ϵ. (1.4)

There is an additional
(
log log(n)

)β/(2β+1)
factor in the rate with respect to the

oracle rate, as we adapt over β on a set of distributions where β is not estimable.

Although we obtain worse rates, we prove the optimality of our adaptive estima-

tor by obtaining a matching lower bound. Indeed, there exists a small enough

constant E′ > 0 such that for any n large enough, and for any estimator α̃,

sup
α∈I1,β>β1

sup
F∈S(α,β)

PF

(
|α̃− α| ≥ E′

(
n

log(log(n))

)−β/(2β+1)
)

≥ 1

4
.

Both lower and upper bounds containing the (log log(n))β/(2β+1) factor are new

to the best of our knowledge (we do not provide a tight scaling factor as in the

paper by Novak (2013), but our setting is different and their rate does not involve

the additional (log log(n))β/(2β+1) factor). The presence of the log log n factor is

not unusual in adaptive estimation (see Spokoiny (1996) in a signal detection

setting). This issue is also discussed in Drees and Kaufmann (1998).

The adaptive estimator α̂ we propose is based on a sequence of estimates

α̂(k), defined in (3.1), where the parameter k ∈ N plays a role similar to the
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sample fraction in Hill’s estimator (see Subsection 3.1 for more details). These

estimates α̂(k) are based not on order statistics, but on probabilities of tail events.

We first prove that for an appropriate choice of this threshold k (independent

of α or β), α̂(k) is consistent. We then prove that for an oracle choice of k (as

a function of β), this estimate is minimax-optimal for distributions satisfying

(1.1) with the rate n−β/(2β+1). An adaptive version of this estimate, where the

parameter k is chosen in a data-driven way without knowing β in advance, is

shown to satisfy (1.4). All the proofs for the results provided in this paper are

in the Supplementary Material.

2. Definitions of Distribution Classes

In this section, we introduce the class of approximately α-Pareto distribu-

tions, and the class of approximately (α, β) second-order Pareto distributions.

We let D be the class of distribution functions on [0,∞).

Definition 1. For α > 0, C > 0, the class of approximately α-Pareto distribu-

tions is

A(α,C) =
{
F ∈ D : lim

x→∞
(1− F (x))xα = C

}
.

Distributions in A(α,C) converge to Pareto distributions for large x, and

these distributions have been used as a first attempt to understand heavy tail

behavior (see Hill, 1975; de Haan and Ferreira, 2006). The first-order parameter

α characterizes the tail behavior in that distributions with smaller α correspond

to heavier tails.

Definition 2. For α > 0, C > 0, β > 0, and C ′ > 0, the class of approximately

(α, β) second-order Pareto distributions is

S(α, β,C,C ′) =
{
F ∈ D : ∀x s.t. F (x) ∈ (0, 1],

∣∣1−F (x)−Cx−α
∣∣ ≤ C ′x−α(1+β)

}
.

(2.1)

The rate of approximation here is linked to the second-order parameter β—a

large β corresponds to a distribution that is close to a Pareto distribution (in

particular, when β = ∞, it is Pareto), and a small β corresponds to a distribution

that is well approximated by a Pareto distribution only for large x. When there

is no confusion, we call the distributions in S(α, β,C,C ′) second-order Pareto

distributions, and use the notationA and S without writing parameters explicitly.

The condition (2.1) is weaker than the condition (1.3), for (1.3) implies

lim
x→∞

1− F (x)− Cx−α

x−α(1+β)
= C ′,
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whereas our condition imposes only an upper bound,

lim sup
x→∞

∣∣∣1− F (x)− Cx−α

x−α(1+β)

∣∣∣ ≤ C ′.

This difference is essential in the estimation problem : under (1.3), it is possible

to estimate β consistently (see e.g., Hall and Welsh (1985)), whereas under (2.1),

it is not possible to estimate β consistently over the set S of distributions for

β ∈ [β1, β2] with 0 < β1 < β2. Adaptive estimation of α is thus likely to be

more involved in our setting than in under (1.3). Many adaptive techniques rely

on estimating β or the sample fraction as a function of β, and are not directly

applicable in our setting (see e.g., Hall and Welsh (1985); Danielsson et al. (2001);

Gomes et al. (2012)).

Remark 1. The difference between the functions satisfying 2.1 and (1.3) is re-

lated to the difference between Hölder functions that actually attain their Hölder

exponent and Hölder functions that are in a given Hölder ball but do not attain

their Hölder exponent (see e.g., Giné and Nickl (2010) for a comparison of these

two sets, and the problem for estimation when the second set is considered).

3. Main Results

Most estimates in the literature are based on order statistics and are difficult

to analyse in a non-asymptotic way, while our estimate is based on probabilities

of well chosen tail events.

3.1. A new estimate

Let X1, . . . , Xn be an i.i.d. random sample from a distribution F ∈ A. We

write, for any k ∈ N, pk := P(X > ek) = 1−F (ek), and its empirical estimate as

p̂k := (1/n)
∑n

i=1 1{Xi > ek}. For any k ∈ N, let

α̂(k) := log(p̂k)− log(p̂k+1). (3.1)

Lemma 1 (Large deviation inequality). Let X1, . . . , Xn be an i.i.d. sample from

F .

A. Suppose F ∈ A and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)/n,

with probability larger than 1− 2δ,

∣∣α̂(k)− (log(pk)− log(pk+1))
∣∣ ≤ 6

√
log(2/δ)

npk+1
. (3.2)
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B. Suppose F ∈ S and let δ > 0. For any k such that pk+1 ≥ 16 log(2/δ)/n and

e−kαβ ≤ C/(2C ′), with probability larger than 1− 2δ,

∣∣α̂(k)− α
∣∣ ≤ 6

√
log(2/δ)

npk+1
+

3C ′

C
e−kαβ (3.3)

≤ 6

√
e(k+1)α+1 log(2/δ)

Cn
+

3C ′

C
e−kαβ . (3.4)

The proof of this lemma is in the Supplementary Material (see Section S2).

For α̂(k), k plays a similar role as the sample fraction in Hill’s estimate (1.2).

The bias-variance trade-off is solved by choosing k in an appropriate way as a

function of β.

3.2. Rates of convergence

For the set of approximately Pareto distributions, we prove that the estimate

α̂(kn) is consistent if we choose kn diverging to ∞ but not too quickly.

Theorem 1 (Consistency inA). For F ∈ A and kn→∞ with (log(n)/n)eknα → 0

as n → ∞, then α̂(kn) → α a.s.

The proof of this theorem is in the Supplementary Material (see Section S3).

The estimate α̂(log log(n)) converges to α almost surely under the rather

weak assumption that F belongs to A. But on such sets, no uniform rate of

convergence exists, and so the restricted set S is introduced.

Let α, β, C,C ′ > 0. Consider now the set S := S(α, β,C,C ′) of second-

order Pareto distributions. We assume to begin with that, although we do not

have access to α, we know α(2β + 1). This is not realistic, but we can modify

the estimate so that it is minimax optimal on the class of second-order Pareto

distributions.

Theorem 2 (α(2β + 1) is known). Let n be such that (S4.1) is satisfied. Let

k∗n = ⌊log(n1/α(2β+1)) + 1⌋. Then for any δ > 0, we have

sup
F∈S

PF

(
|α̂(k∗n)− α| ≥

(
B1 +

3C ′

C

)
n−β/(2β+1)

)
≤ 2δ,

where B1 = 6
√

e2α+1[log(2/δ)/C].

The proof of this theorem is in the Supplementary Material (see Section S4).

Theorem 2 states that, uniformly on the class of second-order Pareto dis-

tributions, the estimate α̂(k∗n) converges to α with the minimax optimal rate

n−β/(2β+1) (see Hall and Welsh (1984) for the matching lower bound).
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Remark 2. Theorem 2 can be used to prove the convergence rate of our esti-

mator by modifying the choice of k∗n, when α(2β + 1) is unknown but only β is

known. For instance, we can plug a rough estimate α̃ := α̂((log log(n))2) of α

into k∗n. The idea behind this choice is that with sufficiently large n, we have

with high probability,

|α̂((log log(n))2)− α| = O

(
1

log n

)
.

Then k̂1n is defined as ⌊log(n1/[α̃(2β+1)]) + 1⌋. Finally, the rate of convergence

of α̂(k̂1n) can be shown as n−β/(2β+1) by proving exp(k̂1n) = O(n1/(α(2β+1))) with

high probability.

However, the previous optimal choice of k (k∗n or k̂1n) still depends on β, which

is unavailable in general. To deal with this problem, we construct an adaptive

estimate of α that does not depend on β but still attains a rate that is quite close

to the minimax optimal rate n−β/(2β+1) on the class of β second-order Pareto

distributions.

The adaptive estimator is obtained by considering a kind of bias and variance

trade-off based on the large deviation inequality (3.2). Suppose we know the

optimal choice of k∗. Then this k∗ optimizes the squared error by making bias

and standard error (of the estimate with respect to its expectation) equal. Since

the bias is decreasing while the standard error is increasing as k increases, for all

k′ larger than this optimal k∗, the bias is smaller than the standard error. Based

on this heuristic (originally proposed by Lepski (1992)), we pick the smallest k

which satisfies, for all k′ larger than k, the proxy for the bias is smaller than

the proxy for the standard error O(
√

1/(np̂k′+1)), as in (3.2). For the proxy for

the bias, we use |α̂(k′)− α̂(k)| by treating α̂(k) as the true α based on the idea

that α̂(k) would be close in terms of the rate to the true α (if k is selected in an

optimal way).

More precisely, we choose k as, for 1/4 > δ > 0

k̂n = inf

{
k ∈ N : p̂k+1 >

24 log(2/δ)

n
and

∀k′ > k s.t. p̂k′+1 >
24 log(2/δ)

n
, |α̂(k′)− α̂(k)| ≤ A(δ)

√
1

np̂k′+1

}
, (3.5)

where A(δ) satisfies (3.6) below.

Theorem 3 (Rates of convergence with unknown β). Let 1/4 > δ > 0 and let n

be such that (S.5.2) is satisfied. Consider the adaptive estimator α̂(kn) where kn
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is chosen as at (3.5) where A(δ) satisfies

A(δ) ≥ 6

√
2(C + C ′) log(

2

δ
)

(
2

√
e2α+1

C
+

C ′

C

)
. (3.6)

Then we have

sup
F∈S

PF

(
|α̂(k̂n)− α| ≥

(
B2 +

3C ′

C

)( n

log(2/δ)

)−β/(2β+1)
)

≤
(
1 +

1

α
log

(
(C + C ′)n

16

))
δ,

where B2=
(
B1+2A(δ)

√
e2α/C

)
[1/
√

log(2/δ)] and B1 is defined in Theorem 2.

The proof of this theorem is in the Supplementary Material (see Section S5).

Theorem 3 holds for any (α, β) provided that n and A(δ) are larger than some

constants depending on α, β, C,C ′, and on the probability δ. The advantage of

our adaptive estimator is that since the threshold k̂n is chosen adaptively to

the samples, the second-order parameter β does not need to be known in the

procedure in order to obtain the convergence rate of α̂(k̂n).

Corollary 1. Let ϵ ∈ (0, 1) and C ′ > 0, and let 0 < α1 < α2 and 0 < C1 < C2.

We use k̂n as in (3.5) where A(δ) = A(δ(ϵ)) =: A(ϵ) is chosen as in (S6.1). If n

satisfies (S6.3), then

sup

α∈[α1,α2],β∈[β1,∞]

C∈[C1,C2]

sup
F∈S(α,β,C,C′)

PF

(
|α̂(k̂n)− α|

≥ B3

(
n

log
(
(2/ϵ)

(
1 + log((C2 + C ′)n)/α1

)))−β/(2β+1))
≤ ϵ,

where B3 is a constant explicitly expressed in (S6.2), which only depends on α2,

C1, C2, and C ′.

The proof of this corollary is in the Supplementary Material (see Section S6).

In other words, if we fix the range of the α and C and a lower bound on β

to which we wish to adapt, we can tune the parameters of the adaptive choice

of k̂n so that we adapt to the maximal β such that F is β second-order Pareto.

Moreover, this adaptive procedure works uniformly well over the set of second-

order Pareto distributions satisfying (1.1) (for α ∈ [α1, α2], β ∈ [β1,∞], C ∈
[C1, C2]), which is much larger than the class of distributions that verify the

condition (1.3). Then this gives non-asymptotic guarantees with explicit bounds.
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Remark 3. The parameter C ′ plays a role in the definition of the second order

Pareto class that is slightly different than the one of C or α, β. Unlike α or C,

C ′ is not uniquely defined: if F ∈ S(α, β, C, C̃ ′), then F ∈ S(α, β, C,C ′) with

C ′ ≥ C̃ ′. This implies in particular that the results of Corollary 1 could have

been rewritten, fixing a constant C ′ > 0 and writing C̃ ′ for a constant that fits

more closely F , by taking supremum over F ∈ S(α, β, C, C̃ ′) where C̃ ′ ≤ C ′.

Being non-adaptive over C̃ ′ and choosing a loose constant C ′ instead of C̃ ′ will

only worsen the bound by a constant factor, unlike making a mistake on β which

will worsen the exponent of the bound.

It seems that we lose a (log log(n))β/(2β+1) factor with respect to the optimal

rate, due to adaptivity to β. However, the lower bound below implies that this

(log log(n))β/(2β+1) loss is inevitable; hence the rate provided in Theorem 3 is

sharp.

Theorem 4 (Lower bound). Let α1, β1, C1, C2, C
′ > 0 be such that C1 ≤ exp

(−1/2α1(2β1 + 1)), C2 ≥ 1 and C ′ ≥ 1/2α1β1. Let n be sufficiently large. Then

for any estimate α̃ of α,

sup

α∈[α1,2α1],β∈[β1,∞)

C∈[C1,C2]

sup
F∈S(α,β,C,C′)

PF

(
|α̃−α| ≥ B4

( n

log
(
log(n)/2

))−β/(2β+1)
)
≥ 1

4
,

where B4 is a constant depending on α1 and β1, which is provided in (S7.9).

The proof of this theorem is in the Supplementary Material (see Section S7).

The lower bound result is proved with specific ranges of the parameters (e.g.,

restrictions on C1, C2, C
′ in the statement of Theorem 4). but it can be mod-

ified by considering different ranges (see Remark 1 in S8 in the Supplementary

Material).

3.3. Additional remarks on our estimate

In the definition of our estimate, we use exponential spacings (i.e., we es-

timate the probability that the random variable is larger than ek), but we can

generalize our estimate by considering the probability of other tail events. For

some parameters u > v ≥ 1, define

q̂u =
1

n

n∑
i=1

1{Xi > u}, and q̂v =
1

n

n∑
i=1

1{Xi > v}.

We define the following estimate of α as

α̂(u, v) =
log(q̂v)− log(q̂u)

log(u)− log(v)
. (3.7)
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Figure 1. Duality between the estimate (3.7) and the estimate (3.8).

If we fix v ∼ O(n1/(α(2β+1)) and u/v ∼ O(1), then we will also obtain the
oracle rate for estimating α with α̂(u, v). However, the choice of u/v will have
an impact on the constants. In practice, these parameters are important to
tune well (in particular for the exact Pareto case, or for distributions satisfying
Equation (1.3)). However, a precise analysis of the best choices for u and v (in
terms of constants) is beyond the scope of this paper.

Another point we want to address is the relation between our estimate and
usual estimates based on order statistics. To estimate the tail index α, it is
natural to consider the quantiles associated with the tail probabilities. For the
estimates based on order statistics, one fixes some tail-probabilities and then
observes the order statistics in order to estimate the quantiles. On the other hand,
we fix some values corresponding to the quantiles, and estimate the associated
tail probabilities. Based on such a link, one could relate any existing method
based on order statistics to the method based on tail probabilities.

In particular, the estimator based on order statistics corresponding to our
estimator would be of the form, for some parameters 1 ≥ qv > qu ≥ 0,

α̃(qu, qv) =
log(qv)− log(qu)

log(û)− log(v̂)
, (3.8)

where û = X(n−⌊qun⌋) and v̂ = X(n−⌊qvn⌋). This estimate can be interpreted
as the inverse of some generalized Pickands’ estimate (see Pickands (1975), it is
however not Pickands’ estimate). There is actually a duality between these two
estimators: for any couple (qu, qv) in the definition (3.8), it is possible to find
(u, v) in the definition (3.7) such that these two estimates exactly match (see
Figure 1 for an illustration). However, there is no analytical transformation from
one estimate to the other since such a transformation will be data dependent.
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