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Abstract: Although Bayesian methodologies have been successful in drawing infer-

ence about random effects, the frequentist literature has been limited. In this paper

we consider inferences on random effects in hierarchical generalized linear models

from a frequentist point of view using their summarizability. We show asymptotic

distributional properties for the conditional and the marginal inference when the

number of subunits is large. We conduct simulation studies when the number of

subunits is small to moderate. A seizure study and an infertility study are used to

illustrate the conditional and the marginal inference of random effects.
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1. Introduction

Random-effect models such as hierarchical generalized linear models (HGLMs),

generalized linear mixed models, or multilevel generalized linear models are

widely used for the analysis of clustered data. The random effects are unit-

specific unobserved quantities arising independently from a common distribution

representing heterogeneity among the independent units. Subunits within a unit

are correlated by sharing the same random effects. Predicting random effects

is of interest in applications including small area estimation, genetic evaluation

of animals and quality management (Rao (2003)); Robinson (1991)). In the

Bayesian approach, inference regarding random effects is based on the poste-

rior distribution given the observed data (e.g., Carlin and Louis (2000)). In the

empirical Bayesian approach, the empirical posterior distribution is used to pre-

dict random effects via posterior mean or mode evaluated at an estimated fixed

parameter (e.g., Morris (1983); Maritz and Lwin (1989)).

Although Bayesian methodologies have been successful in drawing inference

about random effects, the frequentist literature has been limited. The two in-

tervals are fundamentally different in that Bayesian interval is a fixed interval

around a random quantity and the frequentist’s interval is a random interval

around a fixed quantity. We call our approach frequentist since we state proba-

bilistic statements about random intervals. In this paper we investigate drawing
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inference about random effects from a frequentist’s stance. A hierarchical like-

lihood (h-likelihood) inference advocates estimating fixed parameters from the

adjusted profile likelihood and estimating random effects as if they are fixed

parameters and drawing inference using the variance obtained from the second

derivative of negative log h-likelihood (Lee and Nelder (1996)). In the normal

linear mixed models, treating random effects as if they are fixed provides the

best linear unbiased predictor (BLUP) and the inverse of the Hessian matrix

gives the variance of the residual of the mode from the random effect (Henderson

(1975); Robinson (1991)). However, in models other than multivariate normal,

inferential procedures lack rigorous theoretical justification. In this regard, Meng

(2009, 2011) established Bartlett-like identities for h-likelihood: the score for the

random effect has zero expectation and the variance of the score is the expected

negative Hessian under easily verifiable conditions. However, the difference be-

tween the estimators of the random effects and the random effects themselves

may not be quadratically summarizable, leaving the Bartlett identities meaning-

less. Meng (2009) also warned that even if summarizability is achieved, normality

may not be claimed due to lack of independence among subunits in a unit.

There is some literature on drawing inference about random effects from a

frequentist’s stance. Ma, Krewski, and Burnett (2003) and Ma and Jørgensen

(2007) presented early work on this, but their works focus on a special model.

Inference on random effects differs from the usual inference on fixed effects. First,

inference on random effects is regularized due to a distributional assumption on

the random effect. As the number of subunits in the independent unit increases,

the effect of this additional assumption diminishes, but plays an important role

in the case of a small number of subunits. Therefore finite sample performance

would not resemble that of fixed parameter inference, and summarizability can

be achieved with a smaller number of subunits. Therefore empirical studies carry

significance when the number of subunits is small, as in many applications. Sec-

ond, unlike inference on fixed effects, two types of inference are possible, namely,

conditional and marginal. Robinson (1991) made an important distinction be-

tween the realized value of random effect and the yet-to-be-realized value of

random effect using an animal breeding example. Breeding value of an animal

already born as the realized value of random effect can be estimated while breed-

ing value of a mating between two potential parents can be predicted. However,

the distinction was not made about interval estimation.

Our goal is to derive two types of inference on random effects. The afore-

mentioned two types of random effects are first introduced by Robinson (1991),

focusing on conceptual distinction and presenting the identical point estimation.

We proceed from this and show separate inferential procedures, including interval

estimation, about the two distinctive quantities, treating a realized value of ran-

dom effect as fixed and yet-to-be-realized value as random. We propose to draw
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conditional inference given the realized value of random effect, which involves

obtaining its estimator, and placing confidence intervals for the realized values

via asymptotic distribution of the difference between its estimator and the fixed

realized value. We propose to also draw marginal inference which involves ob-

taining its predictor and placing prediction intervals for the unrealized values via

asymptotic distribution of the difference between the predictor and the random

effect averaging over the joint distribution of outcomes and the random effect.

We state a probabilistic statement about a random interval around random quan-

tity, which is new in our knowledge. The distinction is not just conceptual but

tangible reflected in setting the simulation studies. For the conditional inference,

we generate single random effect for each individual throughout the replications.

For the marginal inference we generate new random effect from replication to

replication.

We showcase two examples in this paper to illustrate conditional and marginal

inferences, respectively. The first example is a seizure study where repeated

numbers of seizures are the outcome and the random effect is individual’s seizure

propensity. We can view that each individual possesses this quantity inherently

and this quantity is already realized although we cannot observe, and draw con-

ditional inference. The second example deals with repeated measures of prolactin

levels of menstrual cycles from women. The repeated measures of prolactin lev-

els are assumed to be a function of reproductive propensity. This reproductive

propensity will be generated for every menstrual cycle. The reproductive propen-

sity responsible for the observed prolactin values is realized but is not available

for observation. However the reproductive propensity for a future menstrual cy-

cle is yet to be realized. In this study the propensity of future cycle is more of

interest than the current, since it characterizes pregnancy potential. We draw

marginal inference for the second example.

Specifically we obtain an estimator or a predictor of random effect that max-

imizes h-likelihood and derive conditional and marginal inferences. For each

case we derive asymptotic distribution of the difference between the esitma-

tor/predictor and the random effect from a frequentist’s stance when the number

of subunits increases. Interestingly, we show that the asymptotic distribution of

the difference between the predictor and the random effect is not normal even if

the number of subunits increases. We evaluate its finite sample performance via

simulation and show that behavior of coverage probabilities is markedly different

between conditional and marginal inferences. Extra distributional assumption

on random effects renders summarizability to be achieved with relatively small

number of subunits and allows decent finite sample performance especially in

marginal inference even when the number of subunit is small. All proofs are

given in the Supplementary Material.
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2. Settings

Let Yi = (Yi1, Yi2, . . . , Yini)
T be the response for the ith unit (i = 1, . . . ,K)

and νi be the corresponding unobserved random effect. We consider HGLMs and

restrict our attention to nested hierarchical structure in that each outcome Yij ,

j = 1, . . . , ni, of Yi is repeatedly measured within unit i. We assume that Yij
is from an exponential family distribution given random effect νi, and follows a

generalized linear model (GLM) with the density f(Yij |νi;ψij , ϕ), where

log f(Yij |νi;ψij , ϕ) =
Yijψij − b(ψij)

ϕ
+ d(Yij , ϕ), (2.1)

ψij denotes the canonical parameter, and ϕ is the dispersion parameter. We

write µij for the conditional mean of Yij given νi,
d

dψij
b(ψij) = µij , and ηij =

q(µij), with q(·) as the link function for the GLM relating µij and ηij . The

linear predictor ηij takes the form ηij = Xijβββ + νi with νi = ν(ui) for some

strictly monotonic differentiable function of ui, where Xij = (1, x1ij , . . . , xpij) is

a 1× (p+1) covariate vector corresponding to fixed effects β = (β0, β1, . . . , βp)
T .

We impose distributional assumption on ui with density

f(ui;ααα) = exp
[{a1(ααα)ui − a2(ααα)}

φ
+ c(ui, φ)

]
.

Let θθθ = (βββT , ϕ,αααT )T , ννν = (ν1, ν2, . . . , νK)
T , u = (u1, u2, . . . , uK)

T , and Y =

(YT
1 ,Y

T
2 , . . . ,Y

T
K)

T . The h-likelihood is defined as

H{θθθ,ννν(u);Y} =
K∑
i=1

ni
K
hi{θθθ, ν(ui);Yi}, (2.2)

where

hi{θθθ, ν(ui);Yi} = ℓ1i{θθθ, ν(ui);Yi}+ ℓ2i{θθθ, ν(ui)}, (2.3)

ℓ1i{θθθ, ν(ui);Yi} = n−1
i

ni∑
j=1

log f(Yij |νi;ψij , ϕ)

= n−1
i

ni∑
j=1

[Yijψij − b(ψij)

ϕ
+ d(Yij , ϕ)

]
,

ℓ2i{θθθ, ν(ui)} = n−1
i log f{v(ui);ααα}

= n−1
i

{a1(ααα)ui − a2(ααα)

φ
+ c(ui, φ) + log(

dui
dνi

)
}
.

There is a subtle difference between the h-likelihood and the joint likelihood, or

termed the extended likelihood by Bjørnstad (1996), in that the joint likelihood of

(θθθ,ννν∗(u)), where ννν∗(u) represents a class of transformation of u, is not invariant
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respect to the choice of function ννν∗(u) due to the Jacobian term for u (Lee

and Nelder (2005)). The h-likelihood is the joint density of Y and the random

effects ννν = ννν(u), and therefore is a subclass of joint likelihood defined on a

particular scale of u, ννν(u), out of a class of scales ννν∗(u). The scale of the h-

likelihood in which random effects enter linearly to the fixed effects is shown to

provide the invariant inference about the random effects with respect to a linear

transformation of the chosen scale (Lee and Nelder (2005, 2009)).

3. Inference about Random Effects

To focus on inference about ννν, or u, we first treat θθθ as known. We consider

each νi for i = 1, . . . ,K. Inference of ui or νi only involves information from

the ith unit not from other units when fixed parameters are known. When fixed

parameters are unknown, inference on ui or vi involves other units as shown

in Section 5. The contribution of the log h-likelihood for the ith unit becomes

hi{θθθ, ν(ui);Yi} given in (2.3). Here ψij is a function of ν(ui) as well as θθθ. We

denote by a(p)(ui) the pth derivative of a(ui) with respect to ui. Let ûi be the

solution of

h
(1)
i {θθθ, ν(ui);Yi} = l

(1)
1i {θθθ, ν(ui);Yi}+ l

(1)
2i {θθθ, ν(ui)} = 0,

where

l
(1)
1i {θθθ, ν(ui),Yi} = n−1

i

ni∑
j=1

∂ψij
∂ui

Yij − ∂
∂ψij

b(ψij)

ϕ

and

l
(1)
2i {θθθ, ν(ui)} = n−1

i

[a1(ααα)
φ

− c(1)(ui, φ) + {log(dui
dνi

)}(1)
]
.

Expanding h
(1)
i {θθθ, ν(ûi);Yi} = 0, we have

0 = h
(1)
i {θθθ, ν(ui);Yi}+ (ûi − ui)h

(2)
i {θθθ, ν(ui);Yi}

+
1

2
(ûi − ui)

2h
(3)
i {θθθ, ν(ui);Yi}+ op{(ûi − ui)

2}.

As in inference for fixed parameters, we say that
√
ni(ûi−ui) is summarizable if

expressible using the derivatives of an object function such as a h-likelihood and

terms which vanish as ni increases. There are two elements in each term in the ex-

pansion above, the polynomials in (ûi−ui) and the derivatives of hi{θθθ, ν(ui);Yi}.
If ui is a fixed parameter and ûi is a consistent estimator, (ûi− ui)

2 is small and

we can summarize (ûi − ui) using the first two terms. But ui is not fixed, and

the remainder terms are not guaranteed to vanish (Meng (2011)). In normal

models, however, even if ui is random, h
(3)
i {θθθ, ν(ui);Yi} = 0, and (ûi − ui) is
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summarizable. This suggests that to achieve summarizability, we make either

the polynomial terms in (ûi − ui) or the derivative terms vanish.

3.1. Vanishing terms polynomial in (ûi − ui)

We can make the polynomials in (ûi−ui) terms vanish by expanding around

the realized value of ui, say u0i. In this case the conditional inference about

(ûi − ui) given ui = u0i resembles the inference of fixed parameter, though not

exactly since there is ℓ2i term in (2.3). Assume that

I(θθθ, u0i) = E
[
− h

(2)
i {θθθ, ν(ui);Yi}|ui = u0i

]
exists and is positive.

Theorem 1. Given u0i,
√
ni(ûi − u0i) → N(0, I(θθθ, u0i)

−1) as ni → ∞.

We can estimate I(θθθ, u0i)
−1 via I(θθθ, ûi)

−1 or −h(2)i {θθθ, ν(ûi);Yi}−1. Although

this resembles the usual fixed parameter inference, a distinctive feature is con-

tribution from l2i. Usual frequentist’s inference on ui, as if ui were a fixed

parameter, utilizes l1i alone. Our inference on random effects utilizes an addi-

tional assumption and l2i plays an important role, especially when the number of

subunits is small. We show in Section 6 that average coverage probabilities over

K independent units can be close to the nominal value even when ni is as small

as 2. When the fixed parameters are unknown, the fact that random effects arise

from a common distribution renders the parameters in l2i estimable.

Remark 1. Conditionally, ûi is a biased estimator for u0i, but the bias van-

ishes as ni approaches infinity. The asymptotic conditional variance I(θθθ, u0i)
−1

can be improved by adding a higher-order term, I(θθθ, u0i)
−1E{l(2)2i (θθθ, ν(ui))|ui =

u0i}I(θθθ, u0i)−1 (see Supplementary Material for details). Since this term is neg-

ative, the asymptotic variance without the higher-order term is conservative.

We look next at the marginal inferences, when ui is unrealized and the

expectation is taken over the joint distribution of Yi and ui.

Theorem 2. As ni → ∞,
√
ni(ûi−ui) has mean zero and variance Eui [I(θθθ, ui)

−1]

and converges in distribution to a distribution whose moment generating function

can be expressed as Eui [exp{(1/2)t2I(θθθ, ui)−1}], where Eui [a(ui)]=
∫
a(ui)f(ui;ααα)

dui.

Here the marginal variance of
√
ni(ûi − ui) is the expectation of the inverse

of I(θθθ, ui), not the inverse of the expectation as in the case of the maximum
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likelihood estimator. Let EYi{a(Yi)} =
∫
a(Yi)f(Yi;θθθ)dYi, where f(Yi;θθθ) =∫ ∏ni

j=1{f(Yij |ui;ψij(βββ), ϕ)}f(ui;ααα)dui. Using the fact that

lim
ni→∞

∣∣∣Eui[I(θθθ, ui)−1
]
− EYi

[
I(θθθ, ûi)

−1
]∣∣∣ = 0,

we can use EYi [I(θθθ, ûi)
−1], I(θθθ, ûi)

−1, or −h(2)i {θθθ, ûi;Yi}−1 as an estimator of

Eui [I(θθθ, ui)
−1]. We call EYi [I(θθθ, ûi)

−1] and I(θθθ, ûi)
−1 the ‘expected’ version of

the variance estimator while −h(2)i {θθθ, ûi;Yi}−1 is the ‘observed’ version of the

variance estimator, distinguishing whether the expectation is taken over Yi.

Since the variance of the conditional mean of the score function is negligible,

the estimator for the conditional variance from Theorem 1 can be used for the

marginal variance from Theorem 2.

Remark 2. The variance of (ûi − ui) vanishes as ni → ∞, since there is an

accumulation of information about ui in ûi. As pointed out by Meng (2009), this

information does not surface when predicting future independent observations.

Remark 3. Although the asymptotic marginal distribution of
√
ni(ûi − ui) is

not normal, skewness is zero and kurtosis differs from that of normal distribution

only by factor of Eui{I(θθθ, ui)−2}/{EuiI(θθθ, ui)−1}2.

If I(θθθ, ui) does not depend on ui,
√
ni(ûi − ui) is marginally normal.

In general, I(θθθ, ui) depends on ui. Specifically, when ν(ui) = ui, I(θθθ, ui) =

n−1
i

∑ni
j=1[∂µij/∂ηij ]

2V −1
ij , where Vij ≡ V ar(Yij |ui). Since the term [∂µij/∂ηij ]

2

V −1
ij is responsible for dependence on ui, a link function that satisfies [∂µij/∂ηij ]

2

= Vij , say a stabilizing link, can eliminate dependence on ui.

Corollary. Under stabilizing link functions,
√
ni(ûi − ui) is marginally normal

with mean zero and variance Eui{I(θθθ, ui)−1} ≡ I(θθθ)−1.

Under the normal linear mixed models, the identity link is the stabilizing

link, thus the corollary can be applied to the BLUP. The stabilizing function for

Poisson is µij = η2ij : Poisson-normal with E(Yij |ui) = µij = η2ij , ηij = Xijβββ + ui,

where ui is N(0, λ) yields I(θθθ) = n−1
i (4ni + 1/λ) = 4 + 1/(niλ). For binomial-

normal models, a stabilizing link is E(Yij |ui) = µij = (1/2) sin(ηij) + 1/2, ηij =

Xijβββ+ui where ui is distributed as N(0, λ) and I(θθθ) = [1+1/(niλ)]. For gamma-

normal models with a stabilizing link, E(Yij |ui) = kµij , ηij = log µij , ηij =

Xijβββ + ui, and ui ∼ N(0, λ), I(θθθ) = n−1
i (nik + 1/λ) = k + 1/(niλ). With

stabilizing link functions for Poisson and binomial models, however, we need to

restrict the range of these functions to allow one-to-one mappings for µ and η.
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3.2. Vanishing derivative terms

In this section, we summarize (ûi − ui) using different estimating func-

tions and consider marginal inference. Although this type of summarizabil-

ity is not generally applicable, it provides an alternative route to investigate

properties of (ûi − ui). Suppose that h
(1)
i {θθθ, ν(ui),Yi} can be expressed as

h
(1)
i {θθθ, ν(ui);Yi} = g{θθθ, ν(ui)}Ui{θθθ, ν(ui);Yi}, where g{θθθ, ν(ui)} ̸= 0, such that

the solution of Ui{θθθ, ν(ui);Yi} = 0 is the same as that of h
(1)
i {θθθ, ν(ui);Yi} = 0.

Since solving for ν or u gives equivalent results, we use expressions Ui(θθθ, ui;Yi)

and g(θθθ, ui) without loss of generality. We assume that the partition satisfies

(A1) U
(2)
i (θθθ, ui;Y) = Op(n

−1/2
i ) and U

(3)
i (θθθ, ui;Yi) = 0, and

(A2) There exists κi with κi ≡ limni→∞U
(1)
i (θθθ, ui;Yi).

Theorem 3. If ûi is the solution of Ui(θθθ, ui;Yi) = 0, then as ni→∞,
√
ni(ûi−

ui) converges in distribution to a distribution whose moment generating function

is given by

EuiEYi|ui

[
exp{t

√
niκ

−1Ui(θθθ, ui;Yi)}|ui
]

= Eui

[
exp

[1
2
t2niκ

−2
i V ar{Ui(θθθ, ui;Yi)}

]]
+ o(1),

with mean 0 and variance niκ
−2
i V ar{Ui(θθθ, ui;Yi)}.

Remark 4. The bias of ûi, E(ûi − ui), is κ
−1
i EUi(θθθ, ui;Yi) and is negligible for

large ni. In some cases, the Jacobian term due to the choice of scale ν(ui) renders

this bias term exactly zero, making ûi an unbiased predictor even in small sample

cases. This fact also highlights the merit of summarizing (ûi − ui) in terms of

estimating function Ui(θθθ, ui;Yi).

Remark 5. Theorem 3 provides alternative asymptotic variance formula and

alternative moment generating functions to those in Theorem 2. They can be

shown to be asymptotically equivalent.

Example 1 (Normal-normal model). Consider a normal-normal model with

E{Yij |ν(ui)} = µij + ν(ui), µij = Xijβββ, ν(ui) = ui, and f(ui;D) = 1/
√
2πD

exp(−u2i /2D). We have

h
(1)
i {θθθ, ν(ui);Yi} = n−1

i

{
σ−2

ni∑
j=1

(Yij − µij − ui)−
ui
D

}
,

where σ2 = Var{Yij |ν(ui)}. Since h
(1)
i {θθθ, ν(ui);Yi} is already linear in ui, we

take g(θθθ, ui) = 1, and the predictor for ui is the solution of h
(1)
i {θθθ, ν(ui);Yi} =
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Ui(θθθ, ui;Yi) = 0. We can verify that

−U (1)
i (θθθ, ui;Yi) = −h(2)i {θθθ, ν(ui);Yi} = σ−2 +

1

niD
,

and U
(2)
i (θθθ, ui;Yi) = 0, satisfying (A1) and (A2). We can also verify that

V ar(ûi − ui) = E{−U (1)
i (θθθ, ui;Yi)}−2V ar{Ui(θθθ, ui;Yi)}.

Here conditional and marginal variances of niV ar(û − ui) are I(θθθ)
−1 = {σ−2 +

1/(niD)}−1. We do not need to adjust the estimating function to make higher-

order terms vanish and the identity link is the stabilizing link function.

Example 2 (Poisson-gamma model). Consider a Poisson-gamma model with

E{Yij |ν(ui)} = µij = exp(ηij), ηij = Xijβββ + ν(ui), ν(ui) = log ui, dν(ui) =

u−1
i dui, and

f(ui;λ, k) =
uk−1
i exp(−ui/λ)

Γ(k)λk
.

In HGLMs, for identifiability we may put a constraint on the fixed β or random

effects (e.g., Lee and Nelder (1996)). Here we set E(ui) = 1, so k = 1/λ.

If µij = µ∗ijui, where µ
∗
ij = exp(Xijβββ), we have

hi{θθθ, ν(ui);Yi} = n−1
i

[ ni∑
j=1

(
− uiµ

∗
ij + Yij log ui + Yij logµ

∗
ij

)
+ (k − 1) log ui

−ui
λ

+ log ui

]
,

and h
(1)
i {θθθ, ν(ui);Yi} = n−1

i (−µ∗i+ + Yi+/ui) + n−1
i (k/ui − k), where µ∗i+ =∑ni

j=1 µ
∗
ij and Yi+ =

∑ni
j=1 Yij . Note that the solution of h

(1)
i {θθθ, ν(ui);Yi} = 0 is

the same as that of

Ui(θθθ, ui;Yi) = n−1
i (Yi+ − uiµ

∗
i+) + n−1

i (k − kui).

Thus h
(1)
i {θθθ, ν(ui);Yi} = g(θθθ, ui)Ui(θθθ, ui;Yi) = 0, with g(θθθ, ui) = u−1

i , and it

follows that −U (1)
i (θθθ, ui;Yi) = n−1

i (µ∗i+ + k), free of ui and U
(2)
i {θθθ, ui;Yi} = 0.

Since E(ui) = 1, and E(1/ui) = k/(k−1), we can see that E[h
(1)
i {θθθ, ν(ui);Yi}] =

n−1
i k{E(1/ui) − 1} = n−1

i k/(k − 1). However, the expectation of EUi(θθθ, ui;Yi)

is zero. Also, the variance of (ûi − ui) can be obtained by E[−U (1)
i {θθθ, ui;Yi}]−2

V ar[U{θθθ, ui;Yi}], where E[−U (1)
i {θθθ, ui;Yi}] = n−1

i (µ∗i+ + k) and

n2iV ar[U{θθθ, ui;Yi}] = n2iEV ar[U{θθθ, ui;Yi)|ui] + n2iV arE[U{θθθ, ui;Yi}|ui]
= Euiµi+ + V ar(k − kui) = µ∗i+ + k,
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yielding E[−U (1)
i {θθθ, ui;Yi}]−2V ar[U{θθθ, ui;Yi}] = 1/(µ∗i+ + k). A direct evalua-

tion of the variance results in the same variance as follows:

V ar(ûi − ui) =
V ar(Yi+)

(µ∗i+ + 1
λ)

2
+ V ar(ui)− 2Cov

(
ûi, ui

)
=

λµ∗i+
µ∗i+ + k

+ λ− 2
µ∗i+λ

µ∗i+ + k
=

1

µ∗i+ + k
.

On the other hand, there is no closed form for the variance from Theorem 2,

E[E[−h(2)i {θθθ, ν(ui);Yi}|ui]−1]=E
[ 1

E[n−1
i (Yi+ + k)/u2i ]

]
=E

[
ni

{uiµ∗i++k
u2i

}−1]
.

Thus, in Poisson-gamma HGLMs the variance from Theorem 3 and the exact

variance are the same while the one from Theorem 2 is hard to evaluate.

Example 3 (Binomial-beta model). For binary outcome, the canonical link func-

tion gives E{Yij |ν(ui)} = µij = exp(ηij)/{1 + exp(ηij)}, so ηij = log µij/(1 −
µij) = Xijβββ + ν(ui) and we set that ν(ui) = log ui/(1− ui), which yields

dν(ui) = {ui(1− ui)}−1dui and dui/dνi = ui(1− ui). We assume that ui has the

beta density

f(ui;α1, α2) =
uα1−1
i (1− ui)

α2−1

B(α1, α2)
,

where B(α1, α2) = Γ(α1)Γ(α2)/Γ(α1 + α2). Here we set α1 = α2 = α to give

E(ui) = 1/2. A h-likelihood and its derivative have the forms:

hi{θθθ, ν(ui);Yi} = n−1
i

ni∑
j=1

[
Yij log

µij
1− µij

+ log(1− µij)
]

+n−1
i

[
α log ui + α log(1− ui)

]
,

h
(1)
i {θθθ, ν(ui);Yi} = n−1

i

ni∑
j=1

[ Yij − µij
ui(1− ui)

]
+

α

niui
− α

ni(1− ui)

=
{Yi+ − µi+ + α} − 2αui

niui(1− ui)
.

With µ∗ij = exp(Xijβββ)/{1 + exp(Xijβββ)}, we can see that µij = uiµ
∗
ij/[uiµ

∗
ij +

(1−ui)(1 −µ∗ij)]. Then, for µij = µi for all j, we can express h
(1)
i {θθθ, ν(ui);Yi} =

g(θθθ, ui)Ui(θθθ, ui;Yi) where

g(θθθ, ui) =
[
ui(1− ui){uiµ∗i + (1− ui)(1− µ∗i )}

]−1
.
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Writing Ȳi = Yi+/ni,

Ui(θθθ, ui;Yi) =
[
{uiµ∗i + (1− ui)(1− µ∗i )}Ȳi − uiµ

∗
i

]
+n−1

i {α(1− ui)− αui}{uiµ∗i + (1− ui)(1− µ∗i )},

U
(1)
i (θθθ, ui;Yi) = (2µ∗i − 1)Ȳi − µ∗i − n−1

i (2α){uiµ∗i + (1− ui)(1− µ∗i )}
+n−1

i α(2µ∗i − 1)(1− 2ui),

and

U
(2)
i (θθθ, ui;Yi) = −4n−1

i α(2µ∗i − 1).

Therefore (A1) and (A2) are satisfied.

Example 4 (Gamma-inverse gamma model). Let E{Yij |ν(ui)} = kµij , ηij =

logµij , ηij = Xijβββ + ν(ui), ν(ui) = log ui, and dν(ui) = (1/ui)dui. Conditioning

on ν(ui), Yij has the density

f{Yij |ν(ui);βββ, k} =
1

Γ(k)

(Yij
µij

)k
exp(−Yij

µij
)
1

Yij
.

Suppose ui has the inverse-gamma density

f(ui;α) =
1

Γ(α+ 1)

( α
ui

)α+1
exp(− α

ui
)
1

ui
dui,

with E(ui) = 1. The contribution of the ith unit to the h-likelihood is

hi{θθθ, ν(ui);Yi} = n−1
i

[ ni∑
j=1

[(k−1) log Yij−
Yij

{ui exp(Xijβββ)}
−k log{ui exp(Xijβββ)}]

−(α+ 1) log ui −
α

ui

]
,

and h
(1)
i {θθθ, ν(ui);Yi} = n−1

i [
∑ni

j=1{Yij/(u2i exp(Xijβββ)) − k/ui} − (α + 1)/ui +

α/u2i ]. Setting g(θθθ, ui) = 1/u2i , we obtain

Ui(θθθ, ui;Yi) = n−1
i

[ ni∑
j=1

{ Yij
exp(Xijβββ)

− kui

}
− (α+ 1)ui + α

]
,

U
(1)
i (θθθ, ui;Yi) = k−(α+1)/ni, and U

(2)
i (θθθ, ui;Yi) = 0, satisfying (A1) and (A2).

Furthermore, we can verify that V ar(ûi− ui) obtained by κ−2
i V ar[Ui(θθθ, ui;Yi)],

where κi = n−1
i (nik + α+ 1), yields the directly evaluated exact variance.



1118 MYUNGHEE CHO PAIK, YOUNGJO LEE AND IL DO HA

4. Approximation to the Marginal Likelihood

In estimating the fixed parameter θθθ, we maximize

L(θθθ;Y) =

∫
· · ·

∫
eKH{θθθ,ννν(uuu);Y}dν1(u1) · · · dνK(uK),

where H{θθθ,ννν(uuu)} is given at (2.2). Standard likelihood inferential procedures
can be applied to this marginal likelihood function, but a practical hurdle is
computing the marginal likelihood. When the integral is hard to evaluate, one

can use Laplace approximation. We show in this section how the partitions of the
h-score shown in Section 3.2 can facilitate computing a higher-order correction
term of Laplace approximation to the marginal likelihood.

Consider the accuracy of Laplace approximation from the ith contribution
which has the form∫
enihi{θθθ,ν(ui);Yi}dν(ui) = enihi{θθθ,ν(ûi);Yi}

√
2πσin

−1/2
i

[
1−Cni{θθθ, ν(ûi)}

]
+O(n−2

i ),

where
σ2i = −[h

(2)
i {θθθ, νi(ûi);Yi}]−1,

Cni{θθθ, ν(ûi)} =
1

8ni
J1i{θθθ, ν(ûi);Yi} −

5

24ni
J2i{θθθ, ν(ûi);Yi},

J1i{θθθ, ν(ûi);Yi} = −
h
(4)
i {θθθ, ν(ûi);Yi}

[h
(2)
i {θθθ, ν(ûi);Yi}]2

,

and

J2i{θθθ, ν(ûi);Yi} = −
[h

(3)
i {θθθ, ν(ûi);Yi}]2

[h
(2)
i {θθθ, ν(ûi);Yi}]3

.

An approximated marginal likelihood is

l(θθθ;Y) ≈
K∑
i=1

[
nihi{θθθ, ν(ûi);Yi} −

1

2
log[−nih(2)i {θθθ, ν(ûi);Yi}]

+ log[1−Cni{θθθ, ν(ûi)}]
]
. (4.1)

The first two terms are called the adjusted profile likelihood where the maxi-
mizer of ui, i = 1, . . . ,K, is plugged in and the adjustment is made by sub-
tracting the second term. The third term increases accuracy but can be com-
putationally demanding. We illustrate how partitioning h

(1)
i (.) into g(.) and

Ui(.) simplifies computation of the higher-order correction term. Using the

fact that Ui(θθθ, ûi;Yi) = 0, we have h
(2)
i {θθθ, ν(ûi);Yi} = g(θθθ, ûi)U

(1)
i (θθθ, ûi;Yi),

h
(3)
i {θθθ, ν(ûi);Yi} = 2g(1)(θθθ, ûi)U

(1)
i (θθθ, ûi;Yi) + g(θθθ, ûi)U

(2)
i (θθθ, ûi;Yi), and

h
(4)
i {θθθ, ν(ûi);Yi} = 3g(2)(θθθ, ûi)U

(1)
i (θθθ, ûi;Yi) + 3g(1)(θθθ, ûi)U

(2)
i (θθθ, ûi;Yi).
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When U
(2)
i (θθθ, ui;Yi) = 0, further simplification is

J1i{θθθ, ν(ûi);Yi} = −
h
(4)
i {θθθ, ν(ûi);Yi}

[h
(2)
i {θθθ, ν(ûi);Yi}]2

= −3g(2)(θθθ, ûi)

g2(θθθ, ûi)
U

(1)
i (θθθ, ûi;Yi)

−1,

J2i{θθθ, ν(ûi);Yi} = −
[h

(3)
i {θθθ, ν(ûi);Yi}]2

[h
(2)
i {θθθ, ν(ûi);Yi}]3

= −4{g(1)(θθθ, ûi)}2

g3(θθθ, ûi)
U

(1)
i (θθθ, ûi;Yi)

−1.

For g(θθθ, ui) = 1/ui, Cni{θθθ, ν(ûi)} = {12niûiU (1)
i (θθθ, ûi;Yi)}−1 and for g(θθθ, ui) =

1/u2i , Cni{θθθ, ν(ûi)} = 13/{12niU (1)
i (θθθ, ûi;Yi)}. For Poisson-gamma and gamma-

inverse gamma models, Cni{θθθ, ν(ûi)} = 1/[12niûi{µi+/ni − 1/(niλ)}] and
Cni{θθθ, ν(ûi)} = 13/{12ni(k − α/ni)}, respectively.

As the E- and M- steps resonate hot-deck style of ‘fill in’ then ‘estimate’,
Laplace approximation also has intuitive appeal with E-step-like plugging-in
mostly likely values and M-step-like estimating with penalty to avoid overfitting.
Furthermore plugging-in missing data themselves, not a function of missing data
as in the EM, offers simplicity in implementation. As for the accuracy of approx-
imation the requirement is less stringent than in Bayesian application, since the
approximation should be accurate enough to hold the argmax of the function,
not the function itself.

5. Inference about Random Effects with Unknown Fixed Parameters

In this section we consider the case where θθθ is unknown. Our Theorem 4
covers conditional inference on realized value u0i and Theorem 5 covers marginal
inference for random ui.

Let (θ̂θθ, û) be the solution of(
∂
∂θθθ l(θθθ;Y)

W{θθθ, ν(u);Y}

)
= 0,

where W{θθθ, ν(u);Y}= {W1(θθθ, u1;Y1), . . . ,WK(θθθ, uK ;YK)}T and Wi(θθθ, ui;Yi)

is either h
(1)
i {θθθ, ν(ui);Yi} or Ui(θθθ, u1;Y1). Similarly, W{θθθ, ν(u);Y} is either

h(1){θθθ, ν(u);Y} = [h
(1)
1 {θθθ, ν(u1);Y1}, . . . , h(1)K {θθθ, ν(uK);YK}]

or
U(θθθ,u;Y) = {U1(θθθ, u1;Y1), . . . , UK(θθθ, uK ;YK)}T .

Consider an added condition.

(A3) ∥ ∂
∂θθθW

(1)
i {θθθ, ν(ui);Yi}∥ = Op(1) for all i.

Suppose data arise as described in Section 2, (A1) and (A2) are satisfied
if Wi(θθθ, ui;Yi) = Ui(θθθ, ui;Yi), and (A3) is satisfied. Then we have results for
conditional and marginal inference.
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Theorem 4. As ni → ∞ and ni/K → O(1),
√
ni(ûi − u0i) converges in distri-

bution to normal with mean 0 and variance

I(θθθ, u0i)
−1 +niI(θθθ, u0i)

−1B21iA
−1
11 V ar

[ ∂
∂θθθ
l(θθθ;Y)|ui = u0i

]
A−1

11 B
T
21iI(θθθ, u0i)

−1

−2niI(θθθ, u0i)
−1BT

21iA
−1
11 Cov

[ ∂
∂θθθ
l(θθθ;Y), h

(1)
i {θθθ, ν(ui)Yi}|ui = u0i

]
,

where

A11 = E

{
− ∂2

∂θθθ∂θθθT
l(θθθ;Y)

}
and

B21i = E

{[ ∂

∂θθθT
h
(1)
i {θθθ, ν(ui);Yi}

]
|ui = u0i

}
.

Theorem 5. As ni → ∞,
√
ni(ûi−ui) converges in distribution to a distribution

with moment generating function

Eui

[
exp

[1
2
t2niκ

−2
i V ar{U∗

i (θθθ, ui;Yi)}
]]

+ o(1),

where U∗
i (θθθ, ui;Yi) = Ui(θθθ, ui;Yi) + [ ∂

∂θθθT
Ui(θθθ, ui;Yi)]A

−1
11 [

∂
∂θθθ l(θθθ;Y)].

6. Simulation Studies

We present results from simulation studies that evaluated finite sample per-
formance and approximation to normality via the confidence intervals of realized
but unobserved random effects and prediction intervals of unrealized random
effects. Throughout, the number of replications was 500. In the first section,
we consider the case when the fixed parameters were known and in the second
section, the case when the fixed parameters were estimated. For conditional in-
ference, u1, u2 . . . , uK were generated and kept the same for all replications. For
marginal inference, new random effects were generated for every replication. To
place confidence intervals for realized random effects in the conditional inference,
variance formulas in Theorem 1 or 4 were used depending whether fixed parame-
ters are known or estimated. To place prediction intervals for unrealized random
effects in the marginal inference, formulas in Theorem 2 or 5 were used. For ev-
ery model, except for a Bernoulli-normal model, we used a binary covariate, xij ,
which is generated from a Bernoulli distribution with success probability 0.5. We
considered the sample sizes N =

∑K
i=1 ni with N = 100, 200, 250, 500, and 1,000,

and (K,ni) = (50, 2), (100, 2), (50, 5), (100, 5), (50, 10) and (50, 20). The variance
of random effects, λ in all presented models was λ = 0.5. All computations were
conducted using SAS/IML.

Since we place K confidence intervals, we present coverage probabilities in
two forms: in tables we report average coverage probabilities over K independent
units; in figures we display individual coverage probabilities of K independent
units obtained over 500 replications using Box-plots.
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6.1. Coverage probability of random effects with known fixed

parameters

In this section the confidence or prediction intervals of random effects in

models with stabilizing link functions are examined. Here, under stabilizing

link functions, (ûi − ui) is normal when the number of subunits is large. We

consider the Poisson-normal, Bernoulli-normal, and gamma-normal models where

the random effect ui is N(0, λ).

For the Poisson-normal model, we set the conditional mean E{Yij |ν(ui)} =

µij = (β0 + β1xij + ui)
2 with β0 = 2, and β1 = 1. With stabilizing link

functions, the conditional and the marginal variance have the same asymptotic

form. For the variance, we used two variance estimators, the ‘observed’ version,

−h(2)i {θθθ, ν(ui);Y} = n−1
i {2

∑ni
j=1(1+Yij/µij)+1/λ} and the ‘expected’ version,

I(θθθ) = E
[
− h

(2)
i {θθθ, ν(ui);Y}|u = u0i

]
= 4 + 1/(niλ). For a Bernoulli-normal

model we set a stabilizing link E{Yij |ν(ui)} = µij = (1/2) sin(ηij) + 1/2 and

ηij = β0 + β1xij + ui, with β0 = −0.5 and β1 = 1. We generated xij ’s from a

uniform distribution on the interval [0,1]. We specified a gamma-normal model

with E{Yij |ν(ui)} = kµij and ηij = log µij = β0 + β1xij + ui, with β0 = β1 = 1.

The shape parameter was k = 2.

For the specified models the means of K individual coverage probabilities

from independent units for various combinations of (K,ni) are shown in Table 1.

In all models the average coverage probabilities using the two variance estimates

maintained close to the nominal 95% level for both conditional and marginal

inferences. In particular, they performed well even when ni ≡ n was as small

as 2 with K = 50. However, the standard deviation of the empirical coverage

probabilities was much smaller in the marginal inference than in the conditional

difference. This point is visible in the figures.

Figures 1(a), 1(c), and 1(e) show Box-plots ofK coverage probabilities of con-

fidence intervals for the three models, and Figures 1(b), 1(d) and 1(f) show Box-

plots ofK coverage probabilities of prediction intervals for individual independent

units. While most of individual coverage probabilities of confidence intervals in

Figures 1(a), 1(c) and 1(e) show over 90% coverage, there are several individual

coverage probabilities outside the lower inner fence. The width of fences of box

plots of the coverage probabilities becomes narrower as the number of subunits in

the unit (ni) increases. Figure 3 shows bias and the coverage probabilities of or-

dered u0i’s when ni = 2, 20. Since the bias is E(ûi−u0i) = {(1−u0i)k}/(µi++k)

in the Poisson-gamma model, we find large bias and poor coverage probability

associated with the values for extreme u0i’s: the bias of û0i is positive if u0i < 1,

negative for u0i > 1, which implies that û0i is conservative and corresponding

confidence interval may miss u0i by tilting toward the marginal mean. Figure 3
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Table 1. Average coverage probabilities of the nominal 95% intervals over
K independent units in Poisson-normal (P-N), Bernoulli-normal (B-N) and
gamma-normal (G-N) models for known θθθ with 500 replications.

P-N B-N G-N

N (K,n) Type Method Mean (SD) Mean (SD) Mean (SD)
100 (50,2) Conditional expected 0.942 (0.047) 0.959 (0.047) 0.935 (0.076)

observed 0.943 (0.053) 0.973 (0.035) 0.934 (0.102)
Marginal expected 0.945 (0.011) 0.943 (0.012) 0.938 (0.011)

observed 0.949 (0.011) 0.959 (0.009) 0.945 (0.012)
200 (100,2) Conditional expected 0.948 (0.039) 0.965 (0.041) 0.950 (0.046)

observed 0.949 (0.044) 0.976 (0.032) 0.959 (0.047)
Marginal expected 0.948 (0.009) 0.942 (0.011) 0.938 (0.010)

observed 0.946 (0.009) 0.958 (0.008) 0.946 (0.010)
250 (50,5) Conditional expected 0.947 (0.025) 0.952 (0.030) 0.955 (0.022)

observed 0.947 (0.028) 0.964 (0.027) 0.961 (0.021)
Marginal expected 0.948 (0.011) 0.937 (0.011) 0.944 (0.010)

observed 0.949 (0.010) 0.957 (0.009) 0.946 (0.009)
500 (100,5) Conditional expected 0.949 (0.020) 0.956 (0.024) 0.949 (0.023)

observed 0.949 (0.022) 0.968 (0.023) 0.953 (0.027)
Marginal expected 0.948 (0.010) 0.937 (0.010) 0.943 (0.012)

observed 0.950 (0.010) 0.958 (0.008) 0.944 (0.011)
500 (50,10) Conditional expected 0.949 (0.013) 0.948 (0.020) 0.954 (0.014)

observed 0.949 (0.014) 0.963 (0.011) 0.957 (0.014)
Marginal expected 0.947 (0.010) 0.933 (0.010) 0.947 (0.009)

observed 0.948 (0.010) 0.951 (0.009) 0.947 (0.010)
1,000 (50,20) Conditional expected 0.950 (0.009) 0.943 (0.023) 0.951 (0.012)

observed 0.950 (0.009) 0.955 (0.012) 0.951 (0.013)
Marginal expected 0.949 (0.009) 0.943 (0.010) 0.948 (0.009)

observed 0.949 (0.010) 0.956 (0.009) 0.949 (0.010)

shows that the coverage probabilities are overstated for u0i < 1 and understated

for u0i > 1. This trend becomes negligible when ni = 20. In contrast to the

conditional case, individual coverage probabilities are tight around the nominal

value in the marginal case, as shown in Figures 1 (b), 1(d) and 1(f). Bias is small

in the marginal case since it is averaged over the distribution of the random ef-

fect. Also the coverage indicator whether the interval includes the random effect

is averaged over all possible random effects.

6.2. Coverage probability of random effects with estimated fixed

parameters

In this section, we consider that the fixed parameters are estimated using

two models. First we set a Poisson-gamma model with the conditional mean

E(Yij |ui) = µij = exp(β0 + β1xij + log ui), with β0 = β1 = 1 and ui distributed
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(a) P-N: Conditional (b) P-N: Marginal

(c) B-N: Conditional (d) B-N: Marginal

(e) G-N: Conditional (f) G-N: Marginal

Figure 1. Individual coverage probabilities (y-label) of the nominal 95%
(dotted line) confidence and prediction intervals from Poisson-normal (P-
N), Bernoulli-normal (B-N), and gamma-normal (G-N) models for known
θθθ. Here (50,2), (100,2), (50,5), (100,5), (50,10) and (50,20) indicate (K,n),
where K is the number of clusters and n is the cluster size.

as gamma with mean 1 and variance λ = 0.5. We also consider a Poisson-

lognormal model with conditional mean µij = exp(ηij) with ηij = β0+β1xij+ui,

and ui ∼ N(0, λ). We first assume that the fixed parameters are known, and

then the fixed parameters are estimated by maximizing the second-order Laplace

approximation given at (4.1).

For these models, Table 2 shows that both conditional and marginal infer-

ences provide good average coverage probabilities when the fixed parameters are

known or unknown, even when ni is as small as 2. As in Table 1, the standard
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Table 2. Average coverage probabilities of the nominal 95% intervals over K
independent units in Poisson-gamma (P-G) and Poissin-lognormal (P-LN)
models with 500 replications.

P-G P-LN
θθθ: known θθθ: unknown θθθ: known θθθ: unknown

N (K,n) Type Mean (SD) Mean (SD) Mean (SD) Mean (SD)
100 (50,2) Conditional 0.963 (0.024) 0.977 (0.010) 0.946 (0.051) 0.936 (0.046)

Marginal 0.956 (0.008) 0.954 (0.010) 0.946 (0.011) 0.944 (0.009)
200 (100,2) Conditional 0.952 (0.040) 0.936 (0.052) 0.948 (0.055) 0.952 (0.050)

Marginal 0.954 (0.009) 0.954 (0.011) 0.944 (0.010) 0.943 (0.010)
250 (50,5) Conditional 0.956 (0.014) 0.935 (0.038) 0.947 (0.041) 0.960 (0.024)

Marginal 0.953 (0.009) 0.953 (0.009) 0.947 (0.010) 0.946 (0.010)
500 (100,5) Conditional 0.950 (0.020) 0.948 (0.024) 0.947 (0.031) 0.959 (0.030)

Marginal 0.953 (0.009) 0.951 (0.010) 0.948 (0.010) 0.949 (0.010)
500 (50,10) Conditional 0.951 (0.012) 0.940 (0.023) 0.945 (0.019) 0.946 (0.020)

Marginal 0.950 (0.010) 0.952 (0.009) 0.951 (0.010) 0.945 (0.009)
1,000 (50,20) Conditional 0.950 (0.012) 0.948 (0.012) 0.951 (0.009) 0.953 (0.015)

Marginal 0.947 (0.011) 0.949 (0.008) 0.948 (0.009) 0.952 (0.009)

deviations of the empirical coverage probabilities are smaller for prediction in-

tervals in the marginal inference than those in the conditional inference. Figures

2(a), 2(c), 2(e) and 2(g) show Box-plots of K individual coverage probabilities

of the confidence intervals for the conditional inference in both models. Over-

all, interquartile ranges are visibly tighter in Poisson-lognormal model than in

Poisson-gamma model. The marginal asymptotic distribution of (ûi − ui) is not

normal although skewness is zero. We display q-q plots of ûi−ui where i = 1, 2, 3

for Poisson-lognormal and Poisson-gamma models when the fixed parameter is

estimated. Figure S1 in Supplementary Material shows that tail behavior of

Poisson-lognormal model is closer to that of normal distribution than that of

Poisson-gamma, which explains tighter interquartile ranges in Poisson-lognormal

model than in Poisson-gamma model. Figures 2(b), 2(d), 2(f) and 2(h) show

Box-plots of individual coverage probabilities of prediction intervals in marginal

inference. As in Figure 1, the coverage probabilities of prediction intervals are

close to the nominal value possibly due to small bias.

We conducted simulations comparing the proposed method and Bayesian

credible intervals for Poisson-gamma models with normal prior for β using Win-

BUGS 14. The results are reported in Table S1 of Supplementary Material. The

two methods show similar coverage probabilities but the proposed method show

faster computational time. Specifically, in terms of computing time for each

replication using a Workstation with 2.3-GHz CPU and 64 GB RAM, Bayesian

credible intervals took 59.1 times longer in CPU time on average than the pro-

posed marginal approach.
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(a) P-G (known): Conditional (b) P-G (known): Marginal

(c) P-G (unknown): Conditional (d) P-G (unknown): Marginal

(e) P-LN (known): Conditional (f) P-LN (known): Marginal

(g) P-LN (unknown): Conditional (h) P-LN (unknown): Marginal

Figure 2. Individual coverage probabilities (y-label) of the nominal 95%
(dotted line) confidence and prediction intervals from Poisson-gamma (P-G)
and Poisson-lognormal (P-LN) models for known & unknown θθθ. Here (50,2),
(100,2), (50,5), (100,5), (50,10) and (50,20) indicate (K,n), where K is the
number of clusters and n is the cluster size.
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Figure 3. Bias and coverage probabilities against realized values u0i in the
conditional inference when (K,n) = (50, 2) and (50, 20) under the Poisson-
gamma model.

7. Applications

7.1. Conditional inference

We illustrate the proposed method using the epilepsy seizure count data

from a clinical trial carried out by Leppik et al. (1985) and previously analyzed

by Thall and Vail (1990). The data come from the randomized clinical trial

conducted among patients suffering from simple or complex partial seizures to

receive either the antiepileptic drug progabide or a placebo, as an adjuvant to

standard chemotherapy. The primary outcome of interest (Y ) is the number of

seizures occurring over the previous 2 weeks measured at each of four successive

postrandomization clinic visits. Thall and Vail (1990) took a quasi-likelihood

approach and focused on comparing various types of overdispersion models. We

assumed that extra variation was due to individual-specific seizure propensity and

conducted a secondary analysis to quantify the seizure propensity. We formally

identified patients with high seizure propensity using the inferential procedure

described in Section 3. In this we assumed that inherent seizure propensity exists

and is realized (subject was born with it) but cannot be observed. We would like

to draw inference about the realized seizure propensity and apply the conditional

inferential procedure described in Theorem 4. The data consist of four repeated

measures (ni = 4) of K = 59 epileptic patients, with covariates Constant, Base

(x1), Trt (x2, placebo=0, progabide=1), Base.Trt (x3), Age (x4), and Visit (x5 =
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Figure 4. (a) Estimated random effects of 59 patients in the epileptic data
and their 95% confidence intervals under the Poisson-gamma model; Ex-
pected and Observed, expected and observed variance estimates. (b) Cov-
erage probabilities against estimated random effects.

−0.3,−0.1, 0.1, 0.3 for each visit). We assumed that the Yij |ui (i = 1, . . . , 59; j =

1, 2, 3, 4) are Poisson with mean µij = exp(ηij); ηij = β0 + β1x1ij + β2x2ij +

β3x3ij + β4x4ij + β5x5ij + log ui is the linear predictor and the random effect ui
is a gamma with mean 1 and variance λ. For the fixed parameters, we obtained

the estimates by maximizing the second-order Laplace approximation given in

(4.1). The estimates of fixed parameters and their standard errors (SEs) are

β̂0 = −1.32(SE = 1.25), β̂1 = 0.88(SE = 0.13), β̂2 = −0.90(SE = 0.40),

β̂3 = 0.35(SE = 0.20), β̂4 = 0.50(SE = 0.37) , β̂5 = −0.29(SE = 0.10), and

λ̂ = 0.28(SE = 0.06), yielding significant difference between the two treatment

groups.

We focused on potential heterogeneity between outcomes of patients and

constructed 95% confidence intervals of realized values of random effects u0i(i =

1, . . . , 59): {ûi−1.96SE(ûi−u0i), ûi+1.96SE(ûi−u0i)}. Figure 4(a) gives the 95%
confidence intervals for the realized but unobserved individual seizure propensity
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(K = 59). Confidence intervals obtained from both ‘expected’ and ‘observed’

versions of variance estimates show similar trends. Figure 4(a) demonstrates

substantial variations in seizure propensity among patients. Especially, for four

patients (patient id=10, 25, 35 and 56), the 95% confidence interval of u0i does

not contain 1, suggesting that the seizure propensity is significantly different

from the norm. Patient id 49’s interval excludes 1 using the variance estimate

via expected information. These patients were identified as outliers via residual

analysis by Thall and Vail (1990), Breslow and Clayton (1993), and Ma and

Jørgensen (2007), but there were no formal inferential procedures. We also iden-

tify patients with low propensity significantly different from 1, which previous

analyses did not.

We conducted a data-driven simulation using 500 replications based on the

epilepsy data structures and the estimated coefficients to investigate the behavior

of coverage probability against an increasing order of estimated random effects.

The responses were generated from the Poisson-gamma model with the true

conditional mean µ̂ij = exp(η̂ij); η̂ij = β̂0 + β̂1x1ij + β̂2x2ij + β̂3x3ij + β̂4x4ij +

β̂5x5ij + log ûi, where β̂0, . . . , β̂5 and ûi are the estimated values from the data.

Figure 4(b) shows that coverage probability for conditional inference tends to be

low when the actual realized values were extreme.

7.2. Marginal inference

Another example is the infertility study of Archer (1987), previously ana-

lyzed by Paik (1992). Infertile women with normal serum prolactin levels have

been known to establish a pregnancy after the use of bromocriptine, a dopamine

agonist. Prolactin levels were measured four times repeatedly at 15-minute inter-

vals after the injection of thyrotropin releasing hormone (TRH) in 30 subjects.

Figure 5(a) displays prolactin measurements for the 30 subjects. An additional

baseline prolactin level was measured before the injection of TRH. Subjects were

divided into three groups depending on their fertility status: 6 were normal;

12 had anovulation and/or inphase endometrial biopsies; and 12 had histologic

evidence of luteal phase deficiency. Paik (1992) showed that the patterns of re-

sponses differed in the three groups using an extended Generalized Estimating

Equation approach (Liang and Zeger (1986)).

We conducted a secondary analysis to identify women among infertile group

who have hypo- or hyper- responsiveness to TRH. We assumed that there is in-

dividual specific responsiveness of prolactin to TRH even after adjusting for the

group effect. This responsiveness was assumed to arise randomly in each cycle.

We are interested in the responsiveness of prolactin in a next cycle of TRH stim-

ulation, which would be important for infertility, not the current responsiveness

that is already realized (yet unobserved). This constitutes marginal inference.
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Figure 5. (a) Repeated-measure responses for 30 subjects in the prolactin
data. (b) Predicted random effects and 95% prediction intervals, under the
gamma-normal model. (c) Predicted random effects and 95% prediction
intervals, under the gamma-inverse gamma model.

The prolactin responses Yij(i = 1, . . . , 30; j = 1, 2, 3, 4) were assumed to

follow a gamma, as in Paik (1992). Specifically, the Yij |ui were gamma with shape

parameter k and scale parameter µij/k, so E(Yij |ui) = µij and var(Yij |ui) =

ϕµ2ij with µij = exp(ηij) and dispersion parameter ϕ = 1/k. Covariates in the

model were Constant, Indicator of Group 2 (x1), Indicator of Group 3 (x2),

Time (x3 = 1, 2, 3, 4) and Baseline prolactin level (x4). The linear predictor was

ηij = β0+β1x1ij+β2x2ij+β3x3ij+β4x4ij+ui and the random effect ui was taken to

be a normal with mean 0 and variance λ. The estimates of fixed parameters were

β̂0 = 4.368(SE = 0.179), β̂1 = −0.055(SE = 0.215), β̂2 = 0.391(SE = 0.215),

β̂3 = −0.267(SE = 0.012), β̂4 = 0.006(SE = 0.005) , k̂ = 50.465(SE = 6.533),

and λ̂ = 0.170(SE = 0.052). The estimates of β are similar to those of the

mean-model 5 by Paik (1992). The corresponding standard errors are slightly

different due to different assumptions on the covariance structure.
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We identified individuals with hypo- or hyper- responsiveness relative to
their group means. Figure 5(b) displays the 95% prediction intervals for the
random effects ui(i = 1, . . . , 30) of individual subjects (K = 30) using the ‘ob-
served’ versions of the variance estimate. The 95% prediction intervals show that
patient number 3 has hypo-responsiveness while patient number 6 has hyper-
responsiveness among the infertile group.

In addition, we fitted the gamma-inverse gamma model described in Section
3.2. The linear predictor was ηij = β0 + β1x1ij + β2x2ij + β3x3ij + β4x4ij + νi
and the random effect ui = exp(νi) was assumed to be inverse gamma with mean
1 and variance λ = 1/(α − 1), α > 1. The estimates of fixed parameters were
very similar to those of the gamma-normal model: β̂0 = 4.447(SE = 0.180),
β̂1 = −0.040(SE = 0.216), β̂2 = 0.415(SE = 0.218), β̂3 = −0.267(SE = 0.012),
β̂4 = 0.007(SE = 0.005), κ̂ = 50.450(SE = 6.533), and α̂ = 4.836(SE =
1.293). Figure 5(c) shows similar inference as Figure 5(b), although different
distributions were assumed for the random effects. This suggests that inference
about individual responsiveness is robust against distributional specification of
random effects here.

8. Discussion and Concluding Remarks

We have shown conditional and marginal inferences of random effects from
a frequentist’s stance. Conditionally, the estimators of realized but unobserved
random effects are normally distributed as the number of subunits increases.
Marginally, the predictors of unrealized and unobserved random effects are not
necessarily normally distributed even if the number of subunits increases, but
have zero skewness asymptotically. Simulations reveal that, for the models dis-
cussed here, coverage probabilities of the proposed inferential procedures for ran-
dom effects are close to the nominal value even in small to moderate number of
subunits. In conditional inference, some individual coverage probabilities fall
short of claimed coverage, while in the marginal inference most coverage proba-
bilities are tightly around the nominal value. Superior performance of coverage
probabilities for the marginal inference is likely to be due to small bias.

We add cautionary remarks on applying results from finite sample perfor-
mance shown via simulation in practice. When the number of subunits is as
large as 20, asymptotic properties may hold reasonably well in both conditional
and marginal cases. When ni is small, the conditional inference requires greater
caution in interpretation than the marginal inference, especially when predicted
values are extreme, and one may accompany empirical analysis of coverage prob-
ability as shown in Section 7.1. Although interpretation is different, the marginal
confidence intervals and Bayesian credible intervals seem to display similar cov-
erage probabilities; the proposed marginal intervals take much shorter compu-
tational time. When random intervals for random quantities are needed, the
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proposed method offers a direct way to obtain them without resorting to fre-

quentists’ property of Bayesian credible intervals.
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