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Abstract: Many real-world systems consist of several types of entities, and hetero-

geneous networks are required to represent such systems. However, the current

statistical toolbox for network data can only deal with homogeneous networks,

where all nodes are supposed to be of the same type. This article introduces

a statistical framework for community detection in heterogeneous networks. For

modeling heterogeneous networks, we propose heterogeneous versions of both the

classical stochastic blockmodel and the degree-corrected blockmodel. For commu-

nity detection, we formulate heterogeneous versions of standard spectral clustering

and regularized spectral clustering. We demonstrate the theoretical accuracy of

the proposed heterogeneous methods for networks generated from the proposed

heterogeneous models. Our simulations establish the superiority of proposed het-

erogeneous methods over existing homogeneous methods in finite networks gener-

ated from the models. An analysis of the DBLP four-area data demonstrates the

improved accuracy of the heterogeneous method over the homogeneous method in

identifying research areas for authors.
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1. Introduction

Many complex systems in today’s world consist, at an abstract level, of

agents who interact with one another. This general agent-interaction framework

describes many interesting and important systems, such as social interpersonal

systems (Milgram (1967)), protein interaction systems (Gavin et al. (2002)),

power grids (Watts and Strogatz (1998)), and the World Wide Web (Huberman

and Adamic (1999)), to name a few. Networks provide a convenient and unified

way of representing such systems. It is important to develop methodology for

network data and, accordingly, the science of network data has received atten-

tion from scientists in various academic fields. A holistic introduction to the

interdisciplinary study of networks can be found in Newman (2010). Statisti-

cally oriented overview of networks can be found in Goldenberg et al. (2010) and

Kolaczyk (2009).

http://dx.doi.org/10.5705/ss.2013.231


1082 SRIJAN SENGUPTA AND YUGUO CHEN

The early approach to network modeling, the random graph model of Erdös

and Rényi (1959), assumed that all agents behave in identical fashion. The ob-

served dissimilarity in agent behavior was assigned to random fluctuations. This

explanation is not always appropriate, particularly when the network displays

structured dissimilarities in agent behavior. At the other end of the modeling

spectrum, one might wish to capture the observed variation in agent behavior by

assigning a separate model to each individual agent. However, this is impractical

for networks beyond a certain size, and also unnecessary.

Observed networks often exhibit a patterned dissimilarity that lies some-

where between completely identical agent behavior and completely unequal agent

behavior. Agents are often found to cluster into groups or communities that

display similar behavior, while agents from different communities behave differ-

ently. The identification of this network structure, called community detection,

is an important problem. Community detection has important interpretation;

communities often turn out to be groups of agents that share common proper-

ties and/or play similar roles within the network. For example, in Jonsson et

al. (2006), the communities in a protein interaction network turned out to be

functional groups (proteins having the same or similar function), with important

implications for cancer research. Fortunato (2010) provides a multidisciplinary

exposition on community detection in networks.

The currently available methodologies for network data usually consider ho-

mogeneous networks consisting of nodes that represent objects of the same type,

and that all links in the network represent the same type of relation. For example,

a friendship network like Facebook has nodes representing persons or users, and

links representing friendship between users. However, many observed systems

are heterogeneous in that there are different types of agents, and various kinds

of interactions in the system. Typically, for each node or link it is known what

the type is, and a heterogeneous network contains this type information. For

example, in Facebook, nodes can represent various types of entities like users,

events, groups, celebrity pages, photos, and so on. Accordingly, there can be var-

ious types of links: friendship link between two users, membership link between

users and groups, fan (or like) link between users and celebrities, attendance

link between users and events, tag link between a photo and an user, and so

on. The homogeneous ‘friendship network’ representation, that was mentioned

earlier, effectively represents only a sub-system of this system, consisting only of

‘user’ nodes and ‘friendship’ links.

To analyze a heterogeneous network using the current toolbox of homoge-

neous methods and homogeneous models, there are two options — either consider

a homogeneous sub-network of the original network, or treat the heterogeneous

network as a homogeneous network, suppressing the type information available

in the data. In the first approach, there is loss of useful information. In the
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second approach the results might be meaningless as nodes of different types are

grouped into the same community, or the procedure might not work well due to

the presence of different types of nodes.

For example, consider a heterogeneous Facebook network consisting of two

types of nodes — users and events, and two kinds of links: user-user or friendship

links, and user-event or attendance links. Suppose network data in this form is

available for users and events corresponding to 10 universities, and the problem of

interest is to assign users to their universities using a clustering procedure. Using

the first option, one must carry out the analysis based on the user-user network

only, dumping the event nodes and user-event links. In this context the dumped

data can be quite important in predicting university affiliation. Using the second

option, one treats the entire network as a homogeneous network and carries out

a clustering of both users and events. However, users and events behave in

very different ways, and the clustering algorithm might not work well since it is

trying to cluster these different entities into the same clusters by comparing their

behavior. Using K-means intuition, the ‘distance’ between an user and an event,

both affiliated to the same university, might be too large.

Thus, community detection in heterogeneous network data cannot be sat-

isfactorily carried out by applying homogeneous models and methodologies. A

preferable approach is to have a procedure that uses the entire heterogeneous

information, identifies the fact that users and events are different types of enti-

ties, and clusters nodes from different types separately but simultaneously into

10 user clusters and 10 event clusters. Since this procedure compares events to

events and users to users, the clustering should work much better.

Heterogeneous networks have begun to receive attention from various scien-

tific communities, particularly the computer science research community (Sun

and Han (2012)). We provide a statistical framework to deal with heteroge-

neous network data, proposing heterogeneous versions of the classical stochastic

blockmodel and the degree-corrected blockmodel of Karrer and Newman (2011).

For community detection in heterogeneous networks, we formulate heterogeneous

versions of standard spectral clustering and regularized spectral clustering. We

demonstrate the theoretical accuracy of the proposed heterogeneous methods for

networks generated from the proposed heterogeneous models in the asymptotic

framework of Qin and Rohe (2013).

As an application of our methods, we analyze a large bibliographical network

from DBLP with the objective of identifying research area of authors. A natural

choice of network would be the homogeneous co-authorship network with authors

as nodes, but we find that homogeneous clustering applied on the co-authorship

network performs rather poorly, with an accuracy comparable to random assign-

ment. Here, interpreting the bibliographical network as a heterogeneous network
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(with authors, papers, and conferences treated as different types of nodes), the
heterogeneous clustering method performs quite accurate community detection.

The rest of the article is organized as follows. Section 2 outlines basic graph
theoretical notation that is used throughout the article. Section 3 reviews ho-
mogeneous blockmodels and introduces heterogeneous versions of them. Section
4 discusses standard and regularized spectral clustering algorithms and presents
modified versions of these algorithms that are appropriate for heterogeneous net-
works. Section 5 provides a brief outline of the asymptotic framework of Qin
and Rohe (2013), and demonstrates the asymptotic accuracy of the heteroge-
neous algorithms under heterogeneous models, using this framework. Section
6 presents simulation studies demonstrating various circumstances under which
the heterogeneous methods can provide significant improvements in clustering
accuracy over the homogeneous methods. Section 7 presents an example of the
superiority of the heterogeneous method over the homogeneous method, using
the DBLP four-area dataset. The article concludes with discussion in Section 8.

2. Graph Theoretic Notation

A network is represented as a graph G = (V,E) consisting of nodes (or
vertices) that comprise the set V , and links (or edges) that make up the set E.
Every link has two endpoints in the set of nodes, and is said to connect or join
the two nodes. The two endpoints of a link are also said to be adjacent to each
other, or neighbors. An unweighted, undirected graph containing no self-loops or
multiple edges is called a simple graph. The degree dv of a node v in a graph G
is the number of nodes adjacent to v. A degree sequence is a list of degrees of a
graph in non-increasing order, say d1 ≥ d2 ≥ · · · ≥ dn.

An adjacency matrix A for a graph withN nodes is anN -by-N matrix whose
(i, j)th entry gives the number of links from the ith node to the jth node. We
treat simple graphs only, and hence the adjacency matrix is symmetric, consists
only of 0’s and 1’s, and all its diagonal entries are zero.

The graph Laplacian L is a matrix frequently used in network analysis. There
are several ways of defining the Laplacian; in this article it is defined as

L = D−1/2AD−1/2, (2.1)

where A is the adjacency matrix and D is the degree matrix, a diagonal matrix
whose ith diagonal element is the degree of node i. This version of the Laplacian
is often referred to as the symmetric normalised Laplacian.

3. Stochastic Blockmodel and Degree Corrected Blockmodel for
Heterogeneous Networks

Lorrain and White (1971) were the first to introduce blockmodels, in associ-
ation with the deterministic concept of structural equivalence, where two nodes of
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a network are considered equivalent if they have the same set of neighbors. Hol-
land, Laskey, and Leinhardt (1983) and Fienberg, Meyer, and Wasserman (1985)
generalized this equivalence concept to a probabilistic setting, calling it stochastic
equivalence. In contrast to structural equivalence which is defined with respect
to the observed network itself, stochastic equivalence is defined with respect to
the conceptual model that generates the observed network.

Definition 1. Two nodes in a network are said to be stochastically equivalent
if the probability of any event pertaining to the network remains unchanged by
exchanging the node labels.

For a homogeneous network, two nodes (say, 1 and 2) are stochastically
equivalent according to this definition if they have the same probability of being
linked to any third node (say 3).

3.1. Homogeneous model

Consider a simple graph G = (V,E) withN nodes, and letA be its adjacency
matrix. Here A is a symmetric 0-1 matrix, and its diagonal entries are all zero.
Under the K-block stochastic blockmodel, there are K blocks and each node
belongs to one of these blocks. Let M denote the N -by-K block membership
matrix with M(i, k) = 1 if node i is in the kth block, and M(i, k) = 0 otherwise.
Then for i < j, under the stochastic blockmodel (SBM), the A(i, j) are Bernoulli
random variables, with

E[A(i, j) | M] = M(i, ·)PM(j, ·)′, (3.1)

where P is theK-by-K matrix of link probabilities: P(a, b) is the probability that
a node in block a is linked to another node in block b. Edges are conditionally
independent given the membership matrix M.

Model (3.1) essentially means that if nodes i and i′ come from the same
block, then they are stochastically equivalent, since exchanging the node labels
i and i′ does not affect the probability of any event in the network.

Stochastic equivalence has nodes in the same block with identical degree
distributions, and this can be an unrealistic assumption. The degree-corrected
blockmodel (DCBM) proposed by Karrer and Newman (2011) adds degree scaling
parameters θi for each node to allow for a broad degree distribution. Then for
i < j, under the DCBM the A(i, j) are Bernoulli random variables, with

E[A(i, j) | M] = Θ(i, ·)MPM′Θ(·, j), (3.2)

where Θ is an N -by-N diagonal matrix with Θ(i, i) = θi, the degree parameter
of the ith node, and all other parameters have meaning as in (3.1). Note that
the SBM is a special case of the DCBM when all nodes in the same block have
equal value of the θi, the degree parameter.
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3.2. Heterogeneous model

A heterogeneous network has nodes of different types with different roles in
the network. Links in the network are also of different kinds, depending upon the
types of the nodes they link. A blockmodel for heterogeneous networks should
allow the link probabilities to change not only by block but also by node type.
We propose a model for accommodating this.

Consider aK-block heterogeneous network withN nodes of T different types.
We divide each block into T sub-blocks for different types of nodes such that each
type-block combination is represented by a separate sub-block. Let M be the N -
by-TK sub-block membership matrix, with M(i, t× k) = 1 if node i is of the tth

type and belongs to the kth block, and M(i, t×k) = 0 otherwise, for t = 1, . . . , T
and k = 1, . . . ,K. Let P be the TK-by-TK matrix of link probabilities. Then
P has the following structure:

P =


P11 P12 . . . P1T

P21 P22 . . . P2T
...

...
. . .

...

PT1 PT2 . . . PTT

 ,

where Pst is the K-by-K matrix of probabilities for type s-type t links. Thus,
Pst(a, b) represents the probability that a node of the sth type and belonging to
block a is linked to another node of the tth type and belonging to block b.

For i < j, A(i, j) is a Bernoulli random variable, with

E[A(i, j) | M] = M(i, ·)PM(j, ·)′ (3.3)

for the heterogeneous stochastic blockmodel (Het-SBM) and

E[A(i, j) | M] = Θ(i, ·)MPM′Θ(·, j) (3.4)

for the heterogeneous degree-corrected blockmodel (Het-DCBM).
This complicated representation of link probabilities is necessary, because

link probabilities vary not only by block, but also by type; Pst(a, b) vary not
only with a and b but also with s and t.

For illustration, consider a toy example for Het-SBM with number of types
T = 2, the number of blocks K = 3 and the number of nodes N = 30, with 5
type 1 nodes and 5 type 2 nodes in each block, and link probability matrix

P =



0.75 0.25 0.25 0.90 0.00 0.00

0.25 0.75 0.25 0.00 0.90 0.00

0.25 0.25 0.75 0.00 0.00 0.90

0.90 0.00 0.00 0.00 0.00 0.00

0.00 0.90 0.00 0.00 0.00 0.00

0.00 0.00 0.90 0.00 0.00 0.00


.
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Figure 1. Sample heterogeneous network with T = 2,K = 3 and N = 30,
with 5 type 1 nodes (circles) and 5 type 2 nodes (squares) in each block. Solid
lines (black for intra-block, gray for inter-block) represent type 1-type 1 links,
while dotted gray lines represent type 1-type 2 links. The homogeneous type
1-type 1 subnetwork is approximately enclosed in the circle.

Link probabilities vary prominently across blocks as well as types in this model.

Type 1 nodes are strongly homophilic (intra-community links are much more

likely than inter-community links), while type 2 nodes are not linked. The type

1-type 2 links have even stronger homophily; type 1 and type 2 nodes belonging

to the same block are very likely to be connected, while inter-block, inter-type

links are not present. This model is an exaggerated representation of the user-

event heterogeneous Facebook system mentioned in the introduction. In Figure

1, type 1 nodes and type 2 nodes are clearly different in their roles in the net-

work, nevertheless they form close-knit communities. Visually, it appears that

community structure is stronger in the entire network, compared to the homoge-

neous type 1-type 1 subnetwork. This toy example gives a visual intuition of how

community discovery might be more accurate in the presence of heterogeneous

information.

4. Spectral Clustering and Regularized Spectral Clustering

4.1. Homogeneous clustering

Consider a homogeneous network with N nodes and let A be its adjacency

matrix. Assuming a correctly specified K-block blockmodel structure for this



1088 SRIJAN SENGUPTA AND YUGUO CHEN

network, the standard spectral clustering algorithm assigns the N nodes to K

clusters in the following steps.

Homogeneous Spectral Clustering Algorithm (Hom-SC)

1. Given the adjacency matrix A, calculate the graph Laplacian L by (2.1).

2. Find orthonormal eigenvectors X1, . . . ,XK corresponding to the K eigenval-

ues of L that are largest in absolute value. Put them into the N -by-K matrix

X = [X1, . . . ,XK ].

3. Carry out a K-means clustering with the N rows of matrix X, creating a

K-partition of the index set {1, . . . , N}.
4. For each i, assign the ith node to the kth cluster if the ith row was assigned to

the kth cluster in Step 3.

Recent work by Amini et al. (2013) and Jin (2012) demonstrate that ho-

mogeneous spectral clustering does not work very well in sparse homogeneous

networks with wide degree distribution. Chaudhuri, Chung, and Tsiatas (2012)

proposed a regularized version of the graph Laplacian for sparse networks and it

was shown by Qin and Rohe (2013) that a normalized variant of spectral clus-

tering on this regularized Laplacian has superior theoretical properties under the

degree corrected stochastic blockmodel. In this context we mention Joseph and

Yu (2013) for their in-depth analysis of the performance of a slightly different

version of regularized spectral clustering.

For a regularizer τ ≥ 0, take the regularized degree matrix Dτ = D+ τI and

the regularized graph Laplacian

Lτ = D−1/2
τ AD−1/2

τ . (4.1)

Following Qin and Rohe (2013), we set τ equal to the average node degree of the

network in all applications of regularized spectral clustering (homogeneous and

heterogeneous), for simulations as well as data analysis. The regularized spectral

clustering algorithm assigns the N nodes to K clusters in the following steps.

Homogeneous Regularized Spectral Clustering Algorithm (Hom-RSC)

1. Given the adjacency matrix A and regularizer τ ≥ 0, calculate regularized

graph Laplacian Lτ by (4.1).

2. Find orthonormal eigenvectors X1, . . . ,XK corresponding to the K eigenval-

ues of Lτ that are largest in absolute value. Put them into the N -by-K matrix

Xτ = [X1, . . . ,XK ].

3. Normalize each row of Xτ to have unit norm, forming the N -by-K matrix X∗
τ

given by X∗
τ (i, j) = Xτ (i, j)

/√∑
j Xτ (i, j)2.
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4. Carry out a K-means clustering with the rows of matrix X∗
τ , creating a K-

partition of the index set {1, . . . , N}.
5. For each i, assign the ith node to the kth cluster if the ith row was assigned to

the kth cluster in Step 4.

4.2. Heterogeneous clustering

For a T -type heterogeneous network, there are TK clusters (since each type-

block combination represents a cluster), but for each node, the type information

is already known. So essentially there are T cluster assignment problems — to

assign the n1 type 1 nodes into K clusters, the n2 type 2 nodes into K separate

clusters, and so on. This can be achieved by carrying out T simultaneous but

separate K-means clustering procedures. We now present heterogeneous versions

of the Hom-SC and Hom-RSC algorithms based on this idea.

Heterogeneous Spectral Clustering Algorithm (Het-SC)

1. Given the adjacency matrix A, calculate the graph Laplacian L by (2.1).

2. Find orthogonal eigenvectors X1, . . . ,XTK corresponding to the TK eigen-

values of L that are largest in absolute value. Put them into the N -by-TK

matrix X = [X1, . . . ,XTK ].

3. For each t = 1, . . . , T , select the nt rows of X that correspond to nodes of

type t, and carry out separate K-means clustering for each selection, creating

a TK-partition of the index set {1, . . . , N}.
4. For each i, assign the ith node to the rth cluster if the ith row was assigned to

the rth cluster in Step 3.

Heterogeneous Regularized Spectral Clustering Algorithm (Het-RSC)

1. Given the adjacency matrix A and regularizer τ ≥ 0, calculate the regularized

graph Laplacian Lτ by (4.1).

2. Find orthogonal eigenvectors X1, . . . ,XTK corresponding to the TK eigen-

values of Lτ that are largest in absolute value. Put them into the N -by-TK

matrix Xτ = [X1, . . . ,XTK ].

3. Normalize each row of Xτ to have unit norm, forming the N -by-TK matrix

X∗
τ given by X∗

τ (i, j) = Xτ (i, j)
/√∑

j Xτ (i, j)2.

4. For each t = 1, . . . , T , select the nt rows of X∗
τ that correspond to nodes of

type t, and carry out separate K-means clustering for each selection, creating

a TK-partition of the index set {1, . . . , N}.
5. For each i, assign the ith node to the rth cluster if the ith row was assigned to

the rth cluster in Step 4.
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In the next section we justify the use of the Het-RSC algorithm under the

Het-DCBM model and the Het-SC algorithm under the Het-SBM model.

5. Convergence of Heterogenous Spectral Clustering

We outline an asymptotic theory for the convergence of the Hom-RSC al-

gorithm under the Hom-DCBM, and propose a similar result for the Het-RSC

algorithm under the Het-DCBM. Convergence of the Het-SC algorithm under

the Het-SBM follows as a special case. See Qin and Rohe (2013) for technical

details for the homogeneous case.

For the Hom-DCBM (3.2), define A = ΘMPM′Θ and let D be the diagonal

matrix of expected degrees, D(i, i) =
∑

j A(i, j). Set Dτ = D + τI and let

Lτ = D−1/2
τ AD−1/2

τ be the population version of the regularized graph Laplacian

(4.1). Under a K-block Hom-DCBM, Lτ has exactly K non-zero eigenvalues. Let

Xτ be the N -by-K matrix of the corresponding eigenvectors, with X ∗
τ the row-

normalized version of Xτ . The main idea is to interpret the clustering algorithm

as an estimation procedure for X∗ with X ∗
τ as the parameter.

Let δ = mini=1,...,N D(i, i) be the minimum expected degree, and let λ be

the magnitude of the smallest non-zero eigenvalue of Lτ in magnitude. Let

γ = mini=1,...,N{min{||Xτ (i, ·)||2, ||Xτ (i, ·)||2} be the length of the shortest row

in Xτ and Xτ , where ||x||2 represents the L2 norm of the vector x. Assume that

for some ϵ > 0 and sufficiently large N ,

(A1) δ + τ > 3 log(4N/ϵ) and (A2) λ ≥ 8

√
3K log(4N/ϵ)

δ + τ
.

Theorem 4.2 of Qin and Rohe (2013) states: when (A1) and (A2) hold, then

||Xτ −XτO||F ≤ c0
1

λ

√
K log(4N/ϵ)

δ + τ
, (5.1)

||X∗
τ −X ∗

τ O||F ≤ c0
1

γλ

√
K log(4N/ϵ)

δ + τ
, (5.2)

for some constant c0 with probability at least 1−ϵ, where O is an orthonormal ro-

tation, and || · ||F is the Frobenius norm of a matrix, ||B||F =
√∑

i

∑
j |B(i, j)|2.

The next step is to translate this accuracy in the estimation of X ∗
τ into

accurate clustering of nodes. Lemma 3.3 of Qin and Rohe (2013) shows that X ∗
τ

can be written as X ∗
τ = MB, where B is a K-by-K non-singular matrix. The

membership matrix M has exactly K unique rows, so X ∗
τ also has exactly K

unique rows. This implies that a K-means clustering applied to the rows of X ∗
τ

would perfectly identify the block membership of all nodes in the network. Given

the asymptotic closeness between X∗
τ and X ∗

τ from (5.2), as the clustering output
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from X ∗
τ is perfect, the clustering output from X∗

τ is expected to approach that
perfect accuracy in an asymptotic sense.

To formalize this intuition, a tractable definition of misclustering is required.
In Step 4 of the regularized spectral clustering algorithm, the N rows of X∗

τ

are subjected to a K-means clustering that assigns each row to a cluster, and
each cluster thus formed has a centroid. Let C be the N -by-K matrix with
C(i, ·) the centroid corresponding to the ith row of X∗

τ . Then X ∗
τ (i, ·) is the

parameter centroid corresponding to the ith node, while the estimated centroid
is C(i, ·). It is therefore reasonable to consider the ith node to be correctly
clustered if the estimated centroid is closer to the correct parameter centroid
than the remaining K − 1 incorrect parameter centroids, and it is misclustered
if the estimated centroid is closer to some incorrect parameter centroid than the
correct parameter centroid.

Definition 2. The set of misclustered nodes E is defined as

E = {i : ∃ j ̸= i s.t. ||C(i, ·)−X ∗
τ (i, ·)O||2 > ||C(i, ·)−X ∗

τ (j, ·)O||2} . (5.3)

For some ϵ > 0 and sufficiently large N , suppose (A1) and (A2) hold. Then
Theorem 4.4 of Qin and Rohe (2013) states that, with probability at least 1− ϵ,

|E| ≤ c1
K log(N/ϵ)

γ2λ2(δ + τ)
(5.4)

for some constant c1.
We extend these ideas to the Het-DCBM and the Het-RSC algorithm. For

the T -type, K-block Het-DCBM from Section 3.2, M has TK unique rows, and
P is TK-by-TK, since link probabilities are allowed to vary for each type-block
combination. This model is structurally equivalent to a Hom-DCBM (3.2) with
TK blocks. The interpretation of sub-blocks in a T -type, K-block heterogeneous
model is different from that of blocks in a TK-block homogeneous model, but
both models have the same mathematical structure. Consequently, the conver-
gence result for row-normalized eigenvectors in (5.2) can be directly applied to
the heterogeneous model.

The translation of estimation accuracy to clustering accuracy, however, does
not extend directly from the homogeneous version to the heterogeneous version.
The upper bound in (5.4) for the homogeneous case is derived from the fact that
the matrix of cluster centroids, C, is the minimizer of the K-means objective
function ||X∗

τ −Y||F , minimization being performed over the set of all N -by-K
matrices Y having exactly K unique rows. The Het-RSC algorithm in Section
4.2 runs T separate K-means procedures on the T node types, thereby using a
different objective function. However, after considering the modified objective
function being minimized in Step 4 of the Het-RSC algorithm, we are able to
prove a heterogeneous version of (5.4).
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Theorem 1. Consider a T -type, K-block Het-DCBM with nt nodes of type t,

and N =
∑T

t=1 nt. For nodes of type t, define the set of misclustered nodes Et as

Et = {i ∈ type t : ∃ j ∈ type t & j ̸= i s.t.

||C(i, ·)−X ∗
τ (i, ·)O||2 > ||C(i, ·)−X ∗

τ (j, ·)O||2}, (5.5)

and let γt = mini∈type t{min{||Xτ (i, ·)||2, ||Xτ (i, ·)||2} be the length of the shortest

row of type t in Xτ and Xτ , with λ, δ, τ defined as before. For some ϵ > 0 and

sufficiently large N , suppose (A1) and (A2) hold. Then with probability at least

1− ϵ, for some constant c1,

|Et| ≤ c1
K log(N/ϵ)

γ2t λ
2(δ + τ)

for t = 1, . . . , T. (5.6)

The proof of Theorem 1 is in the Appendix.

Remark 1. Assumption (A1) requires a lower bound on the smallest regularized

expected degree δ + τ . This emphasizes the importance of regularization, as it

allows expected node degrees to be low, as long as they are complemented by

the regularizer. Assumption (A2) requires that the smallest non-zero eigenvalue

of Lτ in magnitude does not decay to zero too fast. The number of types, T ,

is arbitrary but fixed. The number of blocks, K, is allowed to increase with nt

and N as long as (A1) and (A2) hold true — thus its allowable rate of increase

depends on the large sample behavior of the quantities δ, τ, and λ.

Theorem 1 provides a separate bound for each node type. Under (A1) and

(A2), for a given type t and for sufficiently large N , the quantity on the right

side of (5.6) is O(1/γ2t ). Therefore as nt → ∞ the asymptotic bound on the

number of misclustered nodes depends on γt. When γt decays at a rate slower

than
√

1/nt, the error rate |Et|/nt goes to zero. The bound deteriorates when

γt decays to zero faster than
√

1/nt. It is plausible that the bound goes to zero

for certain node types, but not for others depending on the behavior of γt for

different node types.

Remark 2 (Application to Het-SC under Het-SBM). The convergence of Hom-

SC under Hom-SBM was first established by Rohe, Chatterjee, and Yu (2011)

under the assumption of a dense network model. Their results can be extended

from the homogeneous setting to the heterogeneous setting, but would restrict

the application to the dense network case. The framework of Qin and Rohe

(2013) allows for sparse networks in a broader class of degree-corrected models,

and the results can be readily applied to Het-SC under Het-SBM, as outlined

below.
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The main difference between the Het-SC algorithm and the Het-RSC algo-

rithm is that the former does not have regularization or normalization steps. The

Het-SBM is a special case of the Het-DCBM, when the degree parameters θi are

equal. In this special case, the model eigenvector matrix Xτ already has exactly

TK distinct rows (applying Lemma 3.3 of Qin and Rohe (2013)) corresponding

to the TK sub-blocks. Hence, row-normalization is not required — we can clus-

ter the rows of Xτ directly and use the result in (5.1). Further, we can proceed

with no regularization. In doing so the advantage of regularization is lost, and

the model is required to satisfy restricted version of (A1) and (A2):

(A1′) δ > 3 log
(4N

ϵ

)
and (A2′) λ ≥ 8

√
3K log(4N/ϵ)

δ
.

Here λ is the magnitude of the smallest non-zero eigenvalue of L (the unregular-

ized Laplacian) in magnitude.

Theorem 2. Consider a T -type, K-block Het-SBM with nt nodes of type t, and

N =
∑T

t=1 nt. Let C denote the matrix of cluster centroids resulting from Het-

SC, and the set of misclustered nodes of type t be defined as

Et = {i ∈ type t : ∃ j ∈ type t & j ̸= i s.t.

||C(i, ·)−Xτ=0(i, ·)O||2 > ||C(i, ·)−Xτ=0(j, ·)O||2}. (5.7)

Let λ and δ be defined as before, and τ = 0. For some ϵ > 0 and sufficiently

large N , suppose (A1′) and (A2′) hold. Then with probability at least 1 − ϵ, for

some constant c1,

|Et| ≤ c1
K log(N/ϵ)

λ2(δ + τ)
for t = 1, . . . , T. (5.8)

The proof for Theorem 2 is essentially similar to that for Theorem 1, the only

difference being the use of the eigenvector matrix Xτ=0 instead of its normalized

version X∗
τ=0, and hence we skip the proof.

6. Simulation Results

We report on three simulation studies comparing the finite-sample perfor-

mance of the homogeneous clustering algorithms with their heterogeneous coun-

terparts in bi-type heterogeneous networks, and we studied both Het-SBM and

Het-DCBM. Although Het-SBM is a special case of Het-DCBM, it is an im-

portant special case from a methodological perspective. Regularized spectral

clustering adds two extra steps to standard spectral clustering — regularization

(Step 1) and row-normalization (Step 3). The former aims to deal with sparsity,

while the latter aims to deal with non-uniformity in expected node degrees. In
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simulations, these features stem from degree parameters in Het-DCBM. For Het-

SBM, the uniformity of expected node degrees makes both regularization and

normalization unnecessary. Therefore, we studied the performance of Het-SC

vs Hom-SC under networks generated from Het-SBM, and that of Het-RSC vs

Hom-RSC in networks generated from Het-DCBM.

The class of Het-SBMmodels used for these simulations was B(K; s1, s2, p1, r1,

p2, r2, p3, r3) where K is the number of blocks, and s1 and s2 are the number of

type 1 and type 2 nodes per block, respectively. The probability matrix was

given by P =

(
P11 P12

P21 P22

)
, where

P11 = p11K1′K + r1IK ,

P22 = p21K1′K + r2IK ,

P12 = P21 = p31K1′K + r3IK .

Here 1K is a K-vector of 1’s, and IK is the K-by-K identity matrix. Thus, in the

type 1-type 1 (type 2-type 2) homogeneous network, p1(p2) represents the inter-

block link probability while p1 + r1 (p2 + r2) is the intra-block link probability.

The strength of homophily in the homogeneous networks is therefore determined

by r1 and r2. For type 1-type 2 links, p3 represents the inter-block, inter-type

link probability and r3 represents the strength of inter-type homophily. For Het-

DCBM, we used the same values of P,K, s1, and s2. The degree parameters θi
were generated from the power law distribution

f(x) =
β − 1

xmin

(
x

xmin

)−β

with xmin = 1 and shape parameter β = 3, and then scaled down so that the av-

erage θ̄ was 1. For a given parameter combination, the Het-DCBM can therefore

be interpreted as a ‘noisy’ version of the Het-SBM, or conversely the Het-SBM

can be interpreted as an ‘averaged’ version of the Het-DCBM. For illustration,

the model used in the example in Section 3.2 had K = 3, s1 = s2 = 5, p1 = 0.25,

r1 = 0.50, p2 = r2 = p3 = 0, and r3 = 0.90.

Our main objective in these simulations was to study how the improved ac-

curacy of heterogeneous clustering over homogeneous clustering depends on r3
for a fixed value of p3. Ceteris paribus, higher values of r3 make the type 1-type

2 links more strongly homophilic, and therefore make heterogeneous community

detection easier. Hence, we expect Het-SC and Het-RSC to be increasingly ac-

curate with increasing r3, while Hom-SC and Hom-RSC are not affected by r3.

However, the actual improvement of heterogeneous clustering over homogeneous

clustering depends on other parameters as well, particularly p1, r1, p2, and r2,

which determine the strength of homophily for the homogeneous networks.
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To capture these dynamics, we fixedK = 3, s1 = 100, s2 = 50, and p3 = 0.25.

Thus, we studied networks having a total of N = 450 nodes, of which 300 were

of type 1 and 150 of type 2. The parameters p1, p2, r1, and r2 were set to

various combinations, and for each combination, r3 was increased from 0.10 to

0.50 in increments of 0.05. For each combination of parameters, error rates were

estimated by averaging across 100 networks from Het-SBM and Het-DCBM.

How clustering performance was measured is important. Definitions (5.3),

(5.5), and (5.7) introduced model-based quantification of misclustered nodes for

the purpose of mathematical tractability, but these definitions require complete

knowledge of the underlying model generating the network. For calculation of

misclustering error in a real network, the true membership (ground truth) might

be known (providing information about M), but the other model parameters are

unknown, and hence these definitions can not be evaluated for real networks.

Accordingly, instead of this model-based quantity we used the data-based error

rate: the proportion of nodes that got assigned to wrong clusters.

For a K-block network model, the true membership (M) provides a K-

partition, say P, of the nodes. Suppose there are two competing clustering algo-

rithms that provide K-partitions, say P1 and P2. For each algorithm, consider

the K-by-K overlap table Ti such that Ti(k, l) is the number of nodes that have

been assigned to the kth block according to P and to the lth block according to

Pi. Then
∑

k Ti(k, k) is the total number of correctly clustered nodes according

to Pi, but this ignores the identifiability of cluster labels P1 and P2. This issue

can be resolved by permuting the columns of Ti to maximize
∑

k Ti(k, k).

Our simulations were then designed not to study the finite-sample behavior

of the quantities involved in the asymptotic theory, but to study the relative ac-

curacy of homogeneous and heterogeneous clustering methods in finite networks

generated from Het-SBM and Het-DCBM.

6.1. Simulation 1

In this simulation we studied homophilic networks where both types have

similar inter-block and intra-block link probability. We used p1 = p2 = 0.25,

and a single parameter, r1 = r2 = r, say, to govern the strength of homophily

in the homogeneous networks. Values of r = 0.10, 0.15 were used to construct

homogeneous networks of different strengths. The error rates from Het-SBM and

Het-DCBM are plotted in Figure 2(a) and Figure 3(a), respectively.

In both models homogeneous error rates for type 1 nodes were substantially

lower than that for type 2, implying the effect of sample size or block size on

error rates. Homogeneous error rates also decreased quite remarkably for both

types as r was increased from 0.10 to 0.15, thereby increasing homophily be-

tween nodes. This phenomenon was more prominent in Het-SBM (Figure 2(a))
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(a) Simulation 1: Both type 1-type 1 and type 2-type 2 networks are homophilic.

(b) Simulation 2: Type 1-type 1 networks have homophilic communities but
type 2-type 2 networks do not have homophilic communities.

(c) Simulation 3: Homophilic type 1-type 1 networks and no type 2-type 2 links.

Figure 2. Comparison of homogeneous and heterogeneous clustering in Het-
SBM from three simulation studies. For simulation 1, Hom-SC errors are
represented as ‘-’ for r1 = r2 = 0.1 and ‘+’ for r1 = r2 = 0.15, while Het-SC
errors are represented by solid lines for r1 = r2 = 0.1 and dashed lines for
r1 = r2 = 0.15. For simulations 2 and 3, r2 = 0, and Hom-SC errors are
represented as ‘-’ for r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-SC errors are
represented by solid lines for r1 = 0.1, and dashed lines for r1 = 0.15. Note
that type 2 nodes have a single Hom-SC error rate in both simulation 2 and
simulation 3, as this error is not affected by r1.
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(a) Simulation 1: Both type 1-type 1 and type 2-type 2 networks are homophilic.

(b) Simulation 2: Type 1-type 1 networks have homophilic communities but
type 2-type 2 networks do not have homophilic communities.

(c) Simulation 3: Homophilic type 1-type 1 networks and no type 2-type 2 links.

Figure 3. Comparison of homogeneous and heterogeneous clustering in Het-
DCBM from three simulation studies. For simulation 1, Hom-RSC errors
are represented as ‘-’ for r1 = r2 = 0.1 and ‘+’ for r1 = r2 = 0.15, while
Het-RSC errors are represented by solid lines for r1 = r2 = 0.1 and dashed
lines for r1 = r2 = 0.15. For simulations 2 and 3, r2 = 0, and Hom-RSC
errors are represented as ‘-’ for r1 = 0.1 and ‘+’ for r1 = 0.15, while Het-
RSC errors are represented by solid lines for r1 = 0.1, and dashed lines for
r1 = 0.15. Note that type 2 nodes have a single Hom-RSC error rate in both
simulation 2 and simulation 3, as this error is not affected by r1.
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than Het-DCBM (Figure 3(a)). The most striking observation from Figures 2(a)

and 3(a) was the improved accuracy of heterogeneous clustering over homoge-

neous clustering, for both types and both models. This comparative advantage

increased with increasing r3, but it was significant even for smaller values of r3.

6.2. Simulation 2

A plausible scenario in heterogeneous networks is that the type 1-type 1

homogeneous network is homophilic but the type 2-type 2 network does not

have homophilic community structure. To model this, we used p1 = p2 = 0.25

as before, but set the type 2 homophily parameter r2 = 0 while the type 1

homophily parameter r1 was increased from 0.1 to 0.15.

Figures 2(b) and 3(b) show that the heterogeneous methods are much more

accurate for both node types. The improved accuracy over the homogeneous

method is particularly remarkable for type 2 nodes, as the absence of homophily

makes it difficult to assign communities to nodes on the basis of homogeneous

information only. For example, consider a high school social network where stu-

dents (type 1) form homophilic communities based on grades, but teachers (type

2) do not show homophily, rather they interact uniformly with other teachers.

The heterogeneous student-teacher interaction is expected to be homophilic, as

a student from a particular grade has more interaction with a teacher from the

same grade, compared to a teacher from a different grade. In such a scenario,

using a heterogeneous student-teacher network most likely performs better com-

munity detection for both students and teachers, compared to clustering the

homogeneous student-student network or the homogeneous teacher-teacher net-

work, even though teachers do not interact in homophilic fashion.

6.3. Simulation 3

Another plausible situation is that type 1-type 1 interactions are homophilic

but there is no type 2-type 2 interaction at all. We used p1 = 0.25 and increased

r1 from 0.1 to 0.15 as before, but set p2 = r2 = 0 so that there are no links

between type 2 nodes. A motivation for this situation is the notional Facebook

user-event heterogeneous network described in the introduction. While users

(type 1) form a homophilic friendship network with universities as communities,

there is no natural interaction between two events (type 2), implying a blank type

2-type 2 network. However, there is expected to be strong homophily in user-

event interactions, and hence it is quite likely that the heterogeneous method

will deliver a superior performance than the homogeneous method.

Figures 2(c) and 3(c) show that the heterogeneous method is indeed signif-

icantly superior to the homogeneous method, for both types. In this case, it

is theoretically impossible to implement homogeneous spectral clustering on the
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type 2-type 2 network, as the Laplacian for this network is a zero matrix, while

the heterogeneous method delivered quite accurate clustering for type 2 nodes.

For the sake of comparison, we used a flat homogeneous error rate of 2/3 (random

allocation with K = 3 clusters) for type 2 nodes.

7. DBLP Four-Area Dataset Example

DBLP (Digital Bibliography & Library Project) is the authoritative com-

puter science bibliography website, listing over two million articles. Gao et al.

(2009) and Ji et al. (2010) extracted a connected subset of the DBLP data, con-

taining bibliographical records from four research areas related to data mining:

database, data mining, information retrieval, and artificial intelligence. The clus-

tering problem of interest is to identify research area for authors. The original

four-area dataset consists of 14,376 papers written by 14,475 authors, and pre-

sented at 20 conferences. The ground truth (true research area) is available for

4,057 authors, who account for 14,328 of these papers, covering all 20 conferences.

Since error rates can be calculated only for labeled authors, our data analysis is

based on this labeled subset of the data.

In the simulation studies of Section 6, we implemented Het-SC and Hom-SC

on Het-SBM, and Het-RSC and Hom-RSC on Het-DCBM, backed by theoretical

justification. However, in applications, we have to choose between standard and

regularized spectral clustering, for both homogeneous and heterogeneous net-

works, on the basis of empirical features. In general, we expect regularization

to work better if the network is sparse. Two distinguishing properties that are

found in many large sparse networks (Girvan and Newman (2002)) are (i) a large

number of nodes with low degrees, and (ii) power law behavior of degrees. We

plot the histogram and log empirical tail distribution log10(1 − F̂ (x)) of node

degrees in Figure 4 to investigate these properties. A heavily right-skewed his-

togram indicates property (i) and a roughly linear plot of log10(1−F̂ (x)) indicates

property (ii). Accordingly, in the following analysis we chose regularization if the

plots indicated sparsity.

7.1. Homogeneous author collaboration network

For homogeneous clustering, the natural network is the co-authorship net-

work, where authors are nodes, and two authors are linked if they have collab-

orated to write a paper. Authors belonging to the same research area are more

likely to collaborate, so the network has homophilic structure with research areas

as communities. This gives a homogeneous network with 4,057 connected nodes

and 3,528 links. Figure 4 (left column) shows a heavily right-skewed histogram

and a roughly linear log empirical tail distribution plot, indicating that we should

prefer Hom-RSC over Hom-SC for clustering this network.
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However, 1466 of the 4057 authors have no edges in the author-author net-

work and hence they have to be discarded, as disconnected nodes cannot be

clustered either by Hom-SC or by Hom-RSC. We implemented the Hom-RSC

algorithm from Section 4 on the remaining 2,591 nodes with K = 4 clusters. It

turns out that 482 rows of the eigenvector matrix X are null rows which can

not be normalized and hence cannot be clustered. After discarding them, we

performed clustering on the remaining 2,109 author nodes. The algorithm mis-

clustered 1,274 (60.41%) of these nodes. If we randomly assign the discarded

nodes to the 4 clusters, the weighted average error rate for all 4,057 nodes is

67.41%. This number is the weighted average of clustering error (60.41%) and

random assignment error (75%). We also implemented the Hom-SC algorithm

— the error rate is 69.74% for the 2,591 connected authors and 71.64% for all

authors. Hom-SC does not have a problem with clustering null rows in the

eigenvector matrix. Thus, while Hom-RSC does perform better than Hom-SC,

both homogeneous algorithms have accuracy comparable to random assignment

to clusters.

7.2. Heterogenous author-paper-conference network

The DBLP system consists of authors, papers, and conferences. A heteroge-

neous network representation (APC network) of the DBLP system can thus be

constructed with these three types of nodes and two types of links: author-paper

(author writes paper) links and paper-conference (paper presented at conference)

links. That authors are more likely to write papers in their research area, and

papers are more likely to be presented at a conference belonging to the same

research area, indicates homophilic community structure. This is a network with

18,405 nodes (4,057 authors, 14,328 papers, 20 conferences) and 33,973 links

(19,645 author-paper links and 14,328 paper-conference links). All authors are

now connected. The middle column of Figure 4 shows a heavily right-skewed his-

togram and a roughly linear log empirical tail distribution plot for author node

degrees, indicating that we should prefer Het-RSC over Het-SC for clustering

this network.

We implemented the Het-RSC algorithm on this network with T = 3 and

K = 4. The error rate for authors was 7.30%. We also implemented Het-SC

which gave an error rate of 23.10% for the authors. Thus, Het-RSC was quite ac-

curate in identifying research area for authors from the heterogeneous network.

Even Het-SC performed relatively well, although Het-RSC was more accurate

than Het-SC as expected for a sparse network. In contrast, the homogeneous

algorithms have accuracy similar to random allocation, which implies that the

homogeneous co-authorship network is not very informative towards identifica-

tion of authors’ research area.
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7.3. Heterogeneous author-conference network

The problem of interest in the four-area DBLP dataset is assigning authors

to research communities, which is a homogeneous problem relating only to author

nodes. However, the DBLP system itself is heterogeneous, and this heterogeneous

information can be useful towards solving the homogeneous problem. In Section

7.2, we used data from the heterogeneous DBLP system to add two additional

types of nodes (papers and conferences) to construct a heterogeneous network.

This is the ‘default’ way to construct the heterogeneous network, using all the

data at our disposal, and this approach gives us a much better solution to the

problem than the homogeneous approach.

Suppose we instead consider a heterogeneous sub-system, and add only con-

ference nodes, forming a smaller heterogeneous network with two types of nodes

(authors and conferences) and only one type of link, author-conference (author

presented at the conference). Authors from a research area are more likely to

present at a conference related to the same area, indicating a homophilic com-

munity structure. This gives a network with 4,077 nodes (4,057 authors and 20

conferences) and 9,205 author-conference links. All authors are connected. The

right column of Figure 4 shows a histogram that is right-skewed but not as heavily

right-skewed as the two earlier networks. The log empirical tail distribution plot

is also less linear than the other two networks. The node degrees vary between 1

and 14, which is a much tighter range than the degree range in the homogeneous

author network or the heterogeneous APC network. Thus the network features

do indicate sparsity, but less so than the two previous DBLP networks.

Implementing the Het-RSC algorithm on this bi-type network, we found

an error rate of 7.44%, comparable to the error rate of Het-RSC in the APC

network. The Het-SC algorithm gave an error rate of 8.85%, which is better than

Het-SC in APC network. Both error rates are significant improvement over the

homogeneous approach. Such improvement is achieved with only 20 additional

nodes and therefore at a computational cost comparable to the homogeneous

approach, while the APC network requires the addition of 14,348 nodes and

therefore has greater computational cost.

The community detection problem of interest is often homogeneous, in the

sense that it is defined with respect to only one type of agent, while the under-

lying system is heterogeneous. The user has the flexibility to choose from sev-

eral heterogeneous sub-systems of the data to create a heterogeneous network.

For example in the DBLP system, the user can choose the entire author-paper-

conference system, or the author-conference subsystem, and so on. Consequently,

the user might be interested in using an optimal sub-system that delivers the best

community detection for the problem. One interesting avenue of future work is
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Figure 4. DBLP author degree distribution of homogeneous author collab-
oration network (left column), heterogeneous author-paper-conference net-
work (middle column), and heterogeneous author-conference network (right
column). Histograms (top row) of author node degrees have high frequency
of low degrees, indicating that the author nodes are sparsely connected. The
bottom row shows that the log empirical tail distributions log10(1 − F̂ (x))
are roughly linear, suggesting power-law behavior of author node degrees.

to lay down explicit criteria for selecting the optimal sub-network, akin to the
analogous problem of variable selection in a machine learning framework.

8. Discussion

This paper introduces heterogeneous networks to the statistics literature,
and extends the existing statistical framework of community detection in ho-

mogeneous networks to heterogeneous networks. We formulate heterogeneous

versions of standard spectral clustering and regularized spectral clustering algo-

rithms. The proposed algorithms have theoretical accuracy under heterogeneous

versions of the SBM and the DCBM, respectively. Our simulations demonstrate

that, even though homogeneous and heterogeneous methods have similar order of
theoretical accuracy in large samples, the heterogeneous methods provide signif-

icantly better clustering results in finite-sample networks generated from several



SPECTRAL CLUSTERING IN HETEROGENEOUS NETWORKS 1103

interesting model settings. This comparative advantage seems to imply that

the superiority of heterogeneous clustering over homogeneous clustering should

be theoretically demonstrable, but we leave that to future work. The practical

usefulness of the heterogeneous procedure is also demonstrated by the DBLP

four-area dataset example, where the heterogeneous method delivers a far better

clustering performance compared to the homogeneous method.
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Appendix. Proof of Theorem 1

We prove the theorem for T = 2, bi-type heterogeneous networks. The proof

easily generalizes to higher values of T . Consider a K-block, bi-type Het-DCBM

with n1 nodes of type 1 and n2 nodes of type 2, and let τ ≥ 0 be the regularizer.

Take N = n1 + n2, and let Xτ ,Xτ ,X
∗
τ , and X ∗

τ be N -by-2K matrices defined as

per Sections 4 and 5.

Partition X∗
τ as X∗

τ =

(
X

∗(1)
τ

X
∗(2)
τ

)
, where X

∗(1)
τ is n1-by-2K and X

∗(2)
τ is n2-

by-2K. Then cluster centroids are

Ct = arg min
Yt∈Yt

||X∗(t)
τ −Yt||2F for t = 1, 2, (A.1)

where Yt = {Yt ∈ Rnt×2K : Yt has K unique rows}, for t = 1, 2.

For the bi-type Het-DCBM, M has the form M =

(
M11 0

0 M22

)
, where M11

is n1-by-K with exactly K distinct rows, and M22 is n2-by-K with exactly K

distinct rows. By Lemma 3.3 (2) of Qin and Rohe (2013), X ∗
τ can be expressed

as X ∗
τ = MB under the general DCBM, and hence also under the Het-DCBM,

where B is a non-singular matrix of dimension 2K-by-2K. Partition B into four

K-by-K matrices as B =

(
B11 B12

B21 B22

)
. Then,

X ∗
τ = MB =

(
M11 0

0 M22

)(
B11 B12

B21 B22

)
=

(
M11B11 M11B12

M22B21 M22B22

)
=

(
X ∗(1)
τ

X ∗(2)
τ

)
,

where X ∗(1)
τ is n1-by-2K and X ∗(2)

τ is n2-by-2K. Since M11 and M22 have exactly

K unique rows, and B is non-singular, X ∗(1)
τ and X ∗(2)

τ have K distinct rows:

X ∗(1)
τ ∈ Y1 and X ∗(2)

τ ∈ Y2. Thus X ∗(t)
τ O ∈ Yt for t = 1, 2, where O is an

orthonormal rotation.
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Without loss of generality we focus on t = 1. From the definition of C1 and

the fact that X ∗(1)
τ O ∈ Y1, ||X∗(1)

τ −C1||F ≤ ||X∗(1)
τ −X ∗(1)

τ O||F . So,

||C1 −X ∗(1)
τ O||F ≤ ||C1 −X

∗(1)
τ ||F + ||X∗(1)

τ −X ∗(1)
τ O||F ≤ 2||X∗(1)

τ −X ∗(1)
τ O||F .

Now

E1 = {i ∈ type 1 : ∃ j ∈ type 1 & j ̸= i s.t.

||C(i, ·)−X ∗
τ (i, ·)O||2 > ||C(i, ·)−X ∗

τ (j, ·)O||2}.

For two type 1 nodes i ̸= j, either M(i, ·) = M(j, ·) when they belong to the

same block, or M(i, ·)′M(j, ·) = 0 when they belong to different blocks. Since

X ∗
τ = MB, X ∗

τ is row-normalized, and O is orthonormal, so for two type 1 nodes

i ̸= j, either

X ∗(1)
τ (i, ·)O = X ∗(1)

τ (j, ·)O⇒ ||X ∗(1)
τ (i, ·)O−X ∗(1)

τ (j, ·)O||2 = 0

or

(X ∗(1)
τ (i, ·)O)′(X ∗(1)

τ (j, ·)O) = 0⇒ ||X ∗(1)
τ (i, ·)O−X ∗(1)

τ (j, ·)O||2 =
√
2.

This leads to the observation that

||C(i, ·)−X ∗(1)
τ (i, ·)O||2 <

1√
2
⇒

||C(i, ·)−X ∗(1)
τ (i, ·)O||2 ≤ ||C(i, ·)−X ∗(1)

τ (j, ·)O||2, ∀ j ̸= i.

which means ||C(i, ·) − X ∗(1)
τ (i, ·)O||2 < 1/

√
2 is a sufficient condition for node

i to be correctly clustered. Define E ′
1 to be the set of nodes that do not satisfy

this sufficient condition, i.e.,

E ′
1 =

{
i ∈ type 1 : ||C(i, ·)−X ∗(1)

τ (i, ·)O||2 ≥
1√
2

}
.

Then,

|E1| ≤ |E ′
1| =

∑
i∈E ′

1

1 ≤ 2
∑
i∈E ′

1

||C(i, ·)−X ∗(1)
τ (i, ·)O||22 ≤ 2||C1 −X ∗(1)

τ O||2F

≤ 8||X∗(1)
τ −X ∗(1)

τ O||2F .

From (5.1), we have

||Xτ −XτO||F ≤ c0
1

λ

√
K log(4N/ϵ)

δ + τ

under (A1) and (A2). For any i,

||X∗
τ (i, )−X ∗

τ (i, )O||2 ≤
||Xτ (i, )−Xτ (i, )O||2

min{||Xτ (i, )||2, ||Xτ (i, )||2}
.
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Therefore, from the definition of γ1,

8||X∗(1)
τ −X ∗(1)

τ O||2F ≤
8||X(1)

τ −X (1)
τ O||2F

γ21
≤
8||Xτ −XτO||2F

γ21
≤8c20

K log(4N/ϵ)

λ2γ21(δ + τ)
.

This completes the proof for T = 2.
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