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This Appendix contains the proofs of the theorems in the paper. We will use

numerals such as (A1), (A2) to label the equations generated in the Appendix.

Numerals such as (1), (2) are reserved for the equations in the paper.

Proof of Theorem 1. Let g ∈ G. Then by the property of conditional expecta-

tion,

E[(Y − f(X))2|Z = 0] ≤E[(Y − g(X))2|Z = 0]

E[(X − f−1
(Y ))2|Z = 1] ≤E[(X − g−1

(Y ))2|Z = 1].
(1)

Hence Q(f) ≤ Q(g).

Suppose f1 is another function in G that minimizes Q(g) over G. Then at

least one of the inequalities in (1) holds for f1. Suppose, without loss of generality,

the first inequality holds. Since f minimizes E[(Y − h(X))2|Z = 0] over all h ∈
L2(PX|Z=0), we see that

E[(Y − f1(X))2|Z = 0] = E[(Y − f(X))2|Z = 0].

Hence, by the uniqueness of conditional expectation, f1 = f a.s. PX|Z=0. Since

PX|Z=0 ≡ PX , we have f1 = f almost surely. 2

Proof of Theorem 2. Let F = {(θ−θ0)TEnq(U, θ) : ‖θ−θ0‖ = δ}. An envelope

of this class is

F (U) = sup
‖θ−θ0‖=δ

|(θ − θ0)Tq(U, θ)| ≤ ‖δ‖ sup
‖θ−θ0‖=δ

‖q(U, θ)‖.

By assumption (iii), E[F (U)] < ∞. By assumption (iv), the function θ 7→ (θ −
θ0)

Tq(u, θ) is continuous. Hence, by van der Vaart (1998, Example 19.8), F is
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Glivenko-Cantelli. That is,

sup
‖θ−θ0‖=δ

|(θ − θ0)TEnq(U, θ)− (θ − θ0)TEq(U, θ)| → 0 (2)

almost surely. By assumption (ii),

Eq(U, θ) = Eq(U, θ0) + E[∂q(U, θ0)/∂θ
T](θ − θ0) + o(‖δ‖).

Noticing that Eq(U, θ0) = 0, and multiplying both sides by (θ− θ0)T from the left,

we see that

(θ − θ0)TEq(U, θ) = (θ − θ0)TE[∂q(U, θ0)/∂θ
T](θ − θ0) + o(‖δ‖2).

Thus, for sufficiently small δ,

inf
‖θ−θ0‖=δ

(θ − θ0)TEq(U, θ) > 0.

This, together with (2), implies that, there is an ε > 0 such that

lim inf
n→∞

sup
‖θ−θ0‖=δ

(θ − θ0)TEnq(U, θ) > ε

almost surely. The assertion of the theorem now follows from Theorem 12.1 of

Heyde (1997). 2

Proof of Theorem 4. By Taylor’s mean value theorem, the law of large numbers,

and the stochastic equicontinuity in Theorem 3, it can be shown that

Qn(θ̂) =Qn(θ) + Enq
T(U, θ)(θ̂ − θ) + (θ̂ − θ)TJ(θ)(θ̂ − θ)/2 + oP (n

−1
),

Qn(θ̃) =Qn(θ) + Enq
T(U, θ)(θ̃ − θ) + (θ̃ − θ)TJ(θ)(θ̃ − θ)/2 + oP (n

−1
).

(3)

Since Enq(U, θ̂) = 0, by taking Taylor expansion of Enq(U, θ̂) about θ we have

0 = Enq(U, θ) + J(θ)(θ̂ − θ) + oP (n−1/2). (4)

Substitute this into the first equation in (3) to obtain

Qn(θ̂) = Qn(θ)− (1/2)[Enq(U, θ)]
TJ(θ)[Enq(U, θ)] + oP (n

−1
).

Because θ̃ minimizes Qn(θ) subject to h(θ) = 0 there is a Lagrangian multiplier

τ̃ ∈ Rr such that

Enq(U, θ̃)−H(θ̃)τ̃ = 0. (5)
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Expanding Enq(U, θ̃) about θ, we see that

Enq(U, θ) + J(θ)(θ̃ − θ)−H(θ̃)τ̃ = oP (n−1/2).

This implies

HT(θ̃)J
−1

(θ)H(θ̃)τ̃ = HT(θ̃)J
−1

(θ)Enq(U, θ) +HT(θ̃)(θ̃ − θ) + oP (n−1/2).

However, because h(θ) = h(θ̃) = 0 we have

0 = 0 +HT(θ̃)(θ̃ − θ) + oP (n−1/2) ⇒ HT(θ̃)(θ̃ − θ) = oP (n−1/2).

Hence,

HT(θ̃)J
−1

(θ)H(θ̃)τ̃ = HT(θ̃)J
−1

(θ)Enq(U, θ) + oP (n−1/2).

Because H(θ̃) = H(θ) + oP (n−1/2), the above implies

τ̃ = [HT(θ)J
−1

(θ)H(θ)]
−1
HT(θ)J

−1
(θ)Enq(U, θ) + oP (n−1/2). (6)

This implies that τ̃ = OP (n−1/2).

Since τ̃ = OP (n−1/2), we can replace H(θ̃) in (5) by H(θ) without incurring

error greater than oP (n−1/2). That is,

Enq(U, θ) + J(θ̃ − θ)−H(θ)τ̃ = oP (n−1/2).

Substitute (6) into the above equation, and then solve for θ̃ − θ, to obtain

θ̃ − θ = [J
−1

(θ)Π(θ)− J−1
(θ)]Enq(U, θ) + oP (n−1/2),

where Π(θ) = H(θ)[HT(θ)J−1(θ)H(θ)]−1HT(θ)J−1(θ). Note that Π(θ) is a pro-

jection. Substituting the above equation into the right hand side of the second

equation in (3), we find

Qn(θ̃) = Qn(θ) + (1/2)[Enq(U, θ)]
T[J

−1
(θ)Π(θ)− J−1

(θ)][Enq(U, θ)] + oP (n
−1

).

Subtract (4) from the above equation to obtain

Qn(θ̃)−Qn(θ̂) = (1/2)[Enq(U, θ)]
TJ
−1

(θ)Π(θ)[Enq(U, θ)] + oP (n
−1

).

The desired result follows because
√
nEnq(U, θ)

D−→ N(0, I(θ)). 2
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Proof of Theorem 5. The proof is essentially the same as that of Theorem 4

except that here we have m independent i.i.d. samples, instead of one i.i.d. sample,

and the ratios of sample sizes must be taken into account when taking the limit

limn→∞. Thus instead of using

√
n∂Qn(θ)/∂θ

D−→ N(0, J(θ)), ∂2Qn/∂θ∂θ
T P−→ I(θ),

as in the proof of Theorem 4, here we use

√
n∂Q(k)

nk
(θ(k))/∂θ(k)

D−→ N(0, αkJ
(k)(θ), ∂2Q(k)

nk
(θ(k))/∂θ(k)∂θ(k)

T P−→ αkI
(k)(θ(k)).

The rest of the proof is omitted. 2

Proof of Theorem 6. It is equivalent to show that

AV
−1

(β∗θ ) ≥ AV
−1

(βθ). (7)

From the definition (21) and notation in (22) we see that

I(βθ) = E[βθ(X,Y )vθ(X,Y )c(Z)βT
θ (X,Y )], J(βθ) = E[γθ(X,Y )c(Z)βT

θ (X,Y )].

Let

ηθ(X,Y, Z) = J(βθ)I
−1

(βθ)βθ(X,Y )c(Z)δθ(X,Y )

− J(β∗θ )I
−1

(β∗θ )β∗θ (X,Y )c(Z)δθ(X,Y ) ≡ Aθ(X,Y, Z)−Bθ(X,Y, Z).

Note that

Eθ[η
T
θ (X,Y, Z)vθ(X,Y )c(Z)ηθ(X,Y, Z)] ≥ 0, (8)

where ≥ 0 means being positive semidefinite. The left hand side can be decomposed

into four terms:

EθAθ(X,Y, Z)AT
θ (X,Y, Z)− EθAθ(X,Y, Z)BT

θ (X,Y, Z)

− EθBθ(X,Y, Z)AT
θ (X,Y, Z) + EθBθ(X,Y, Z)BT

θ (X,Y, Z).
(9)

The first term is

EθAθ(X,Y, Z)AT
θ (X,Y, Z)

= J(βθ)I
−1

(βθ)Eθ[βθ(X,Y )c(Z)vθ(X,Y )βT
θ (X,Y )]I

−1
(βθ)J(βθ)

= J(βθ)I
−1

(βθ)J
T(βθ)

(10)
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Notice that

J(β∗θ ) = Eθ[γθ(X,Y )c(Z)v
−1

θ (X,Y )γT
θ (X,Y )] = I(β∗θ ).

From this it is easy to deduce the last three terms in (9) as

Eθ[Aθ(X,Y, Z)BT
θ (X,Y, Z)] = J(βθ)I

−1
(βθ)J

T(βθ)

EθBθ(X,Y, Z)AT
θ (X,Y, Z) = J(βθ)I

−1
(βθ)J

T(βθ)

Eθ[Bθ(X,Y, Z)BT
θ (X,Y, Z)] = I(β∗θ ).

(11)

Substituting (10) and (11) into (9), we find

I(β∗θ ) ≥ J(βθ)I
−1

(βθ)J
T(βθ).

The inequality (7) now follows from I(β∗θ ) = J(β∗θ )I−1(β∗θ )JT(β∗θ ), which is a con-

sequence of (8). 2
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