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Abstract: We introduce and study a new type of regression that arises from a

kinesiology experiment concerning human’s tolerance to temperature and water

vapor pressure. In the experiment, a set of pressure and temperature values are

collected to construct a psychrometric chart. The problem differs from traditional

regression because, for one part of the data, temperature is held fixed while pressure

is raised to an equilibrium point; for the other part of the data, pressure is held

fixed while temperature is raised to an equilibrium point. The purpose of this

peculiar design is to ensure the safety of the participants. Traditional regression

is inadequate for modeling this type of data, because the roles of predictor and

response alternate. We propose a new regression where the predictor and response

alternate while being linked by a bijective function. We study the population and

asymptotic properties of this regression, develop test statistics for model selection

and analysis of variance, and outline several extensions and refinements. We apply

the method to kinesiology data and find, among other things, that the gender

difference in psychrometric charts diminishes in old age.

Key words and phrases: Alternating predictor, analysis of covariance, estimating

equation, heat-humidity tolerance, SWAP regression.

1. Introduction

Human’s tolerance to heat and humidity (as measured by water vapor pres-

sure) is a subject of considerable interest in human physiology — for example in

the research on heat-related deaths (Hawkins-Bell (1994); Semenza et al. (1996)),

on the physiologic limits to work in heat (Lind (1963, 1970); Belding and Ka-

mon (1972); Kamon and Avellini (1976)), and on the relation between aging and

work-heat tolerance (Pandolf (1997); Kenny and Anderson (1988); Drinkwater

and Horvath (1979)). A common tool used in such studies is the psychrometric

chart, which is based on an alternating design where the response and predictor

trade places in one experiment. To our knowledge, there have not been statistical

methods available to adequately handle this type of problem. We introduce a

new regression that allows the response and the predictor to trade places.

http://dx.doi.org/10.5705/ss.2013.092
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Our inquiry was originated by a data set collected in an experiment in Ki-

nesiology (Zeman (2001)). The study was concerned with epidemics of deaths

in heat waves for older people and its purpose was to determine “Upper Limits

of the Prescriptive Zone” (ULPZ) on a psychrometric chart of the ambient dry

bulb temperature T versus the water vapor pressure P . The study performed

a sequence of temperature-pressure tolerance experiments which were age- and

sex-specific. Forty healthy subjects, including older men, older women, younger

men, and younger women of average fitness were recruited, with each of the 4

groups containing 9 to 11 subjects. The older subjects were aged between 63-80,

and the younger subjects between 18-30. For each subject 6 experiments were

performed, among which three were under warm and humid conditions, to be

called the Pcrit experiments, and three were under hot and dry conditions, to be

called the Tcrit experiments.

In the three Tcrit experiments, P was held constant at 12 mmHg, 16 mmHg,

or 20 mmHg, and the temperature was increased 1◦C every five minutes, starting

from 28◦C after 30-minute equilibration period. This continued until a tolerance

limit T was reached. In the three Pcrit experiments, T was held constant at

34◦C, 36◦C, or 38◦C while the pressure was increased 1 mmHg every five min-

utes, starting from 9 mmHg after 30-minute equilibration period. This continued

until a pressure tolerance limit P was reached. Thus, experiments always started

at regions of pressure and temperature comfortable for the human subjects, and

gradually increased one variable. During each experiment, the subjects walked

continuously on a treadmill for up to 2.5 hours at a constant speed in an envi-

ronmental chamber. One point on the ULPZ line was determined as the ambient

conditions at which body core temperature was forced out of equilibrium.

To illustrate the data, Figure 1 shows the portion of the data set for the

older males. In the upper-left part, temperature acts as the predictor and the

pressure acts as the response, whereas in the lower-right part, the pressure acts

as the predictor and the temperature acts as the response. The solid curve is the

ordinary least squares fit treating pressure as the response, and using a quadratic

polynomial of the temperature as the regression function. This analysis is clearly

inadequate as, for example, the observations lie almost entirely to the left of the

curve at the bottom of the chart.

Our goal is to combine the two parts of the data into a coherent regression

analysis, where the regression curve passes through the center of the response

variables, whether temperature or pressure. Since the regression is designed for

Samples With Alternating Predictors, we call it SWAP regression.

The rest of the paper is organized as follows. In Section 2 we introduce

the SWAP regression estimator and establish its Fisher consistency. In Section

3 we develop the asymptotic theory for SWAP regression, including consistency,
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Figure 1. ULPZ data for older males. Plot symbol “+” represents the cases
where temperature is held fixed while pressure is gradually increased. Plot
symbol “◦” represents the cases where pressure is held fixed while temper-
ature is gradually increased. The solid line is the least-squares fit treating
temperature as the predictor, and using a quadratic polynomial as the re-
gression function.

asymptotic distribution for the estimator, and a Wilks-type test statistic. In

Section 4 we extend SWAP regression to accommodate extra coordinates. This

is needed in our data analysis for comparing the psychrometric charts for male

and female. In Section 5 we introduce an optimal estimating equation and an

adaptively weighted estimating equation for SWAP regression. In Section 6 we

apply SWAP regression and related inference methods to the ULPZ data. In

Section 7 we compare by simulation the SWAP regression estimators with the

conventional regression that ignores the alternating design, and compare three

versions of SWAP regression among themselves. Finally, in Section 8, we discuss

the general paradigm of SWAP regression and outline how it can be broadened to

adapt to a variety of applications. Proofs are in an online Appendix.

2. SWAP Regression

Intuition tells us that in the region where pressure is the predictor, we should

regress temperature on pressure, and in the region where temperature is the

predictor, we should regress pressure on temperature. We formulate this intuition

into a coherent regression system.

Let X and Y denote two random variables, and let Z be a binary variable

indicating whether X or Y is the predictor. Thus, when Z = 0, E(Y |X,Z = 0)

is of interest; when Z = 1, E(X|Y, Z = 1) is of interest. Suppose that the sample

space of (X,Y, Z) can be represented as the Cartesian product ΩX ×ΩY ×{0, 1}.
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For any random variable or vector U , such as U = X, U = (X,Y ), let PU denote

the distribution of U . Let L2(PU) denote the class of functions square-integrable

with respect to PU .

Let f : ΩX → ΩY be a bijection. We assume that

E(Y |X,Z = 0) = f(X), E(X|Y, Z = 1) = f
−1
(Y ). (2.1)

Thus, although the conditional expectations in the two temperature zones are

different, they are related to each other as f and f−1. We define a subfamily of

L2(PX) by

G = {g ∈ L2(PX) : g is an injection from ΩX to ΩY , g
−1 ∈ L2(PY )}.

We propose, at the population level, to minimize the quadratic loss function

Q : G → R:

Q(g) =E[(Y − g(X))2I(Z = 0)] + E[(X − g
−1
(Y ))2I(Z = 1)] (2.2)

over G. We use ≡ to indicate mutually absolute continuity of two measures.

Theorem 1. If var(Y1) < ∞, var(X2) < ∞, and f ∈ G, then f minimizes Q(g)

over G. If PX|Z=0 ≡ PX and PY |Z=1 ≡ PY , then f is the (almost surely) unique

minimizer of Q(g) over G.

Let (X1, Y1, Z1), . . . , (Xn, Yn, Zn) be an i.i.d. sample of (X,Y, Z) and take

En(·) to be expectation with respect to the empirical distribution. The sample-

level analogue of the objective function Q(g) is

Qn(g) = En[(Y − g(X))2I(Z = 0) + (X − g
−1
(Y ))2I(Z = 1)].

The SWAP regression estimator is taken as the minimizer of Qn(g) over G.
We focus on parametric models. Let Θ ⊆ Rp, and let G = {gθ(·) : θ ∈ Θ}.

We assume, for each θ ∈ Θ, gθ : ΩX → ΩY is injective, with gθ ∈ L2(PX) and

g−1

θ ∈ L2(PY ). In this context, our parametric SWAP regression estimator is

obtained by solving the optimization problem

minimize Qn(gθ) over Θ, subject to gθ being injective.

Let Θ0 = {θ ∈ Θ : gθ is injective}. Then the above is equivalent to maximizing

Qn(gθ) over Θ0.

As an example, consider the quadratic polynomials g(a,b,c)(x) = ax2+ bx+ c.

In order for this function to be injective, we need −b/(2a) to be outside the range

of X1, . . . , Xn.
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3. Asymptotic Analysis

3.1. Consistency

The SWAP regression estimator can be viewed as a solution to an estimat-

ing equation, whose consistency and asymptotic distribution are standard. See,

for example, Crowder (1986), Li (1996, 1997) Heyde (1997, Chap. 12), and van

der Vaart (1998, Chap. 5). Traditionally, there are two approaches to consis-

tency of estimating equations, one derived from Wald (1949), another derived

from Cramér (1946). We adopt the Cramér’s approach because it does not im-

pose global assumptions on the objective function Qn(g). Suppose that gθ(X) is

differentiable with respect to θ. Let

q((X,Y, Z), θ) = − 2[Y − gθ(X)]
[∂gθ(X)

∂θ

]
I(Z = 0)

− 2[X − g
−1

θ (Y )]
[∂g−1

θ (Y )

∂θ

]
I(Z = 1),

(3.1)

and consider the estimating equation

∂Qn(gθ)

∂θ
= Enq((X,Y, Z), θ) = 0. (3.2)

If there is a θ0 in the interior of Θ0 such that E(Y |X = x,Z = 0) = gθ0
(x), then,

with probability tending to 1, the minimizer of Qn(gθ) over Θ0 is a solution to

(3.2). Let U abbreviate (X,Y, Z) and Qn(θ) abbreviate Qn(gθ).

Theorem 2. Suppose (i) θ0 belongs to the interior of Θ0; (ii) the function θ 7→
Eq(U, θ) is differentiable at θ0 under the integral sign, and E[∂q(U, θ0)/∂θ

T] is

positive definite; (iii) for a sufficiently small δ > 0,

E
(

sup
∥θ−θ0∥=δ

∥q(U, θ)∥
)
< ∞;

(iv) for each u, the function θ 7→ q(u, θ) is continuous. Then there is a sequence

θ̂n such that θ̂n → θ0 almost surely and, with probability 1, Enq(U, θ̂n) = 0 for

all but finitely many n.

3.2. Asymptotic distribution

By standard asymptotic theory for estimating equations, we have

√
n(θ̂ − θ0)

D−→ N(0, J
−1
(θ0)I(θ0)J

−1
(θ0)), (3.3)

where J(θ) = E(∂q(U, θ)/∂θT) and I(θ) = E(q(U, θ)qT(U, θ)). See, for example,

Heyde (1997, Sec. 12.4). In our context, the matrices I(θ) and J(θ) can be
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written more specifically as

J(θ) = 2E[(
∂gθ(X)

∂θ
)(
∂gθ(X)

∂θT
)I(Z = 0)]

+ 2E[(
∂g−1

θ (Y )

∂θ
)(
∂g−1

θ (Y )

∂θT
)I(Z = 1)],

I(θ) = 4E

[
(Y − gθ(X))2(

∂gθ(X)

∂θ
)(
∂gθ(X)

∂θT
)I(Z = 0)

]
+ 4E

[
(X − g

−1

θ (Y ))2(
∂g−1

θ (Y )

∂θ
)(
∂g−1

θ (Y )

∂θT
)I(Z = 1)

]
.

(3.4)

Theorem 3. Suppose that θ̂ is a consistent solution to the equation Enq(U, θ) =

0. Suppose (i) θ0 ∈ int(Θ0); (ii) Eq(U, θ0) = 0; (iii) the entries of the ma-

trix E[q(U, θ0)q
T(U, θ0)] are finite and the matrix is positive definite; (iv) the

function Eq(U, θ) is differentiable under the integral sign, and the entries of

E[∂q(U, θ)/∂θT] are integrable; and (v) the sequence of random matrices

{En∂q(U, θ)/∂θ
T : n ∈ N} is stochastically equicontinuous. Then

√
n (θ̂− θ0) has

asymptotic distribution (3.3) with J(θ0) and I(θ0) given by (3.4).

We can check stochastic equicontinuity as follows. Let hn(θ) denote the

random function [⃗Enq(U, θ)/∂θ
T]. Stochastic equicontinuity of {hn(θ) : n ∈ N}

means, for any ϵ > 0 and η > 0, there is a δ > 0 such that

lim sup
n→∞

P
(

sup
∥θ−θ0∥<δ

∥hn(θ)− hn(θ0)∥ > ϵ
)
< η.

A sufficient condition for this is, in a neighborhood G of θ0 ,

sup
θ∈G

∥hn(θ)− hn(θ0)∥ ≤ Mn(U1, . . . , Un)∥θ − θ0∥ (3.5)

for someMn(U1, . . . , Un) = OP (1). Thus all we need to do is to bound ∥∂hn(θ)/∂θ
T∥

in the vicinity of θ0 by a function of the order OP (1) that does not depend on θ.

As an example, if gθ(x) = θx, where the true θ0 > 0, then

hn(θ) = 2En(X
2|Z = 0)− 4θ−3En[(X − θ

−1
Y )Y |Z = 1] + 2θ−4En(Y

2|Z = 1).

Hence,

∂hn(θ)

∂θ
= 12θ−4En[(X − θ

−1
Y )Y |Z = 1]− 12θ−5En(Y

2|Z = 1).

By the Cauchy-Schwarz inequality, the absolute value of the right-hand side is

bounded above by

12θ−4
√
En[(X − θ−1Y )2|Z = 1]

√
En(Y 2|Z = 1) + 12θ−5En(Y

2|Z = 1).
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Because t ≤ 1 + t2 and (a+ b)2 ≤ 3(a2 + b2), the above is no greater than

12θ−4[1 + En((X − θ
−1
Y )2|Z = 1)](1 + En(Y

2|Z = 1)) + 12θ−5En(Y
2|Z = 1)

≤ 12θ−4[1 + 3En(X
2|Z = 1) + 3θ−2En(Y

2|Z = 1)][1 + En(Y
2|Z = 1)]

+ 12θ−5En(Y
2|Z = 1).

Let G = (a, b) be a neighborhood of θ0 with a > 0 and b < ∞. Then, on G,

|∂hn(θ)/∂θ| is no greater than

12a−4[1 + 3En(X
2|Z = 1) + 3a−2En(Y

2|Z = 1)][1 + En(Y
2|Z = 1)]

+ 12a−5En(Y
2|Z = 1).

Thus, if we assume X and Y have finite fourth moments then the above is of the

order Op(1) and hence (3.5) holds. This type of arguments can be carried out

for more complicated functions gθ(x).

3.3. Asymptotic distribution for hypothesis testing

We develop a likelihood-ratio type statistic for testing general hypotheses.

Let h : Θ → Rr (r ≤ p), and consider the general hypotheses of the form

H0 : h(θ) = 0 versus H1 : h(θ) ̸= 0. (3.6)

Let

θ̂ = argmin{Qn(θ) : θ ∈ Θ}, θ̃ = argmin{Qn(θ) : θ ∈ Θ, h(θ) = 0}.

Mimicking the Wilks’ statistic (Wilks (1938); Cox and Hinkley (1974, p.92)), we

propose the statistic

Tn = 2n[Qn(θ̃)−Qn(θ̂)]. (3.7)

Intuitively, if H0 is correct, then θ̂ − θ̃ = OP (n
−1/2) and Tn is at most OP (n

1/2)

(in fact, it is of the order OP (1)); otherwise, θ̂ − θ̃ = OP (1) and Tn is of the

order OP (n). In the following, we assume h(θ) is differentiable and write H(θ) =

∂hT(θ)/∂θ.

Theorem 4. If the conditions in Theorem 3 hold and h is differentiable, then,

under H0 in (3.6),

Tn
D−→

p∑
i=1

λiKi, (3.8)

where K1, . . . ,Kp are i.i.d. χ2
(1) and λ1, . . . , λp are the eigenvalues of the matrix

Σ(θ) = I1/2(θ)J
−1
(θ)H(θ)[HT(θ)J

−1
(θ)H(θ)]

−1
HT(θ)J

−1
(θ)I1/2(θ). (3.9)
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Because H(θ) is of dimension p×r, Σ(θ) has rank r and the last r eigenvalues

of Σ(θ) are zero.

In practice, the eigenvalues of λ1, . . . , λp can be estimated by those of the

matrix (3.9), where θ is substituted by θ̂ or θ̃. Denoting these approximated

eigenvalues by λ̂1, . . . , λ̂p, the p-value of Tn can be computed by simulation or by

an approximation introduced by Bentler and Xie (2000). If

T̃n =
tr(Σ2

n(θ̂))Tn

tr(Σn(θ̂)
, (3.10)

where Σn(θ̂) is (3.9) with E(·) replaced by En(·) and θ replaced by θ̂. Then

T̃n is approximately distributed as χ2
(d) where d is the nearest integer to

tr(Σn(θ̂))
2/ tr(Σ2

n(θ̂)). The first method works well for p-values in the range

≥ 0.01 with 10,000 simulated random numbers. For smaller p-values the second

is convenient and works surprisingly well. See also Satterthwaite (1941).

4. Analysis of Covariance

Our data set consists of four groups: younger females, older females, younger

males, and older males. After fitting the SWAP regressions to the sub-samples

and comparing the psychrometric charts, we observed that the charts of the old-

female and the old-male groups are similar, whereas those for young-female and

the young-male groups are rather different. Thus it is reasonable to speculate

that the gender effect diminishes with age. This can be formulated as testing if

two (or more) charts are statistically the same. This is, in essence, an analysis

of covariance (ANCOVA) problem, which traditionally refers to the problem of

comparing regression curves from several independent samples. We develop a

hypothesis test procedure for this problem.

Consider m independent samples

(X(1)
1 , Y (1)

1 , Z(1)
1 ), . . . , (X(1)

n1
, Y (1)

n1
, Z(1)

n1
)

i.i.d.∼ (X(1), Y (1), Z(1)),

...
...

(X(m)
1 , Y (m)

1 , Z(m)
1 ), . . . , (X(m)

nm
, Y (m)

nm
, Z(m)

nm
)

i.i.d.∼ (X(m), Y (m), Z(m)).

(4.1)

In our application, m = 2, representing two gender groups. Suppose, for the kth

sample,

E
θ(k)

(Y (k)|X(k)) = g
θ(k)

(X(k)), E
θ(k)

(X(k)|Y (k)) = g
−1

θ(k)
(Y (k)). (4.2)

To test whether the m SWAP regression curves are the same, we test

H0 : θ
(1) = · · · = θ(m) versus H1 : θ

(1), . . . , θ(m) are not all equal. (4.3)
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More generally, letting h : Θ× · · · ×Θ → Rs be a differentiable function, where
s is a positive integer no greater than mp, we consider the hypotheses

H0 : h(θ
(1), . . . , θ(m)) = 0 versus H1 : h(θ

(1), . . . , θ(m)) ̸= 0. (4.4)

Let n = n1 + · · ·nm, and take the objective function

Qn(θ
(1), . . . , θ(m)) =

n1Q
(1)
n1(θ

(1))

n
+ · · ·+ nmQ(m)

nm(θ(m))

n
, (4.5)

where

Q(k)
nk
(θ(k)) = Enk

[(Y (k)−g
θ(k)

(X(k)))2I(Z(k)=0)+(X(k)−g
−1

θ(k)
(Y (k)))2I(Z(k)=1)].

Let (θ̂(1), . . . , θ̂(m)) be the global maximizer of (4.5) over Θ× · · · ×Θ and let θ̃ be
the constrained minimizer of (4.5) subject to h(θ(1), . . . , θ(m)) = 0. We test (4.3)
using

Tn = 2n[Qn(θ̃
(1), . . . , θ̃(m))−Qn(θ̂

(1), . . . , θ̂(m))].

For k = 1, . . . ,m, let

J (k)(θ(k)) = 2E
θ(k)

[(
∂g

θ(k)
(X(k))

∂θ(k)
)(
∂g

θ(k)
(X(k))

∂θ(k)
)TI(Z(k) = 0)]

+ 2E
θ(k)

[(
∂g−1

θ(k)
(Y (k))

∂θ(k)
)(
∂g−1

θ(k)
(Y (k))

∂θ(k)
)TI(Z(k) = 1)],

I(k)(θ(k)) = 4E
θ(k)

[σ2
θ(k)

(X(k))(
∂g

θ(k)
(X(k))

∂θ(k)
)(
∂g

θ(k)
(X(k))

∂θ(k)
)TI(Z(k) = 0)]

+ 4E
θ(k)

[τ2
θ(k)

(Y (k))(
∂g−1

θ(k)
(Y (k))

∂θ(k)
)(
∂g−1

θ(k)
(Y (k))

∂θ(k)
)TI(Z(k) = 1)],

where σ2
θ(k)

(X(k)) = var
θ(k)

(Y (k)|X(k)) and τ2
θ(k)

(Y (k)) = var
θ(k)

(X(k)|Y (k)).

Theorem 5. Suppose (4.1) and (4.2) hold and the m samples in (4.1) are inde-
pendent, that the assumptions in Theorem 3 are satisfied for each of the m subpop-
ulations, and for each k = 1, . . . ,m, limn→∞(nk/n) = αk for some 0 < αk < 1.
Then

Tn
D−→

s∑
i=1

λiKi,

where λ1, . . . , λs are the eigenvalues of the matrix

I1/2J−1H(HTJ−1H)
−1HTJ−1I1/2,

I =

α1I
(1)(θ) 0

. . .

0 αmI
(m)(θ)

 , J =

α1J
(1)(θ) 0

. . .

0 αmJ
(m)(θ)

 ,
(4.6)

and H is the mp by s gradient matrix (∂h/∂θ(1)T, . . . , ∂h/∂θ(m)T)T.
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In practice, the θ in I and J is replaced by either (θ̂(1), . . . , θ̂(m)) or (θ̃(1), . . . , θ̃(m)),
the expectations E(· · · ) in I and J are replaced by the sample mean En(· · · ), and
the constants α1, . . . , αm are replaced by n1/n, . . . , nm/n. For testing (4.3), we
set h : Θ× · · · ×Θ → Rm(p−1) as

(θ(1), . . . , θ(m)) 7→ (θ(1) − θ(2), . . . , θ(m−1) − θ(m)).

The gradient H is the mp×m(p− 1) dimensional matrix
Ip 0

− Ip
. . .
. . . Ip

0 − Ip

 .

The conditional variances σ2
θ(k)

(X(k)) and τ2
θ(k)

(Y (k)) can be replaced by (Y (k) −
g
θ(k)

(X(k)))2 and (X(k) − g
θ(k)

(Y (k)))2, respectively. The rank of the matrix at
(4.6) is s, so the test statistic sum extends over only the nonzero eigenvalues.

We can generalize the above ANCOVA model to accommodate arbitrary co-
variates that might affect the relation between X and Y . Let V ∈ Rk be an
additional (continuous or discrete) random (or nonrandom) vector that might
affect the individual shapes of the relation between X and Y . Suppose X and
Y are connected via E(Y |X = x,Z = 0, V = v) = gθ(v)(x) and E(X|Y = y, Z =
1, V = v) = g−1

θ(v)(y), where θ is a function v. To simplify the problem, we assume
that θ(·) is from a parametric family, say θ(v) = f(v, η), where η ∈ Rs is the
parameter and u 7→ f(v, η) is a known function for each fixed η. The objective
function is taken as

Q(g) = En[Y − gf(V,η)(X)I(Z = 0)]2 + En[X − gf(V,η)(Y )I(Z = 1)]2,

where, for example, En[Y −gf(V,η)(X)I(Z = 0)]2 represents the sample average of
[Yi − gf(Vi,η)

(Xi)I(Zi = 0)]2, i = 1, . . . , n. Here the vectors V1, . . . , Vn can either
be random or fixed.

Our ANCOVA model is a special case with v being an m-dimensional vector
that takes only m values: e1, . . . , em (the standard orthonormal basis of Rm); The
function θ(v) parameterized by the linear relation θ(v) = (θ(1), . . . , θ(m))v.

5. Optimal and Adaptive Estimation

In this section we introduce an optimal estimating equation for SWAP regres-
sion that minimizes the asymptotic variance among the class of linear estimating
equations, and an adaptive estimating equation where the optimal weights are
estimated from the sample. Consider the estimating equation

En[aθ(X)(Y − gθ(X))I(Z = 0) + bθ(Y )(X − g
−1

θ (Y ))I(Z = 1)] = 0, (5.1)
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where aθ : ΩX → R+ and bθ : ΩY → R+ are weight functions. If Eθ(Y |X) = gθ(X)
and Eθ(X|Y ) = g−1

θ (Y ), (5.1) is unbiased (Godambe (1960)):

Eθ[aθ(X)(Y − gθ(X))I(Z = 0) + bθ(Y )(X − g
−1

θ (Y ))I(Z = 1)] = 0. (5.2)

Here (5.1) is a generalization of (3.1) in which the weight functions are of the
special form aθ(X) = −2∂gθ(X)/∂θ and bθ(Y ) = −2∂g−1

θ (Y )/∂θ. Denote the
function inside [ · · · ] in (5.2) as Gθ(X,Y, Z). By the standard theory of estimating
equations, if θ̂ is a consistent solution to (5.2), then

√
n(θ̂ − θ0)

D−→ N(0, J
−1
(aθ, bθ)I(aθ, bθ)J

−T
(aθ, bθ)),

where

J(aθ, bθ) = Eθ[
∂Gθ(X,Y, Z)

∂θT
],

I(aθ, bθ) = Eθ[Gθ(X,Y, Z)GT
θ (X,Y, Z)].

(5.3)

See, for example, Li (1993, 1996), Li and McCullagh (1994), and Heyde (1997).
To emphasize the dependence of I and J on the weight functions, we write them
as I(aθ, bθ) and J(aθ, bθ). It is then natural to choose the weighting functions
aθ(X), bθ(Y ) that minimize the asymptotic variance

AV(aθ, bθ) = J
−1
(aθ, bθ)I(aθ, bθ)J

−T
(aθ, bθ).

This general approach was used in Li (2000, 2001), and Qu, Lindsay, and Li (2000)
to derive various optimal estimating equations. It also echoes the construction
of quasi likelihood: see Wedderburn (1974), McCullagh (1983), Godambe and
Heyde (1987), Godambe and Thompson (1989), and McLeish and Small (1992).
We use this approach to derive an optimal estimating equation for SWAP regres-
sion.

To simplify notation, let

βθ(X,Y ) = (aθ(X), bθ(Y )),

δθ(X,Y ) = diag(Y − gθ(X), X − g
−1

θ (Y )),

c(Z) = diag(I(Z = 0), I(Z = 1)).

(5.4)

Then (5.1) becomes En[βθ(X,Y )c(Z)δθ(X,Y )] = 0. Let

γθ(X,Y ) = (
∂gθ(X)

∂θ
,
∂g−1

θ (Y )

∂θ
), vθ(X,Y ) = diag(varθ(Y |X), varθ(X|Y )).

Theorem 6. Let W be the family of weighting functions βθ(x, y) = (aθ(x), bθ(y))
such that the entries of Eθ[βθ(X,Y )c(Z)γT

θ (X,Y )] are finite and the matrix is
nonsingular; the entries of Eθ[βθ(X,Y )c(Z)vθ(X,Y )βT

θ (X,Y )] are finite and the
matrix is nonsingular. If the weighting function β∗

θ (X,Y ) = γθ(X,Y )v−1

θ (X,Y )
belongs to W, then AV(β∗

θ ) ≤ AV(βθ) for all βθ ∈ W and all θ ∈ Θ, where A ≤ B
means B −A is positive semidefinite.
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This result implies that the solution to the estimating equation

En

[
∂gθ(X)

∂θ (Y − gθ(X))I(Z = 0)

varθ(Y |X,Z = 0)
+

∂g−1
θ (Y )
∂θ (X − g−1

θ (Y ))I(Z = 1)

varθ(X|Y, Z = 1)

]
= 0, (5.5)

has the smallest variance among all estimating equations of the form (5.1). We

call this optimal estimator the optimal SWAP, or OSWAP.

To use this optimal estimating equation we need the conditional variance

functions σ2
θ (X) = varθ(Y |X,Z = 0) and τ2θ (Y ) = varθ(X|Y, Z = 1). We can ei-

ther choose parametric models for them, as is done in the original quasi likelihood

method, or estimate them nonparametrically, as in Chiou and Müller (1998) and

Li (2001).

We propose an easy-to-implement parametric estimator of the conditional

variance that is quite effective for our purpose. Consider varθ(Y |X = x,Z =

0) = ceax, where c and a can depend on θ, but we suppress this dependence

for convenience. This function captures the commonly seen heteroscedasticity

pattern, with c representing the baseline conditional variance and a controlling

whether and to what degree the conditional variance is increasing or decreasing

with x. We propose to estimate c and a adaptively from data, as follows. Let

θ̃ be the SWAP regression estimator. For easy calculation we use a combination

of the method of moment combined with L1 minimization. By the method of

moment we have the equation,

En[(Y − gθ̃(X))2|Z = 0] = En(ce
aX).

Solving this equation for c yields

cn(a) =
En[(Y − gθ̃(X))2|Z = 0]

En(eaX)
.

We estimate a by minimizing En ( |(Y − gθ̃(X))2 − cn(a)e
aX | |Z = 0) over a grid

of a, which is easy to compute because a is a scalar. Let â denote the minimizer

over the grid. Then we obtain cn(â)e
âx as the estimator of varθ(Y |X = x,Z = 0).

Let dn(b̂)e
b̂x be the parallel estimator of varθ(X|Y = y, Z = 1). Substituting these

into (5.5), we arrive at the adaptively weighted estimating equation

En

[
∂gθ(X)

∂θ (Y − gθ(X))I(Z = 0)

cn(â)eâX
+

∂g−1
θ (Y )
∂θ (X − g−1

θ (Y ))I(Z = 1)

dn(b̂)eb̂Y

]
= 0.

We call the solution to this equation the adaptive SWAP regression estimator, or

ASWAP. This ASWAP performs well in simulations, even when the true conditional

variance is not of the form ceax (or deby).
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6. Data Analysis

We applied SWAP regression to the data described in the Introduction. The
full data set contains four sub-samples: younger females (with sample size n =
51), younger males (n = 62), older females (n = 52), older males (n = 52).
Each subject was repeatedly observed at 5 to 6 design points. For example, the
older male group had 52 pairs of observations contributed by 9 subjects. The
data originally contain 227 pairs of temperature and pressure values, in which
10 pairs contained missing numbers. To simplify the analysis, here we treated
all pairs as independent and deleted the pairs with missing data to focus on the
central issue of alternating design.

We use the quadratic model, gθ(x) = ax2 + bx + c, where θ = (a, b, c)T. By
inspection and the physical meaning of the data, it is reasonable to restrict gθ

to monotone decreasing functions over the range [X(1), X(n)]. This leads to the
constraint

Θ = {(a, b, c) : 2aX(n) + b < 0}. (6.1)

Under this constraint, gθ : [X(1), X(n)] → R is invertible, with inverse

g
−1

θ (y) =
−b−

√
b2 − 4a(c− y)

2a
,

where we have taken the decreasing branch of the two roots.
Let X be the temperature, Y the pressure, with Z = 0 when X is the

predictor, and Z = 1 when Y is the predictor. The SWAP objective function is

Qn(gθ) = En[(Y − aX2 − bX − c)2I(Z = 0)]

+En

[
X +

(
b+

√
b2 − 4a(c− Y )

2a

)2
I(Z = 1)

]
.

This is to be minimized subject to (6.1), but in all cases the global minimizers
happen to occur within the interior of the set (6.1).

We applied SWAP regression to all four samples, and the fitted curves are
presented in Figure 2. As in Figure 1, the plot symbol “+” represents cases for
which temperature is the predictor, and the plot symbol “◦” represents cases for
which pressure is the predictor. Compared with the least-squares fit (for older
males) in Figure 1, where the regression line fits rather poorly the portion of the
data where temperature is the response, the SWAP regression lines in Figure 2 go
through the centers of the alternating response variables.

The downward-bending quadratic tendencies for older people seem to be
stronger than those for younger people. We use the method developed in Section
3.3 to test

H0 : c = 0 versus H1 : c ̸= 0.
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Figure 2. SWAP-regression fits to four ULPZ data sets: upper-left panel for
young female, upper-right panel for old female; lower-left panel for young
male, and lower-right panel for old male. The four plots are in the same
scale.

Table 1. Significance of downward bending tendencies.

group id λ̂1 λ̂2 Tn p-value p-value∗

younger female 13.058 6.785 12.800 0.517 0.525
older female 38.220 7.918 69.130 0.219 0.221
younger male 12.069 9.970 0.722 0.971 0.968
older male 30.752 10.425 119.351 0.062 0.055

for each of the four groups. The results are presented in Table 1, in which columns

2 and 3 are the weights for the weighted χ2’s in Theorem 4, with θ0 replaced by

θ̂ calculated from the quadratic model, and column 4 gives the test statistic Tn

at (3.7). The p-values by simulation appear in column 5 and those calculated by

(3.10) appear in column 6. In this context the matrix (3.9) has rank 2, and so

λ̂3 is identically 0.

The quadratic component for older male group is significant at level α = 0.1,

while the p-values for the older female group are small but not significant.

Comparing the curves in Figure 2 we also observe that the tolerance curves

of older men and women are much more similar to each other than those for

younger men and women, where women have much higher overall tolerance levels.
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Table 2. Differences between genders within age groups.

comparison Tn p-value p-value∗

young female vs young male 89.98 0.000 0.000
old female vs old male 812.43 0.260 0.269

To confirm this observation, we test

H0 : θ
(1) = θ(2) versus H1 : θ

(1) ̸= θ(2),

where θ(1) and θ(2) are the parameter (a, b, c) for the older female and older male

groups, respectively. In this case, H = (I3,−I3)
T. Table 2 presents the result of

this test.

The difference between the younger female group and younger male group

is very significant, but there is no significant difference between the older female

and older male groups, indicating that the gender effect diminishes with age.

7. Simulation Comparisons

We compared the performances of four methods with simulated data for the

alternating design: ordinary least squares (OLS) treating X as the predictor and

Y as the response, the SWAP regression estimator in Section 2, and OSWAP and

ASWAP in Section 5.

We considered two SWAP regression models. The first was a homoscedastic

SWAP regression model where the conditional variance var(Y |X,Z = 0) and

var(X|Y, Z = 1) were constants. Let

gθ(x) = ax2 + bx+ c, g
−1

θ (y) =
−b−

√
b2 − 4a(c− y)

2a
,

where a = −1/2, b = −2/5, and c = 2. Here gθ intersects the axes at (0, 3) and

(3, 0) and peaks at x = −1. We used the portion of the function with x > 0,

where function is invertible. For each i ∈ {1, . . . , n}, we first generated Zi from

Bernoulli(0.5). For Zi = 0, we generated Xi from U(0, 1) and then Yi from the

regression model Yi = gθ(Xi) + 0.5εi, where Xi εi, εi ∼ N(0, 1). For Zi = 1,

we first generated Yi from U(0, 1) and then Xi from Xi = g−1

θ (Yi) + 0.5δi, where

Yi δi, δi εi, and δi ∼ N(0, 1). Thus

Model I:


Z ∼ Bernoulli(0.5),

X|Z = 0 ∼ U(0, 1), Y |Z = 1 ∼ U(0, 1),

Y |X,Z = 0 ∼ N(gθ(X), 0.52), X|Z = 0 ∼ U(0, 1),

X|Y,Z = 1 ∼ N(g−1

θ (Y ), 0.52), Y |Z = 1 ∼ U(0, 1).

(7.1)
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Table 3. Comparison of estimation error among four different estimators.

Model n
OLS SWAP OSWAP ASWAP

mean sd mean sd mean sd mean sd

I

200 0.6058 0.2497 0.0500 0.0629 0.0500 0.0629 0.0493 0.0627
300 0.5874 0.2167 0.0375 0.0508 0.0375 0.0508 0.0382 0.0516
400 0.5615 0.1577 0.0268 0.0344 0.0268 0.0344 0.0270 0.0350

II

200 0.5973 0.3799 0.1356 0.1830 0.1066 0.1528 0.1133 0.1637
300 0.6106 0.3084 0.0941 0.1328 0.0764 0.1101 0.0802 0.1158
400 0.5647 0.2506 0.0683 0.0942 0.0524 0.0779 0.0534 0.0782

We estimated θ at sample sizes n = 200, 300, 400, and simulation sample size

nsim = 200. We used mean squared error to assess the accuracy of each estimator,

and report the means and standard deviations of (θ̂1−θ)2, . . . , (θ̂200−θ)2 for each

estimator and each sample size. The results are presented in the upper part of

Table 3. We see that the SWAP, OSWAP, and ASWAP perform significantly better

than OLS. SWAP and OSWAP are very close because, with conditional variances

constant, the optimal estimating equation (5.5) coincides with SWAP in Section 2.

ASWAP performs very similarly to SWAP and OSWAP even though the conditional

variances are estimated, here the constant conditional variance is of the form ceax

with a = 0.

Our second model was a heteroscedastic SWAP regression model where the

conditional variances depended on X (or Y ). With other settings the same, we

had

Model II :

Y |X,Z = 0 ∼ N(gθ(X), [0.5(1 +X)]2),

X|Y, Z = 1 ∼ N
(
g−1

θ (Y ),
[
0.5

(
1 + Y

2

)]2)
.

The simulation results are presented in the lower part of Table 3. SWAP, OS-

WAP, and ASWAP all perform significantly better than OLS. OSWAP is no longer

equivalent to SWAP, and OSWAP brings further reduction of estimation error. For

ASWAP, we still used the conditional variance model ceax and debx, even though

the true conditional variances were quadratic polynomials in x or y. Nevertheless,

ASWAP brings appreciable reduction of estimation error as compared with SWAP

— in fact, ASWAP is closer to OSWAP than to SWAP. This indicates that we only

need to capture the ballpark shape of the conditional variances (e.g. increasing

or decreasing in x or y) to improve the accuracy of the SWAP estimator.

8. Discussion

We have proposed SWAP regression for a design in which the roles of predictor

and response trade places. We developed estimation and inference procedures for

unweighted (SWAP) and weighted (OSWAP and ASWAP) estimating equations (or
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loss functions) for estimation, and a likelihood-ratio type criterion for hypothesis

test. Motivated by the structure of a Kinesiology data set, we extended the

SWAP estimator to accommodate an extra set of covariates that might affect the

relation between X and Y .

This work can be extended in a variety of ways to adapt to other applications

and to improve on performance. We outline some possibilities.

8.1. Quantile regression and other robust swap regression

In context of the heat-pressure psychrometric charts, it is natural to consider

SWAP median or quantile regression, because it is of practical interest to know the

percentage of a certain population (for example older people) that can tolerate

certain levels of heat and humidity in a hot summer. Consider the objective

function

Q(g) = E[ρ(Y, g(X))I(Z = 0) + ρ(X, g
−1
(Y ))I(Z = 1)]

among all functions in G, where ρ : R × R → R is a general loss function that

can be chosen to suit specific purposes. Thus, if ρ(a, b) = |a− b|, we have SWAP

median regression, where g(X) is the conditional median of Y given X, and

g−1(Y ) is the conditional median of X given Y . If

ρ(a, b) =

{
c0(b− a) if b > a,

c1(b− a) if b < a,

we have SWAP quantile regression, where the minimizer of Q(g) is the c0/(c0 +

c1)th conditional quantile of Y given X, and its inverse the c0/(c0 + c1)th condi-

tional quantile of X given Y .

One could choose ρ for robust consideration, such as Huber’s loss function

(Huber (1964)),

ρ(a, b) =


(b−a)2

2 if |b− a| ≤ c,

c(|b− a| − c
2) if |b− a| > c,

to make the SWAP regression robust against outliers.

8.2. Vector-valued X and Y

SWAP regression can be extended to vector-valued X and Y , as follows.

Let X = (X1, . . . , Xp) and Y = (Y1, . . . , Yp) be p-dimensional random vectors

supported on ΩX ⊆ Rp and ΩY ⊆ Rp, respectively. Let {gθ : θ ∈ Θ} be a

parametric family of bijections between ΩX and ΩY . As before, let Z = 0, 1 be

the design indicator. As in the 1-dimensional case, suppose

Eθ(Y |X,Z = 0) = gθ(X), Eθ(X|Y, Z = 1) = g
−1

θ (Y ).
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We can then construct the objective function as

Q(g) = En[ ∥Y − gθ(X)∥2I(Z = 0)] + En[ ∥X − g
−1

θ (Y )∥2I(Z = 1)],

where ∥ · ∥ is the Euclidean norm.

The simplest example of p-dimensional bijection is the marginal bijective

mapping gθ(x) = (g(1)
θ1
(x1), . . . , g

(p)
θp
(xp)), where each g(i)

θi
(xi) is a bijection from ΩXi

to ΩYi
. A slightly more complicated p-dimensional bijection is marginal mappings

imposed on linear indices of X and Y . Then we assume there exist nonsingular

matrices A,B ∈ Rp×p such that U = AX and V = BY and (v1, . . . , vp) =

(g(1)
θ1
(u1), . . . , g

(p)
θp
(up)), where, for each i = 1, . . . , p, g(i)

θi
is a bijection between two

subsets of R. Depending on specific applications, we can treat A and B either as

known or as parameters to be estimated together with θ = (θ1, . . . , θp).

8.3. Accounting for dependence

Another direction would extend SWAP regression to take into account the

dependence in the data. In our data set, each subject is tested at several design

points, which can introduce dependence in the regression error. One can account

for the dependence either by introducing random effects, or by explicitly building

the dependence into the error covariance structure, as one does in Generalized

Estimating Equations (Liang and Zeger (1986)).
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