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Abstract: The functional generalized additive model (FGAM), also known as the

continuous additive model (CAM), provides a more flexible functional regression

model than the well-studied functional linear regression model. This paper restricts

attention to the FGAM with identity link and additive errors, which we will call the

additive functional model and is a generalization of the functional linear model. We

study the minimax rate of convergence of predictions from the additive functional

model in the framework of reproducing kernel Hilbert spaces. It is shown that the

optimal rate is determined by the decay rate of the eigenvalues of a certain kernel

function, which in turn is determined by the reproducing kernel and the joint dis-

tribution of any two points in the random predictor function. In the special case

of the functional linear model, this kernel function is jointly determined by the

covariance function of the predictor function and the reproducing kernel. The eas-

ily implementable roughness-regularized predictor is shown to achieve the optimal

rate of convergence. Numerical studies are carried out to illustrate the merits of

the predictor. Our simulations and real data examples demonstrate a competitive

performance against the existing approach.

Key words and phrases: Functional regression, minimax rate of convergence, prin-

cipal component analysis, reproducing kernel Hilbert space.

1. Introduction

Functional regression, in particular functional linear regression (FLR), has

been studied extensively. Recent synopses include Ramsay and Silverman (2002,

2005), Ferraty and Vieu (2006), and Ramsay, Hooker, and Graves (2009). Let

X(·) be a random process defined on [0, 1] and Y be the univariate response

variable. Typically, t is restricted to a compact interval, so the assumption that

t ∈ [0, 1] causes no loss of generality. Suppose we observe n i.i.d. copies of
(
Y,X

)
,(

Yi, Xi

)
, i = 1, . . . , n. The functional linear regression model assumes that

Yi = α0 +

∫ 1

0
β0(t)Xi(t)dt+ ϵi, (1.1)

where α0 ∈ R is the coefficient constant, β0 : [0, 1] → R is the slope function, and

the ϵi are i.i.d. random errors with E(ϵi) = 0 and E(ϵ2i ) = σ2, 0 < σ2 <∞. One
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of the popular methods for estimating functional linear models (FLMs) is based

on functional principal component analysis (FPCA) (see, e.g., James (2002), Yao,

Müller, and Wang (2005), Cai and Hall (2006), Li and Hsing (2007), Hall and

Horowitz (2007)). In addition, methods of regularization have been applied to

the FLM (see, e.g., Crambes, Kneip, and Sarda (2009), Yuan and Cai (2010),

Cai and Yuan (2012)).

Due to the limitation inherent in the assumed linearity of (1.1), Ferraty

and Vieu (2006) extended this model to nonparametric functional models and

Müller and Yao (2008) discussed functional models that are additive in the func-

tional principal component scores of the predictor functions. Recently, McLean

et al. (2014) proposed a new model called a functional generalized additive model

(FGAM). The same model was studied by Müller, Wu, and Yao (2012), there

termed the continuously additive model (CAM). We study the special case of the

FGAM with the identify link and continuous errors so that

Yi =

∫ 1

0
F0

(
t,Xi(t)

)
dt+ ϵi, (1.2)

where F0(·, ·) : [0, 1]2 → R is a bivariate function. Because F0 is nonlinear, X(t)

can be replaced by G{X(t)} for a smooth transformation G. Since G can be

strictly increasing function from the entire real line to [0, 1], assuming thatX(t) ∈
[0, 1] causes no loss of generality. (In McLean et al. (2014), G = Gt is allowed to

depend on t and is an estimate of the CDF of X(t), but we do not pursue this

refinement here.) Model (1.2) is called the additive functional model and contains

(1.1) as a special case with F0(t, x) = α0+xβ0(t). The additive functional model

offers increased flexibility compared to (1.1), while still facilitating interpretation

and estimation. In McLean et al. (2014), computational issues of this model were

studied and F0 was estimated using tensor-product B-splines with roughness

penalties Eilers and Marx (1996). In Müller, Wu, and Yao (2012), a piecewise

constant function was fit to F0 and the asymptotic properties, e.g., consistency

and asymptotic normality, of predictions based on F̂0 were studied.

We study minimax prediction. The unknown bivariate function F0 is as-

sumed to reside in a reproducing kernel Hilbert space (RKHS) H(K) with a

reproducing kernel K : [0, 1]2 × [0, 1]2 → R. The goal of prediction is to recover

the functional η0:

η0(X) =

∫ 1

0
F0

(
t,X(t)

)
dt,

based on the training sample (Yi, Xi), i = 1, . . . , n. Let F̂n be an estimate of F0

from the training data. Then its accuracy can be measured by the excess risk:

Rn :=E∗
[
Yn+1 −

∫ 1

0
F̂n

(
t,Xn+1(t)

)
dt
]2

− E∗
[
Yn+1 −

∫ 1

0
F0

(
t,Xn+1(t)

)
dt
]2
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=E∗
{∫ 1

0

[
F̂n(t,Xn+1(t))− F0(t,Xn+1(t))

]
dt
}2
,

where (Yn+1, Xn+1) possesses the same distribution as (Yi, Xi) and is independent
of (Yi, Xi), i = 1, . . . , n, and E∗ represents taking expectation over (Yn+1, Xn+1)
only. We study the rate of convergence of Rn as n increases, which reflects the
difficulty of the prediction problem. A closely related problem is to estimate
the bivariate function F0. F0 is not identifiable without constraints since, for
example, for any function b(t), one can add b(t)−

∫ 1
0 b(t)dt to F0 without changing∫

F
(
t,X(t)

)
dt.

The optimal rate of convergence for the prediction problem is to be estab-
lished. The spectral theorem admits that there exist a set of orthonormalized
eigenfunctions {ψk : k ≥ 1} and a sequence of eigenvalues κ1 ≥ κ2 ≥ · · · > 0
such that

K
(
(t, x); (s, y)

)
=

∞∑
k=1

κkψk(t, x)ψk(s, y),

K(ψk) :=

∫ ∫
K
(
·; (s, y)

)
ψk(s, y)dsdy = κkψk.

It is shown that under model (1.2), the difficulty of the prediction problem as
measured by the minimax rate of convergence depends on the decay rate of the
eigenvalues of the kernel C : [0, 1]2 × [0, 1]2 → R defined by

C
(
(t, x); (s, y)

)
=

∫ ∫
E
{
K1/2

(
(t, x); (u,X(u))

)
K1/2

(
(s, y); (v,X(v))

)}
dudv,

(1.3)

where K1/2
(
(t, x); (s, y)

)
=

∑∞
k=1 κ

1/2
k ψk(t, x)ψk(s, y). A minimax lower bound

is first derived for the prediction problem. Then a roughness-regularized predictor
is introduced and is shown to attain the rate of convergence given in the lower
bound.

Example 1. We restrict the bivariate function F to the specific form F (t, x) =
β(t)x, where β belongs to a reproducing kernel Hilbert space H(K̃) with the
reproducing kernel K̃ : [0, 1] × [0, 1] → R. This essentially provides us with a
functional linear regression model. Let

K̃(t, s) =
∞∑
k=1

ςkφk(t)φk(s),

where the (ςk, φk) are the eigenvalue and eigenfunction pairs. It is not hard to
see that

K
(
(t, x); (s, y)

)
= 3K̃(t, s)xy =

∞∑
k=1

κkψk(t, x)ψk(s, y),
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where κk = ςk and ψk(t, x) =
√
3xφk(t). Therefore,

C
(
(t, x); (s, y)

)
= 3xy

∫ ∫
K̃1/2(t, u)G(u, v)K̃1/2(v, s)dudv, (1.4)

where G(u, v) = cov(X(u), X(v)) is the covariance function of X. So, the eigen-

values of C have the same decay rate as the eigenvalues of the kernel K̃1/2GK̃1/2

defined as the integral on the right-hand side of (1.4). As in Yuan and Cai

(2010) and Cai and Yuan (2012), the decay rate of the eigenvalues of K̃1/2GK̃1/2

is assumed to be of k−2r.

Example 2. Let ϕ1(t) = 1 and ϕk+1(t) =
√
2 cos(kπt), k ≥ 1. Take ψk(t, x) =

ϕk(t)ϕk(x), k ≥ 1. Here {ψk : k ≥ 1} is a set of orthonormal basis functions and

we construct the reproducing kernel

K
(
(t, x); (s, y)

)
=

∞∑
k=1

κkψk(t, x)ψk(s, y),

where κk is the kth eigenvalue. Therefore,

C
(
(t, x); (s, y)

)
=

∞∑
k,ℓ=1

κ
1/2
k akℓκ

1/2
ℓ ϕk(t)ϕk(s)ϕℓ(s)ϕℓ(y),

where

akℓ =

∫ ∫
E
(
ϕk(X(u))ϕℓ(X(v))

)
dudv.

It is possible to obtain the eigenvalue decay rate for C numerically. Numerical

computation suggests that the eigenvalues of C have a polynomial decay rate if

both the eigenvalues of X and the κk have the polynomial decay rates.

Example 3. Consider the thin-plate splines space H = {F : L2
m(F ) < ∞},

where
L2
m(F ) =

∑
α1+α2=m

m!

α1!α2!

∫ 1

0

∫ 1

0

( ∂mF

∂tα1∂xα2

)2
dtdx. (1.5)

The decay rate of the eigenvalues of the thin-plate splines reproducing kernel is

of order k−m Utreras (1988). The derivation of reproducing kernels for thin-plate

splines requires some advanced knowledge of differential equations; details can

be found in Duchon (1977) and Meinguet (1979) and references cited therein.

However, the function

J
(
(t− x)2 + (x− y)2

)
,

where J(x) = x2m−2 log x acts like a reproducing kernel in our approach to the

computation of thin-plate splines, and is called a semi-kernel. It follows from

(1.3) that
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C
(
(t, x); (s, y)

)
=

∫∫∫∫
K1/2

(
(t, x); (u, z1)

)
K1/2

(
(s, y); (v, z2)

)
g
(
(u, z1); (v, z2)

)
dudvdz1dz2,

where g
(
(u, z1); (v, z2)

)
is the joint density function of (X(u), X(v)) evaluated

at (z1, z2). The kernel function C depends on both K and distribution of

(X(u), X(v)) in a complicated way, so knowing the decay rates of the eigenvalues

of K or of the covariance kernel of X does not determine the eigenvalue decay

rate of C. One can investigate the behavior of the eigenvalues of C empirically.

The paper is organized as follows. Section 2 establishes the minimax lower

bound for the rate of convergence of the excess risk. Section 3 develops a predictor

using a roughness regularization method and shows that this predictor is rate-

optimal. Section 4 conducts a Monte Carlo study to validate our method and we

also illustrate it using two data examples. Section 5 discusses the software used

in the computations. Some discussion is provided in Section 6. Proofs are in the

Appendix.

2. Minimax Lower Bound

In this section, we establish the minimax lower bound for the rate of conver-

gence of the excess risk.

We assume that the unknown F0 resides in a reproducing kernel Hilbert

space H(K) with a reproducing kernel K. Here H(K) is a linear functional

space endowed with an inner product ⟨·, ·⟩H(K) such that

F (t, x) =
⟨
K
(
(t, x); ·

)
, F

⟩
H(K)

, for any F ∈ H(K).

There is a one-to-one relationship between K and H(K). Assume that the kernel

function C admits the spectral decomposition,

C
(
(t, x); (s, y)

)
=

∞∑
j=1

ρjϕj(t, x)ϕj(s, y),

where the ρj are the positive eigenvalues with a decreasing order and the ϕj are

the corresponding orthonormal eigenfunctions. We assume ρk ≍ k−2r for some

constant 0 < r < ∞, where for two sequences ak, bk > 0, ak ≍ bk means that

ak/bk is bounded away from zero and infinity as k → ∞.

Theorem 1. If the eigenvalues {ρk : k ≥ 1} of the kernel C in (1.3) satisfy

ρk ≍ k−2r for some constant 0 < r <∞. Then the excess prediction risk satisfies

lim
c→0

lim
n→∞

inf
η̃

sup
F0∈H(K)

P
(
Rn ≥ cn−2r/(2r+1)

)
= 1, (2.1)



572 XIAO WANG AND DAVID RUPPERT

where the infimum is taken over all possible predictors η̃ based on {(Yi, Xi) : i =

1, . . . , n}.

One can compare Theorem 1 with some known results in the literature when

the functional linear regression model is the true model. In Example 1, we

restrict the bivariate function F to the specific form F (t, x) = β(t)x, where β

belongs to a reproducing kernel Hilbert space H(K̃) with the reproducing kernel

K̃ : [0, 1]× [0, 1] → R. This essentially provides us a functional linear regression

model. Here the eigenvalues of C have the same decay rate as the eigenvalues of

K̃1/2GK̃1/2, where G(u, v) = cov(X(u), X(v)) is the covariance function of X.

This special setting coincides with those considered in Yuan and Cai (2010) and

Cai and Yuan (2012). Similar results have been established earlier there.

3. A Roughness Regularized Estimate

In this section, we develop a predictor using a roughness regularization

method and establish that it achieves the optimal rate established in Theorem 1.

3.1. Computation

Take the estimate F̂nλ of F0 as the minimizer of the functional

1

n

n∑
i=1

(
Yi −

∫ 1

0
F (t,Xi(t))dt

)2
+ λJ(F ), (3.1)

where λ is the tuning parameter and J(·) is a squared semi-norm on H(K). The

estimate F̂nλ can be computed explicitly over the infinite dimensional function

space H(K). This observation is important for both numerical implementation

of our procedure and our asymptotic analysis.

Let H0 = {F ∈ H : J(F ) = 0}. Assume that {ξ1, . . . , ξN} is the orthonormal

basis of H0 with N = dim(H0) <∞. Let H1 be its orthogonal complement in H
such that H = H0 ⊕H1.

Theorem 2. The minimizer of (3.1) over H(K) can be written as

F̂nλ(t, x) =

N∑
j=1

djξj(t, x) +

n∑
i=1

ci

∫ 1

0
K
(
(t, x); (s,Xi(s))

)
ds, (3.2)

for some c = (c1, . . . , cn)
T ∈ Rn and d = (d1, . . . , dN )T ∈ RN .

Denote by Σ the n×n matrix with (Σ)ij =
∫∫

K
(
(t,Xj(t)); (s,Xi(s))

)
dtds,

and by Ξ the n × N matrix with (Ξ)ij =
∫
ξj(t,Xi(t))dt. Then, (3.1) may be

written in the matrix form
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1

n
∥Y − Ξd− Σc∥22 + λcTΣc, (3.3)

where J(F ) = cTΣc. It is easy to see that the solution of the linear system

(Σ + nλI)c+ Ξd =Y, (3.4)

ΞTΣc+ ΞTΞd =ΞTY, (3.5)

is a minimizer of (3.3). It follows from (3.4) and (3.5) that ΞT c = 0. Suppose Ξ

is of full column rank. Let

Ξ = QR∗ = (Q1, Q2)

(
R

0

)
= Q1R

be the QR-decomposition of Ξ with Q orthogonal and R upper-triangular. From

ΞT c = 0, QT
1 c = 0, so c ⊥ col(Q1), the column space of Q1. Since Q is orthogonal,

c ∈ col(Q2), and c = Q2Q
T
2 c because Q2Q

T
2 projects onto col(Q2). Simple algebra

gives

ĉ = Q2(Q
T
2 ΣQ2 + nλI)−1QT

2 Y,

d̂ = R−1(QT
1 Y −QT

1 Σc).

The linear system (3.4) and (3.5) as the basis for computation first appeared in

Wahba and Wedelberger (1980) We have adopted a similar approach and applied

the QR-decomposition to obtain an explicit solution of the optimization problem

(3.3).

3.2. Rate of convergence

In this section, we turn to the asymptotic properties of the estimate F̂nλ.

Theorem 3. Assume that for any F ∈ L2([0, 1]
2)

E
(∫

F (t,X(t))dt
)4

≤ c
(
E
(∫

F (t,X(t))dt
)2)2

(3.6)

for a positive constant c. Then, when λ is of order n−2r/(2r+1),

lim
A→∞

lim
n→∞

sup
F0∈H(K)

P
{
Rn ≥ An−2r/(2r+1)

}
= 0. (3.7)

We have made the additional assumption (3.6) on X. For the functional

linear regression model when F (t, x) = β(t)x, (3.6) shows that, for any β ∈
L2([0, 1]), E

( ∫
β(t)X(t)dt

)4 ≤ c
(
E
( ∫

β(t)X(t)dt
)2)2

, which states that linear

functionals of X have bounded kurtosis. In general, (3.6) states that such special

nonlinear functionals F
(
·, X(t)

)
of X have bounded kurtosis.
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It follows from both Theorem 1 and Theorem 3 that the minimax rate of con-

vergence for the excess prediction Rn is of order n−2r/(2r+1), which is determined

by the decay rate of the eigenvalues of the kernel C.

3.3. Optimal choice of λ

Let Ŷ =
(
η
F̂λ
(X1), . . . , ηF̂λ

(Xn)
)T

. Since the regularized estimator is a

linear estimator in Y , Ŷ = H(λ)Y , whereH(λ) is called the hat matrix depending

on λ. Some algebra yields

H(λ) = I − nλQ2(Q
T
2 ΣQ2 + nλI)−1QT

2 .

We select the tuning parameter λ that minimizes the generalized cross-validation

score (Wahba (1990)),

GCV(λ) =
∥Ŷ − Y ∥22/n{

1− tr(H(λ))/n
}2 . (3.8)

Choosing λ by minimizing GCV has worked well in our numerical studies.

4. Numerical Results

In our numerical studies, we compared the numerical performance of the

proposed predictor with some well-known existing predictors.

For our estimator, we focus on a RKHS H(K) with a squared seminorm

(1.5). In this setting, the optimal solution of the roughness-regularized estimate

can be written as

F (t, x) =
N∑
j=1

djξj(t, x) +
n∑

i=1

ci

∫
J
(√

(t− s)2 + (x−Xi(s))2
)
ds, (4.1)

where ξj(t, x) = tγ1xγ2 for some pair of integers γ1, γ2 with 0 ≤ γ1 + γ2 < m and

N is the number of such pairs. Let ĉ and d̂ be the estimates from the training

data. Then, for any random function X, the predicted response is

η
F̂
(X) =

N∑
j=1

d̂j

∫
ξj(t,X(t))dt+

n∑
i=1

ĉi

∫ ∫
J
(√

(t− s)2 + (X(t)−Xi(s))2
)
dtds.

In particular, when m = 2, we have N = 3, and ξ1(t, x) = 1, ξ2(t, x) = t,

ξ3(t, x) = x, and J(x) = x2 log x. Here
∫
ξ1(t,X(t))dt = 1 and

∫
ξ2(t,X(t))dt =

1/2. To avoid an identifiability problem, we estimate d1 by d̂1 = n−1
∑n

i=1 Yi. In

the following, we use thin-plate splines with m = 2 to fit the data.
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Table 1. The root mean squared prediction errors (RMSPE) of three estima-

tors for a functional linear regression model where Y =
∫ 1

0
β0(t)X(t)dt + ϵ.

“FPCA/FLR” is an estimator for the functional linear model based on func-
tional principal components analysis. “FGAM/P-spline” is the estimator
in McLean et al. (2014). “ThinSpline” is our proposed estimator using a
thin-plate spline.

ξj σ ν FPCA/FLR FGAM/P-Spline ThinSpline

Well Spaced
0.5

1.1 0.61 0.82 0.68
2.0 0.52 0.55 0.56

1.0
1.1 1.21 1.65 1.20
2.0 1.04 1.09 1.08

Closed Spaced
0.5

1.1 0.52 0.53 0.52
2.0 0.54 0.55 0.56

1.0
1.1 1.03 1.07 1.03
2.0 1.06 1.05 1.04

4.1. Simulations

Our first simulation study compares our estimator with two competitors.

The first of these competitors uses the functional principal component analysis

(FPCA) approach to fitting a FLR; we call this estimator FPCA/FLR. The

second method uses the P-spline approach in McLean et al. (2014) to fit an

FGAM, where one estimates F using tensor-product B-splines with roughness

penalties; we call this estimator FGAM/P-spline.

The simulation setting is the same as in Hall and Horowitz (2007) and

McLean et al. (2014). The random predictor function X was generated as

X(t) = ζ1Z1 +
50∑
k=2

√
2 ζkZk cos(kπt), t ∈ [0, 1],

the Zk independently uniform on [−
√
3,
√
3]. The ζ2k , eigenvalues of the covari-

ance function of X, were well spaced case, ζk = (−1)k+1k−ν/2 with ν = 1.1 and

2, or closely spaced case, ζ1 = 1, ζj = 0.2(−1)j+1(1 − 0.0001j) for j = 2, 3, 4,

and ζ5j+k = 0.2(−1)5j+k+1(5j)−ν/2 − 0.0001k for j ≥ 1 and 0 ≤ k ≤ 4. The

coefficient function β0 was

β0(t) = 0.3 +
50∑
k=2

4
√
2(−1)k+1k−2 cos(kπt), t ∈ [0, 1].

The simulation study had the FLR model as the true model. The response

variable Y was simulated from the model: Y =
∫ 1
0 β0(t)X(t)dt + ϵ, where the

error ϵ ∼ N(0, σ2), with σ = 0.5 and 1. The performance of different esti-

mators was measured by the root mean squared prediction error, RMSPE =
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Table 2. The root mean squared prediction errors (RMSPE) based on three
different estimators for two nonlinear functional regression models. PCF is
the piecewise constant fit of Müller, Wu, and Yao (2012).

Model σ FPCA/FLR PCF/CAM ThinSpline

Y =
∫ 10

0
cos{t−X(t)− 5}dt+ ϵ

2 2.434 (0.018) 2.200 (0.056) 2.108 (0.062)
1 1.723 (0.013) 1.156 (0.037) 1.127 (0.035)
0.5 1.494 (0.011) 0.680 (0.035) 0.569 (0.026)

Y =
∫ 10

0
t exp{X(t)}dt+ ϵ 1 9.828 (0.106) 1.119 (0.029) 1.108 (0.031)

√
d−1

∑d
i=1

(
Ŷi − Yi

)2
, where d is the sample size of the test data and the Ŷi are

predicted values. Each training set contained 67 curves and 33 curves were used

for the test set. For each setting, the experiment was repeated 1,000 times. The

results of simulations are summarized in Table 1. We observe that our Thin-

Spline estimator performed nearly identically to the FPCA/FLR estimator, even

though this is an ideal setting for the latter since the FLR model holds. Our

ThinSpline estimator slightly outperformed the FGAM/P-spline estimator.

We performed a simulation study to compare our estimate with the piecewise

constant fit (PCF) proposed in Müller, Wu, and Yao (2012) for fitting what

they call the continuously additive model (CAM); we denote this estimator by

PCF/CAM. The simulation setting was the same as that in Müller, Wu, and Yao

(2012). The predictor functions were generated according to

X(t) = cos(U1) sin(
1

5
πt)+ sin(U1) cos(

1

5
πt)+cos(U2) sin(

2

5
πt)+sin(U2) cos(

2

5
πt)

for t ∈ [0, 10], where U1 and U2 were i.i.d. from Uniform[0, 2π]. The sample size

for the training data was n = 200 and for the testing data was d =1,000. The data

were generated from Y =
∫ 10
0 cos{t−X(t)−5}dt+ϵ; or Y =

∫ 10
0 t exp{X(t)}dt+ϵ,

where ϵ ∼ N(0, σ2). For each setting, the experiment was repeated 50 times. The

means and the corresponding standard deviation of the root mean squared pre-

diction error are given in Table 2. As expected, the FPCA/FLR performs poorly

for these two non-FLR examples as it has large prediction errors. In addition, our

ThinSpline estimator outperforms the PCF/CAM estimator proposed in Müller,

Wu, and Yao (2012). An additional tuning data set with sample size 200 was

used to select the needed regularization parameter in the original simulation of

PCF/CAM by Müller, Wu, and Yao (2012). A benefit of our approach is that

we do not require this tuning data set in our simulations.



OPTIMAL PREDICTION IN AN ADDITIVE FUNCTIONAL MODEL 577

Figure 1. Estimated surface F̂nλ(t, x) from the Canadian weather data.

Table 3. The root mean squared prediction errors based on the estimate
(4.2), FGAM/P-spline, and the proposed predictor for Canadian weather
data.

SS/FLR FGAM/P-spline ThinSpline
RMSPE 0.3014(0.1244) 0.1127 (0.1002) 0.1110(0.0917)

4.2. Application: Canadian weather data

The Canadian weather data example is revisited here. The dataset contains

daily temperature and precipitation at 35 different locations in Canada averaged

over years 1960 to 1994. The goal is to predict the log of the average annual pre-

cipitation based on the average daily temperature. In Cai and Yuan (2012) it was

shown that the functional PCA approach to fitting a FLR could be problematic,

since the eigenfunctions corresponding to the leading eigenvalues of the covari-

ance function seem not to represent the estimated coefficient function well. We

compare our method with a smoothing spline estimate for fitting the functional

linear regression model. Here the estimate, which we call SS/FLR (smoothing

spline, functional linear regression), is

(α̂, β̂) = argmin

{
1

n

n∑
i=1

(
Yi − α−

∫ 1

0
Xi(t)β(t)dt

)2
+ λ

∫ 1

0
(β′′(t))2dt

}
. (4.2)
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Figure 2. Left: Estimated surface F̂λ(t, x) from the training data using Thin-
Spline; Right: the predicted response using ThinSpline versus the observed
response for the testing data.

Figure 1 shows the estimated F̂nλ using ThinSpline applied to the complete

data. In order to study the performance of these estimators, we randomly split

the initial sample into two sub-samples: learning sample, (Xi, Yi), i = 1, . . . , nℓ
with nℓ = 20, was used to determine the estimated coefficient function β̂λ and the

estimator F̂nλ and test sample, (Xi, Yi), i = nℓ+1, . . . , n, with n−nℓ = 15, used

to evaluate the quality of the estimation. The left panel of Figure 2 displays

the estimated F̂nλ from applying ThinSpline to the training data set and the

right panel of Figure 2 shows the predicted response from ThinSpline versus the

observed response for the testing data using the estimate from the training data.

The points are very close to the diagonal line which indicates a good fit. We have

repeated this procedure 200 times. The mean and the corresponding standard

deviations of the root mean squared prediction errors based on (4.2) and our

proposed predictor are reported in Table 3.

The prediction error using either FGAM/P-spline or ThinSpline is consider-

ably less than for FPCA/FLR. The FGAM/P-spline and ThinSpline estimators

have similar prediction errors, as expected. Further study of the goodness-of-fit

of different models is an important research topic that we will pursue.

4.3. Application: CA air quality data

Air pollutants cause serious health problems, and modeling different ground

level air pollutants has been important research for many years. In May 2011,

the California Air Resources Board released the “2011 Air Quality Data”, which

include 30 years of data (1980–2009). This database, available at http://www.

arb.ca.gov/aqd/aqdcd/aqdcddld.htm, contains hourly concentrations of pol-

lutants at different locations in California from 1980 to 2009. We focused on the

http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm
http://www.arb.ca.gov/aqd/aqdcd/aqdcddld.htm


OPTIMAL PREDICTION IN AN ADDITIVE FUNCTIONAL MODEL 579

Figure 3. Left: Daily trajectories of ground-level concentrations of ozone in
the city of Sacramento in the Summer of 2005; Right: The maximum level
of the ground-level concentrations of oxides of nitrogen at each day in the
Summer of 2005.

effect of the trajectories of ozone (O3) on the maximum level of oxides of nitrogen

(NOx) in the city of Sacramento (site 3011 in the database) between June 1 and

August 31 of 2005. The total sample size is n = 92. The left panel of Figure 3

displays the daily trajectories of ground-level concentrations of ozone in the city

of Sacramento in the summer of 2005. For most days, we have observations at

every hour but there are a few days with some missing observations. The right

panel of Figure 3 gives the maximum level of the ground-level concentrations of

oxides of nitrogen at each day during the summer of 2005 in Sacramento.

Figure 4 shows the estimated F̂nλ when using the complete data. It displays

a highly nonlinear pattern in x, which suggests that the functional linear model

does not fit the data well. To assess the goodness of fit of the additive functional

model, the left panel of Figure 5 plots the residuals on the vertical axis and

the fitted responses on the horizontal axis. It shows the points are randomly

dispersed around the horizontal axis and do not show any typical pattern. The

right panel of Figure 5 plots the fitted values versus the observed responses. The

points are close to the diagonal line indicating a good fit.

Another interest is to compare the estimation surface. We compared our

estimate of F with the estimated F from McLean et al. (2014) that is shown in

Figure 6. When we compare the prediction errors of these two estimates, they are

almost the same. Estimating F is a different question than the prediction issue

discussed here. Thus, for the functional linear regression model, Crambes, Kneip,

and Sarda (2009) pointed out that we may not be able to consistently estimate

the slope function β without linking the smoothness of β and of the curves Xi.

However, in terms of prediction, we can have the consistent result. We believe
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Figure 4. Estimated surface F̂nλ(t, x) from the air quality data.

Figure 5. Left: Residual plot; Right: Fitted values versus the observed responses.

that this happens here and we cannot estimate F consistently without additional

assumptions on the connection of the smoothness of F and the distribution of

(X(t), X(s)). Further research is needed to work out the asymptotic distribution

of the prediction error for making statistical inferences.

We also compared the performance of the smoothing spline FLR (4.2),

FGAM/P-spline, and ThinSpline estimators. The 92 observations were randomly

split into training sets of size 60 and test sets of size 32. We repeated this

procedure 1,000 times. The mean and the corresponding standard deviations of
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Figure 6. Estimated surface F using P-splines from McLean et al. (2014).

Table 4. The root mean squared prediction errors based on the functional
linear regression (FLR) model, the P-splines model, and the additive func-
tional model (ThinSpline) for the air quality data.

SS/FLR FGAM/P-spline ThinSpline
RMSPE 0.9450 (1.6539) 0.6203 (0.0937) 0.6148 (0.0985)

the root mean squared prediction error based on the two models are reported

in Table 4. As expected, our ThinSpline estimator outperforms the smoothing

spline FLR estimation and displays a similar performance as the FGAM/P-spline

estimator.

5. A Note on Computations

The FGAM/P-spline estimator was computed using the fgam() function

in R’s refund package. We wrote our own Matlab programs to compute the

smoothing spline FLR and ThinSpline estimators. The FPCA/FLR estima-

tors were computed using the software called PACE http://www.stat.ucdavis.

edu/PACE/.

6. Discussion

We have established the minimax rate of convergence for prediction in the

continuous-additive functional regression model. The minimax theory in the

http://www.stat.ucdavis.edu/PACE/
http://www.stat.ucdavis.edu/PACE/
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existing literature on the functional linear regression model is a special setting

of the current study.

We have focused on the continuously-additive functional model with the

squared error loss in this paper. The method of regularization can be easily

extended to handle other models such as the generalized regression model (Cardot

and Sarda (2005); Du and Wang (2013)). We leave these extensions for future

papers.

In our simulation study, the only estimator based on the RKHS approach

used thin-plate splines. For the case of univariate regression, Wang, Shen, and

Ruppert (2011) showed that a smoothing spline and a P-spline are asymptoti-

cally equivalent. A similar asymptotic equivalence is expected to hold for bivari-

ate regression. So, it was expected that in simulations, the performance of the

ThinSpline estimator would be similar to that of the FGAM/P-spline estimator

of McLean et al. (2014). Our results can be applied to more general reproducing

kernel Hilbert spaces.

As estimating F0 itself is a different problem than the prediction problem

discussed here. For the functional linear regression model we may not estimate

the coefficient function β0 consistently without additional conditions linking the

smoothness of β0 and of the curves Xi (Crambes, Kneip, and Sarda (2009)). One

might assume, for example, that the reproducing kernel K and the covariance

kernel G share the same set of eigenfunctions. Under this assumption, we can

estimate β0 consistently (Yuan and Cai (2010)). The question of when we can es-

timate F0 consistently under the continuously-additive functional model deserves

study. The issue is important, for example, to developing a test of linearity of

F0.
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Appendices

A.1. Proof of Theorem 1

In the proofs, ci, i = 1, 2, . . . are generic constants that can change from line

to line.

Since any lower bound for a specific case yields a lower bound for the general

case, to establish lower bounds, we only study the case when the ϵi are i.i.d.

N(0, σ2). Fix α ∈ (0, 1/8). From Theorem 2.5 in Tsybakov (2009), in order to
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establish the minimax lower bound for Rn, for each n we need to find functions

{Fjn, j = 0, . . . ,M} satisfying the following:

(a) Fjn ∈ H(K), j = 0, . . . ,M ,

(b) E∗
{∫ 1

0

[
Fjn(t,Xn+1(t))− Fkn(t,Xn+1(t))

]
dt
}2

≥ 2s,

for 0 ≤ j < k ≤M ,

(c) M−1
∑M

j=1K(Pj , P0) ≤ α logM , where Pj denotes the joint distribution of

{(Yi, Xi) : i = 1, . . . n} when F0 = Fjn, and K(·, ·) is the Kullback-Leibler

distance between two probability measures.

We will specify M → ∞ and s → 0 later. If (a), (b), and (c) are satisfied, then

the minimax lower bound for the rate of convergence of Rn has the same order

as s.

First we verify part (a). Letm be the smallest integer greater than c0n
1/(2r+1)

for some positive constant c0 to be specific later. For a ω = (ωm+1, . . . , ω2m) ∈
{0, 1}m, let

Fω =
2m∑

j=m+1

ωjm
−1/2K1/2(ϕj).

Fω ∈ H(K) for all ω if K1/2(ϕj) ∈ H(K) for all j. Thus, we need to show

that
⟨
K1/2(ϕj),K

(
·, (t, x)

)⟩
L2

= K1/2(ϕj)(t, x). This holds since⟨
K1/2(ϕj),K

(
·, (t, x)

)⟩
L2

=
⟨
K(ϕj),K

1/2
(
·, (t, x)

)⟩
L2

=
⟨
ϕj ,K

1/2
(
·, (t, x)

)⟩
L2

= K1/2(ϕj)(t, x).

We also have

⟨K1/2(ϕj),K
1/2(ϕk)⟩H(K) = ⟨ϕj ,K(ϕk)⟩H(K) = ⟨ϕj , ϕk⟩L2 = δjk,

where δjk = 1 for j = k, and 0 for j ̸= k.

The Varshamov-Gilbert bound (see Tsybakov (2009, p.104)) shows that,

for m ≥ 8, there exists a subset Ω = {ω0, ω1, . . . , ωM} ⊆ {0, 1}m such that

ω0 = {0, . . . , 0},
d(ωj , ωk) ≥ m

8
, ∀ 0 ≤ j < k ≤M, (A.1)

where d(ωj , ωk) =
∑2m

i=m+1 I(ω
j
i ̸= ωk

i ) is the Hamming distance between ωj and

ωk, and M ≥ 2m/8.

To verify part (b), for ω, ω′ ∈ Ω, direct calculation yields that

E∗
{∫ 1

0

[
Fω(t,Xn+1(t))− Fω′(t,Xn+1(t))

]
dt
}2
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=

2m∑
j=m+1

2m∑
k=m+1

m−1(ωj−ω′
j)(ωk−ω′

k)∫∫
E∗

[
K1/2(ϕj)(t,X(t))K1/2(ϕk)(s,X(s))

]
dtds

=

2m∑
k=m+1

m−1(ωk − ω′
k)

2ρk ≥ m−1ρ2md(ω, ω
′)

≥c1m−1(2m)−2rm

8
≥ c2n

−2r/(2r+1)

by (A.1), ρk ≍ k−2r, and the definition of m. Hence, s in part (b) is of order

n−2r/(2r+1).

Next, observe that for any ω, ω′ ∈ Ω,

log
(PFω′

PFω

)
=

1

σ2

n∑
i=1

(
Yi −

∫
Fω(t,X(t))dt

)∫ {
Fω(t,X(t))− Fω′(t,X(t))

}
dt

− 1

2σ2

n∑
i=1

[ ∫ {
Fω(t,X(t))− Fω′(t,X(t))

}
dt
]2
.

Therefore,

K(PFω′ , PFω) =
n

2σ2
E∗

[ ∫ {
Fω(t,X(t))− Fω′(t,X(t))

}
dt
]2

=
n

2σ2

2m∑
k=m+1

m−1(ωk − ω′
k)

2ρk

≤ n

2σ2
ρm

2m∑
k=m+1

m−1(ωk − ω′
k)

2 ≤ n

2σ2
m−2r ≤ c3n

1/(2r+1).

Since m is the smallest integer greater than c0n
1/(2r+1), this implies that

1

M

M∑
j=1

K(Pj , P0) ≤ c3n
1/(2r+1) ≤ α logM,

if we choose c0 ≥ 8c3/(α log 2) and M = 2m/8. This completes the proof of

Theorem 1.

A.2. Proofs of Theorem 2 and Theorem 3

Proof of Theorem 2. Define the subspace of H,

H1 = span
{∫

K
(
(t, x); (s,Xi(s))

)
ds : i = 1, . . . , n

}
.
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Note that H1 is a closed linear subspace of H1. For any F ∈ H, one may write

F = F0 + F1 + δ, where F0 ∈ H0, F1 ∈ H1 and δ ∈ H1 ⊖H1. Observe that

ηF (Xi) =

∫
F (t,Xi(t))dt = ηF0+F1(Xi),

because

ηδ(Xi) =
⟨∫

K
(
(·; (s,Xi(s))

)
ds, δ

⟩
H(K)

= 0.

Further, due to orthogonality, ∥F∥2H(K) = ∥F0 + F1∥2H(K) + ∥δ∥2H(K) and ∥F0 +

F1∥2H(K) ≤ ∥F∥2H(K). Therefore, the minimum of (3.1) must belong to the linear

space H0 ⊕H1.

Proof of Theorem 3. Note that L2(K
1/2) = H(K). So there exist G0 and Ĝλ

such that F0 = K1/2(G0) and F̂nλ = K1/2(Ĝλ). Therefore,

ηF0(X) =

∫
F0(t,X(t))dt =

∫ ⟨
K
(
·; (s,X(s)

)
, F0

⟩
H(K)

ds

=

∫ ⟨
K1/2

(
·; (s,X(s))

)
, G0

⟩
L2

ds,

Rn = E∗
∣∣∣ ∫ ⟨

K1/2
(
·; (s,X(s))

)
, Ĝλ −G0

⟩
L2

ds
∣∣∣2 = ∥∥∥Ĝλ −G0

∥∥∥2
C
,

where∥∥∥G∥∥∥2
C
=

∫
· · ·

∫
G
(
(t, x); (u1, z1)

)
C
(
(u1, z1); (u2, z2)

)
G
(
(u2, z2); (s, y)

)
.

Write

Cn

(
(t, x); (s, y)

)
=

1

n

n∑
i=1

∫∫
K1/2

(
(t, x); (u,Xi(u))

)
K1/2

(
(s, y); (v,Xi(v))

)
dudv.

Recall that Yi =
∫ ⟨

K1/2
(
·; (s,Xi(s))

)
, G0

⟩
ds + ϵi. Write gn = (1/n)

∑n
i=1 ϵi∫

K1/2
(
·; (s,X(s))

)
ds, Ĝλ =

(
Cn + λI

)−1(
Cn(G0) + gn

)
. Define Gλ =

(
C +

λI
)−1

C(G0). It follows from triangle inequality that∥∥∥Ĝλ −G0

∥∥∥
C
≤

∥∥∥Gλ −G0

∥∥∥
C
+

∥∥∥Ĝλ −Gλ

∥∥∥
C
. (A.2)

For the first term on the right hand side of (A.2), write G0 =
∑∞

k=1 akϕk. Then,

Gλ =
∞∑
k=1

akρk
λ+ ρk

ϕk,

∥∥∥Gλ −G0

∥∥∥2
C
=

∞∑
k=1

λ2a2kρk
(λ+ ρk)2

≤ λ2max
k≥1

ρk
(λ+ ρk)2

∞∑
k=1

a2k = O(λ)
∥∥∥G0

∥∥∥2
L2

.
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For the second term on the right hand side of (A.2), with
(
Cn + λI

)
Ĝλ =

Cn(G0) + gn, We have

Gλ − Ĝλ = (C + λI)−1(Cn + λI)(Gλ − Ĝλ) + (C + λI)−1(C − Cn)(Gλ − Ĝλ)

= (C + λI)−1(Cn + λI)Gλ − (C + λI)−1CnG0 − (C + λI)−1gn

+ (C + λI)−1(C − Cn)(Gλ − Ĝλ)

= (C + λI)−1Cn(Gλ −G0) + λ(C + λI)−2CG0 − (C + λI)−1gn

+ (C + λI)−1(C − Cn)(Gλ − Ĝλ)

= (C + λI)−1C(Gλ −G0) + λ(C + λI)−2CG0 − (C + λI)−1gn

+ (C + λI)−1(Cn − C)(Gλ −G0)

+ (C + λI)−1(C − Cn)(Gλ − Ĝλ)

= I + II + III + IV + V.

We bound the five terms on the right side separately. Direct calculation yields

∥∥I∥∥2
C
=

∥∥∥(C + λI)−1C(Gλ −G0)
∥∥∥2
C
= λ2

∞∑
k=1

a2kρ
3
k

(λ+ ρk)4

≤ λ2max
k≥1

ρ3k
(λ+ ρk)4

∞∑
k=1

a2k = O(λ)
∥∥∥G0

∥∥∥2
L2

.

Similarly,

∥∥II∥∥2
C
=

∥∥∥λ(C + λI)−2CG0

∥∥∥2
C
= λ2

∞∑
k=1

a2kρ
3
k

(λ+ ρk)4
≤ O(λ)

∥∥∥G0

∥∥∥2
L2

.

We make use three of auxiliary results whose proofs are similar to ones in

Cai and Yuan (2012), so we omit the details. If there exists a constant c > 0

such that

E
(∫

F (t,X(t))dt
)4

≤ c
(
E
(∫

F (t,X(t))dt
)2)2

,

for any ν > 0 such that 2r(1− 2ν) > 1, then∥∥∥Cν(C + λI)−1(C − Cn)C
−ν

∥∥∥
op

= Op

((
nλ1−2ν+1/(2r)

)−1/2)
, (A.3)∥∥∥C1/2(C + λI)−1(C − Cn)C

−ν
∥∥∥
op

= Op

((
nλ1/(2r)

)−1/2)
, (A.4)

where ∥ · ∥op stands for the usual operator norm. Further, for any 0 ≤ ν ≤ 1/2∥∥∥Cν(C + λI)−1gn

∥∥∥
L2

= Op

((
nλ1−2ν+1/(2r)

)−1/2)
. (A.5)
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Using (A.3) we have∥∥∥Cν(C + λI)−1(C − Cn)(Gλ − Ĝλ)
∥∥∥2
L2

≤
∥∥∥Cν(C + λI)−1(C − Cn)C

−ν
∥∥∥
op

∥∥∥Cν(Gλ − Ĝλ)
∥∥∥2
L2

≤ op(1)
∥∥∥Cν(Gλ − Ĝλ)

∥∥∥2
L2

,

whenever λ ≥ cn−2r/(2r+1) for some constant c > 0. Similarly,∥∥∥Cν(C + λI)−1(C − Cn)(Gλ −G0)
∥∥∥2
L2

≤
∥∥∥Cν(C + λI)−1(C − Cn)C

−ν
∥∥∥
op

∥∥∥Cν(Gλ −G0)
∥∥∥2
L2

≤ op(1)
∥∥∥Cν(Gλ −G0)

∥∥∥2
L2

.

So, for 0 < ν < 1/2− 1/(4r),∥∥∥Cν(Gλ − Ĝλ)
∥∥∥
L2

≤
∥∥∥Cν(C + λI)−1C(Gλ −G0)

∥∥∥
L2

+
∥∥∥Cν(C + λI)−1(C − Cn)(Gλ −G0)

∥∥∥
L2

+λ∥C1+νG0∥L2 + ∥Cν(C + λI)−1gn∥L2

+
∥∥∥Cν(C + λI)−1(C − Cn)(Gλ − Ĝλ)

∥∥∥
L2

= Op

(
λν +

(
nλ1−2ν+1/(2r)

)−1/2)
= Op(λ

ν),

when c1n
−2r/(1+2r) ≤ λ ≤ c2n

−2r/(1+2r) for 0 < c1 < c2 <∞. Next,∥∥IV∥∥
C
=

∥∥∥(C + λI)−1(Cn − C)(Gλ −G0)
∥∥∥
C

=
∥∥∥C1/2(C + λI)−1(Cn − C)(Gλ −G0)

∥∥∥
L2

≤
∥∥∥C1/2(C + λI)−1(Cn − C)C−ν

∥∥∥∥T ν(Gλ −G0)∥L2

≤ Op

(
(nλ1/(2r))−1/2λν

)
= op

(
(nλ1/(2r))−1/2

)
.

Similarly,∥∥V∥∥
C
=

∥∥∥(C + λI)−1(Cn − C)(Gλ − Ĝλ)
∥∥∥
C

=
∥∥∥C1/2(C + λI)−1(Cn − C)(Gλ − Ĝλ)

∥∥∥
L2
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≤
∥∥∥C1/2(C + λI)−1(Cn − C)C−ν

∥∥∥∥T ν(Gλ − Ĝλ)∥L2 ≤ Op

(
(nλ1/(2r))−1/2λν

)
= op

(
(nλ1/(2r))−1/2

)
.

It follows from (A.5) that∥∥III∥∥
C
=

∥∥∥(C + λI)−1gn

∥∥∥
C
=

∥∥∥C1/2(C + λI)−1gn

∥∥∥
L2

= Op

(
(nλ1/(2r))−1/2

)
.

Combining, we conclude that, if λ is of order n−2r/(2r+1), then ∥Gλ − Ĝλ∥C
= OP (n

−2r/(2r+1)).
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