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Abstract: In this paper, we propose a simple linear least squares framework to deal

with estimation and selection for a groupwise additive multiple-index model, of

which the partially linear single-index model is a special case, and in which each

component function has a single-index structure. We show that, somewhat unex-

pectedly, all index vectors can be recovered through a single least squares coefficient

vector. As a direct application, for partially linear single-index models we develop

a new two-stage estimation procedure that is iterative-free and easily implemented.

This estimation approach can also be applied to develop, for the semi-parametric

model under study, a penalized least squares estimation and establish its asymp-

totic behavior in sparse and high-dimensional settings without any nonparametric

treatment. A simulation study and a data analysis are presented.

Key words and phrases: High dimensionality, index estimation, least squares, multiple-

index models, variable selection.

1. Introduction

High-dimensional and complex data characterize many contemporary statis-

tical applications, from areas as broad ranging as genomics, genetics, finance,

and economics (Fan and Li (2006)). There is little doubt that high-dimensional

data analysis has become important. In many practical situations, parametric

models, such as the linear model and the generalized linear model, are among

the most convenient and frequently used. However, they are not flexible enough

to capture the underlying relationship between the response variable and its as-

sociated predictors, and one cannot sensibly check the fit of a parametric model

with a large number of predictors.

Semi-parametric models (Ruppert, Wand, and Carroll (2003)) are increas-

ingly used to balance modeling bias and the “curse of dimensionality”. Semi-

parametric models have the flexibility and good fit of nonparametric models and

retains the parsimony and ease of interpretation of parametric models. Here,

however, little work has been done on estimation with high-dimensional data.

Wei, Huang, and Li (2011) studied the estimation and selection properties of
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an adaptive group LASSO approach using B-spline basis approximation in time

varying coefficient models. Xue and Qu (2012) proposed a penalized polyno-

mial spline procedure for varying coefficient models by adopting a truncated L1

penalty and investigated the global optimality properties of the penalized esti-

mator. Alquier and Biau (2013) considered the single-index model estimation

problem from a sparsity perspective using a PAC-Bayesian approach, but their

approach offers no guarantees on the issue of variable selection. Wang, Xu, and

Zhu (2012) studied the theoretical properties of a regularized linear least squares

method for general singe-index models.

The partially linear single-index model is an important extension of the

single-index model and of the partially linear model. A nice feature here is

that the predictors under investigation fall into two groups affecting the response

variable, making it easy to interpret the model parameters (Carroll et al. (1997)).

To the best of our knowledge, there has been no work on estimation in partially

linear single-index models when the number of predictors can be larger than the

sample size. The estimation procedures developed here are applicable to partially

linear single-index models and their extensions.

Consider the regression of a response variable Y ∈ R on a random vector of

predictors V ∈ Rd. Suppose that V = (V ⊤
1 ,V

⊤
2 , . . . ,V

⊤
K)⊤ can be naturally

divided into K non-overlapping groups V k ∈ Rpk , k = 1, . . . ,K. We consider

the groupwise additive multiple-index model

Y =

K∑
k=1

gk(β
⊤
k V k) + ϵ, (1.1)

where gk(·) is an unknown component function, βk ∈ Rpk is a single-index vector

of interest corresponding to V k, and the random error ϵ is independent of V .

If K = 1, (1.1) is the well-known single-index model (Powell, Stock, and Stoker

(1989)). If K = 2, with g1(t) = t, then (1.1) is the partially linear single-index

model. If, further, p2 = 1, then it reduces to the partially linear model (Heckman

(1986)). For further discussion, see Naik and Tsai (2001) and Lin and Kulasekera

(2007).

Parameter estimation for (1.1), or its special cases, has received a great deal

of attention in the literature. See, for instance, Carroll et al. (1997), Yu and

Ruppert (2002), Li, Li, and Zhu (2010), Ruan and Yuan (2010), and references

therein. In particular, Li, Li, and Zhu (2010) extended the minimum average

variance estimation method of Xia et al. (2002) to deal with a more general

model for groupwise dimension reduction. Generally, these methods are com-

putationally demanding since the resulting estimators need to be solved via an

iterative procedure.
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With d = p1+· · ·+pK , few results are available for estimation in this context
when d diverges with n. We propose a simple linear least squares framework to
discuss estimation, and can deal with high-dimensional data by apply existing
variable selection techniques.

The rest of the paper is organized as follows. In Section 2, we discuss the is-
sue of identifiability and introduce a linear least squares estimation procedure for
model (1.1). Large sample properties are derived. In Subsection 3.1 we establish
the theoretical properties of the least squares method for partially linear single-
index models, and develop a new two-stage estimation procedure. Subsection 3.2
concerns the variable selection problem with high-dimensional predictors. We
propose a penalized least squares method for selecting predictors in each com-
ponent function, and study the asymptotic behavior of the penalized estimator
in sparse and high-dimensional settings. Numerical studies are presented in Sec-
tion 4 and Section 5. Proofs are provided in the supplementary material.

2. Identifiability and Estimation

We first discuss the identifiability of βk’s in model (1.1). Denote by 0m×1

an m× 1 vector of 0’s, and let

S =


β1 0 p1×1 · · · 0 p1×1

0 p2×1 β2 · · · 0 p2×1
...

...
...

0 pK×1 0 pK×1 · · · βK

 .

Then, from (1.1), Y and V are independent conditioned on S⊤V . The column
space of S is called the central dimension reduction subspace (Li (1991)); Cook
(1998)) and is a well-defined population parameter.

When ΣV = Cov(V ) is positive-definite, define the least squares direction
as

βLS = Σ−1
V Cov(V , Y ). (2.1)

Then βLS is in the column space of S, provided

E(V |S⊤V ) is a linear function of S⊤V . (2.2)

This condition is satisfied, for example, when the distribution of V is elliptically
symmetric and when the dimension ofV is large, it is not restrictive; see Hall and
Li (1993) and Cook and Ni (2005). Several efforts have been devoted to relaxing
the condition, see Li and Dong (2009) and Dong and Li (2010). Feng, Wang, and
Zhu (2012) recently provided a necessary and sufficient condition for the least
squares coefficient vector to work in a similar scenario, and found it close to the
linearity condition. This condition is not very strong when the inverse regression
notion is adopted, and we use it here.
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Proposition 1. If (2.2) hold, then

βLS = (ϕ1β
⊤
1 , ϕ2β

⊤
2 , . . . , ϕKβ⊤

K)⊤

for some constants ϕk, k = 1, . . . ,K.

Thus, under mild conditions on the design distribution, the K index vectors

βk can be recovered simultaneously through a single vector βLS , if the additive

index structure of model (1.1) holds true. The random error ϵ at (1.1) is allowed

to be dependent on V such that E(ϵ|S⊤V ) = 0, so our results are still valid

under heteroscedasticity.

To avoid confusion, the βk’s are redefined so βLS = (β⊤
1 , . . . ,β

⊤
K)⊤. Given a

random sample (v i, yi), i = 1, . . . , n, on (V , Y ), we propose to estimate βLS with

the vector β̂LS from the least squares fit of yi on v i. Denote by y = (y1, . . . , yn)
⊤

the response vector andV = (v1, . . . , vn)
⊤ the design matrix. Assuming centered

data, the intercept is not included in the regression function. The least squares

direction estimator is

β̂LS = (β̂
⊤
1 , . . . , β̂

⊤
K)⊤ = (V⊤V)−1V⊤y . (2.3)

For a vector u = (u1, . . . , um)⊤ ∈ Rm, take ∥u∥1 =
∑m

j=1 |uj | and ∥u∥2 =

(
∑m

j=1 u
2
j )

1/2. For the time being, all the predictors are relevant to the response

variable and their total number, d = d0, is allowed to diverge as the sample size

n tends to infinity.

Theorem 1. Under the conditions (A1)−(A7) in the supplementary document,

if d0 = o(n/ log n) then ∥β̂LS−βLS∥2 = O(
√
d0/n). Consequently, ∥β̂k−βk∥2 =

O(
√

d0/n) for all k = 1, . . . ,K.

Similar results for the linear model and for the single-index model are avail-

able in the literature. But, to our knowledge, the results for the additive index

model (1.1) are novel.

Remark 1. There is no guarantee that the constants ϕk’s in Proposition 1

are different from zero. With ζk = {Cov(V k)}−1Cov{V k, gk(β
⊤
k V k)} for k =

1, . . . ,K, if the predictors are independent, a sufficient condition is that ζk ̸=
0 pk×1 for all k. In the case of perfect correlation, V k = V l for some k ̸= l, model

(1.1) is clearly not identifiable. As a result, there must be some linear trend in

each component function (Wang, Xu, and Zhu (2012)) and some regularization

constraint imposed on the linear relationship among the components V k. For

partially linear single-index models, we give the conditions for identifiability in

Section 3.1.
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If ϕk, or more precisely βk, is nonzero and estimated as nonzero, dimension

reduction within V k is achieved; for those ϕk’s that are zero and estimated to be

zero using the method in Subsection 3.2, a more sophisticated method is needed.

Thus, we can combine our method for dimension reduction and the method for

high-dimensional additive models by assuming a nonparametric additive model

for theVk’s with a vanishing index. Then, after dimension reduction, the additive

model can be used to estimate the component functions at both the group level

for a nonzero ϕk and the within group level for a zero ϕk. Thus, our framework

can be useful for exploratory data analysis even when some ϕk’s are zero. Since

we focus on dimension reduction for V k’s with a non-vanishing index, we assume

without loss of generality that ϕk ̸= 0 for all k.

3. Applications

3.1. Partially linear single-index models: A two-stage estimation

procedure

Consider the partially linear single-index model

Y = α⊤X + g(γ⊤Z ) + ϵ, (3.1)

where X = (X1, . . . , Xp)
⊤ ∈ Rp,Z = (Z1, . . . , Zq)

⊤ ∈ Rq, α ∈ Rp is an unknown

linear parameter, γ ∈ Rq is an unknown single-index parameter, and g(·) is an

unknown link function. Then K = 2,V 1 = X ,V 2 = Z , and

S =

(
α 0 p×1

0 q×1 γ

)
.

By Proposition 1, βLS = (β⊤
1 ,β

⊤
2 )

⊤ = Sϕ for some vector ϕ = (ϕ1, ϕ2)
⊤ ∈ R2.

It follows that β1 = ϕ1α and β2 = ϕ2γ. As a consequence, if ϕ1 ̸= 0 and

ϕ2 ̸= 0, α and γ can be identified simultaneously by just one vector βLS . Let

ΣZ = Cov(Z ) and ΣZX = Cov(Z ,X ).

Proposition 2. Under (2.2), there are constants ϕ1 ̸= 0 and ϕ2 ̸= 0 such that

βLS = Sϕ, β1 = ϕ1α and β2 = ϕ2γ, provided

(B0) α ̸= 0p×1,Cov{Z, g(γ⊤Z)} ̸= 0q×1,

and one of the following holds:

(B1) X is independent of Z;

(B2) V = (X⊤,Z⊤)⊤ has an elliptically symmetric distribution.

Corollary 1. Under the conditions of Theorem 1, if d = d0 = o(n/ log n), then

∥β̂k − βk∥2 = O(
√

d0/n) for k = 1, 2.
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The parameters in (3.1) are often estimated via an algorithm that iteratively
updates estimates of the nonparametric component and the parametric compo-
nent. Wang et al. (2010) introduced a two-step estimation procedure, and Liang
et al. (2010) proposed a profile least squares procedure that involves a nonlin-
ear optimization problem which is iterative in nature. Both estimators can be
found without an iterative procedure. Feng et al. (2013) proposed using partial
dimension reduction techniques to obtain estimators without iteration, but when
the dimension of X is large, computation is a challenge, because it involves an
integration over the support of X . We develop a new estimation procedure for
partially linear single-index models.

By Proposition 2, we can re-express (3.1) as

Y = φ1 × β⊤
1 X + g̃(β⊤

2 Z ) + ϵ, (3.2)

where φ1 = 1/ϕ1 and g̃(·) = g(·/ϕ2) is an unknown link function. If βLS is given,
then (3.2) reduces to a partially linear model. Let K(·) be a kernel function
and Kh(·) = h−1K(·/h) be a re-scaling of K with bandwidth h. The local
linear estimates (Fan and Gijbels (1996)) of µ(t;β2) = E(Y |β⊤

2 Z = t) and
µ1(t;β2) = E(X |β⊤

2 Z = t) are, respectively,

µ̂(t;β2) =
n∑

i=1

Wni(t;β2)yi,

µ̂1(t;β2) =

n∑
i=1

Wni(t;β2)x i,

where

Wni(t;β2) =
Uni(t;β2)∑n
j=1 Unj(t;β2)

,

Uni(t;β2) =Kh(z
⊤
i β2 − t){Sn2(t;β2)− (z⊤

i β2 − t)Sn1(t;β2)},

Snl =
1

n

n∑
i=1

(z⊤
i β2 − t)lKh(z

⊤
i β2 − t), l = 1, 2.

The proposed estimator of α is

α̂ = φ̂1 × β̂1 =
Tn1

Tn2
× β̂1, (3.3)

where

Tn1 =
1

n

n∑
i=1

{yi − µ̂(z⊤
i β̂2; β̂2)}{x i − µ̂1(z

⊤
i β̂2; β̂2)}⊤β̂1,

Tn2 =
1

n

n∑
i=1

[{x i − µ̂1(z
⊤
i β̂2; β̂2)}⊤β̂1]

2.

The two-stage estimation procedure works as follows.
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S1. Obtain the least squares estimator β̂LS = (β̂
⊤
1 , β̂

⊤
2 )

⊤.

S2. Estimate α in (3.1) by (3.3).

The new estimation procedure is iteration-free and easy-to-implement. The band-

width in the nonparametric smoothing can be selected via cross-validation.

We require some standard technical conditions.

(C1) The density function of b⊤
2 Z is positive and satisfies a Lipschitz condition

for b2 in a neighborhood of β2; β
⊤
2 Z has a density function that is bounded

away from 0.

(C2) The functions g and µ1j have two bounded and continuous derivatives,

where µ1j is the jth component of µ1, 1 ≤ j ≤ p.

(C3) E(ϵ) = 0, E(ϵ2) < ∞, and suptE(∥X ∥22|β⊤
2 Z = t) < ∞.

(C4) The kernel function K is a bounded and symmetric density function with

a bounded derivative, and satisfies 0 <
∫∞
−∞ t2K(t) dx < ∞.

(C5) The bandwidth h satisfies lim supn→∞ nh5 < ∞, nh3 → ∞, and log2 n/(nh2)

→ 0.

We assume now that all the predictors are relevant to the response variable,

and that the number of relevant predictors d = d0 is fixed.

Theorem 2. If the conditions of Theorem 1 and the regularity conditions (C1)−
(C5) hold, α̂ is a

√
n-consistent estimator of α.

Asymptotic expansion of α̂ − α can be found in the proof in the supple-

mentary material. Under additional conditions, we can also prove convergence

results for the nonparametric link function. In the presence of many irrelevant

predictors, we can replace S1 by

S1’. Obtain the penalized least squares estimator via (3.5) in Subsection 3.2.

Because of the oracle property, the resulting two-stage estimator has the same

property. We remark that the idea of this two-stage estimation is general, and

can be incorporated into other procedures to devise effective algorithms.

3.2. Predictor selection for large-d-small-n problems

When there are a large number of predictors, it is desired to select significant

ones to the response variable. Even for the partially linear single-index model

(3.1), this is challenging as it includes selection of significant predictors and

estimation of the associated coefficients in the parametric component, as well
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as identification of significant predictors in the nonparametric component; it is

more difficult for model (1.1). How to incorporate the grouping information into

the selection process is also an important issue.

We can address these concerns due mainly to the linear least squares struc-

ture of βLS that enables us to apply the penalization paradigm. Specifically, we

consider the penalized least squares function

Qλ(b) =
1

2n

n∑
i=1

(yi − v⊤
i b)

2 +
K∑
k=1

pk∑
j=1

Jλ(|bkj |), (3.4)

where b = (b⊤
1 , . . . , b

⊤
K)⊤ ∈ Rd with bk = (bk1, . . . , bkpk)

⊤ ∈ Rpk , Jλ(·) is a

penalty function, and λ is a tuning parameter.

There has been much interest in penalized methods in high-dimensional lin-

ear or generalized linear models, and Wang, Xu, and Zhu (2012) have dealt with

high-dimensional single-index models. We consider variable selection for additive

index models by taking advantage of the special model structure.

We study the large sample properties of the penalized least squares esti-

mator with the SCAD penalty (Fan and Li (2001)). The model is assumed to

be sparse in the sense that many components of the regression coefficient vector

βLS = (β⊤
1 , . . . ,β

⊤
K)⊤ are exactly zero. Take the nonzero components of βk to be

the first pk0 coordinates and write βk = (β⊤
k1,0

⊤
(pk−pk0)×1)

⊤. Accordingly, V k1

consists of the first pk0 components of V k, and we write V = (V1, . . . ,VK)⊤

with Vk the design matrix corresponding to V k, and Vk1 the sub-matrix formed

by the first pk0 columns of Vk.

Let β̂
o

k1 be an ideal vector from the least squares fit of y on (V11, . . . ,VK1),

and take the least squares oracle estimator to be β̂
o
= (β̂

o⊤
1 , . . . , β̂

o⊤
K )⊤, where

β̂
o

k = (β̂
o⊤
k1 ,0

⊤
(pk−pk0)×1)

⊤.

Theorem 3. Assume the conditions (D1)−(D5) in the supplementary document.

If Aλ is the set of local minima of Qλ(b), then limn→∞ P (β̂
o ∈ Aλ) = 1.

To select predictors in the partially linear single-index model, we consider

the penalized least squares function

Qλ(b1, b2) =
1

2n

n∑
i=1

(yi − x⊤
i b1 − z⊤

i b2)
2 +

p∑
j=1

Jλ(|b1j |) +
q∑

j=1

Jλ(|b2j |), (3.5)

where b1 = (b11, . . . , b1p)
⊤ ∈ Rp, b2 = (b21, . . . , b2q)

⊤ ∈ Rq, and Jλ(·) is the

SCAD penalty.

Take the nonzero components of β1 and β2 to be, respectively, the first p0
and q0 coordinates, and write β1 = (β⊤

11,0
⊤
(p−p0)×1)

⊤, β2 = (β⊤
21,0

⊤
(q−q0)×1)

⊤.
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Accordingly, take X 1 and Z 1 to consist of the first p0 and q0 components of X

and Z , respectively. LetX = (x 1, · · · ,xn)
⊤ and Z = (z 1, · · · , zn)

⊤ be the design

matrices corresponding to X and Z , and take X1 and Z1 as the sub-matrices

formed by the first p0 and q0 columns of X and Z, respectively.

Let β̂
o
= (β̂

o⊤
1 , β̂

o⊤
2 )⊤ be the least squares oracle estimator, where β̂

o

1 =

(β̂
o⊤
11 ,0

⊤
(p−p0)×1)

⊤ and β̂
o

2 = (β̂
o⊤
21 ,0

⊤
(q−q0)×1)

⊤ with (β̂
o⊤
11 , β̂

o⊤
21 )

⊤ an ideal vector

from the least squares fit of y on (X1,Z1).

Corollary 2. Assume the conditions of Theorem 3. If Aλ is the set of local

minima of Qλ(b1, b2), then limn→∞ P (β̂
o ∈ Aλ) = 1.

4. Simulation Study

We examined the finite-sample performance of the proposed estimation and

selection methods. We focused on the partially linear single-index model and

considered the models

Y = β⊤
1 V 1 + 2× β⊤

2 V 2 × I(β⊤
2 V 2 < 0) + ϵ, (4.1)

Y = β⊤
1 V 1 + exp

(β⊤
2 V 2

2

)
+ ϵ, (4.2)

Y = β⊤
1 V 1 + 2× sin

(β⊤
2 V 2

2

)
+ ϵ, (4.3)

where I(·) is the indicator function. We covered four cases.

Case 1. ϵ ∼ N(0, 1),V ∼ N(0 d×1,Σ) with Σij = 0.5|i−j| for i, j = 1, . . . , d, and

ϵ and V are independent. Let p1 = 400, p2 = 200, p10 = 3 and p20 = 2. The

linear parameter and the single-index parameter are β1 = (1.5, 1, 1, 0, . . . , 0)⊤

and β2 = (1, 1, 0, . . . , 0)⊤, respectively. The sample size is n = 200.

Case 2. The same as Case 1, except that the error ϵ has a t-distribution with 4

degrees of freedom.

Case 3. The same as Case 1, except that Σij = 0.5 for all i ̸= j.

Case 4. The same as Case 2, except that Σij = 0.5 for all i ̸= j.

In each example, we applied the penalized least squares estimation of Sub-

section 3.2 with the SCAD penalty, and then invoked the two-stage estimation

in Subsection 3.1. We adopted the Gaussian kernel in local linear smoothing

and used the least squares cross-validation (Li and Racine (2004)) to select the

smoothing parameter. For comparison, we also evaluated the performance of

the penalized least squares estimation with the LASSO penalty, as well as the
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oracle least squares estimation assuming the irrelevant predictors known before-

hand. The resulting estimators are denoted by SCAD, LASSO, and Oracle,

respectively. For each penalized competitor, we implemented the fast and effi-

cient coordinate descent algorithm (see, e.g., Friedman, Hastie, and Tibshirani

(2010)) and selected its tuning parameter by ten-fold cross-validation.

For any vector θ, θs is the orthonormalized version of θ. To evaluate estima-

tion accuracy, we computed the absolute correlation coefficient, ACCθk
, between

the estimated predictor and the true one: ACCθk
= |corr(θ̂⊤

k V k,θ
⊤
k V k)| for

SCAD and LASSO, and ACCθk
= |corr(θ̂⊤

k V k1,θ
⊤
k V k1)| for Oracle, with the

vector correlation coefficient, VCCθk
= θ̂

s⊤
k θs

k. Here, for both SCAD and LASSO

θk = βk, and for Oracle θk = βk1, k = 1, . . . ,K. For partially linear single-index

models, we used ESTθ = ∥θ̂ − θ∥2 to measure the performance of the two-stage

estimation procedure; for SCAD and LASSO θ = β1, and for Oracle θ = β11.

To assess how well SCAD and LASSO selected predictors, we employed the

number of nonzero components (MSθk
); the true positive rate (TPRθk

), the ratio

of the number of correctly identified predictors to the number of truly important

predictors; and the false positive rate (FPRθk
), the ratio of the number of falsely

identified predictors to the total number of irrelevant predictors. Ideally, one

wishes TPRθk
close to 1 and FPRθk

close to 0 at the same time.

The simulation results based on 200 data replications from these four cases

are summarized in Tables 1−3, respectively. In Cases 1 and 2, the predictors

are serially correlated, and several conclusions can be drawn. First, SCAD and

LASSO have comparable performance in terms of estimation and selection. The

average absolute correlation coefficient and the average vector correlation coef-

ficient of SCAD and LASSO are close to one, and slightly lower than those of

Oracle. SCAD and LASSO successfully identified the relevant predictors in the

model: the lowest true positive rates are 99.50% and 99.00% for the linear com-

ponent and the single-index component, respectively. The estimation accuracy

of all the methods considered deteriorated when we replaced the normal distri-

bution of the error with the t-distribution. In Cases 3 and 4, there were constant

positive correlations among the predictors, and SCAD was generally superior to

LASSO. The estimation error of the linear component (ESTθk
) of SCAD, close to

that of Oracle, was significantly lower than that of LASSO, and LASSO tended

to select a model with many spurious predictors. That SCAD is more robust to

the correlation structure among the predictors than LASSO is well in accordance

with results in the literature (Fan and Lv (2010)). Unreported results also show

that increasing sample sizes improves the performance.

We also considered a more complex model

Y =
(
1 +

β⊤
1 V 1

2

)2
+ 2× sin

(β⊤
2 V 2

2

)
+ 1.5× exp

(β⊤
3 V 3

2

)
+ ϵ, (4.4)
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Table 1. Summary of model (4.1). The average absolute correlation co-
efficient (ACCθk

), the average vector correlation coefficient (VCCθk
), the

average estimation error of linear component (ESTθk
), the average number

of nonzero components (MSθk
), the true positive rate (TPRθk

) and the false
positive rate (FPRθk

), based on 200 data replications, are reported. θk = βk

for SCAD and LASSO, and θk = βk1 for Oracle

Case 1 Case 2 Case 3 Case 4

SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle

ACCθ1
0.995 0.993 0.998 0.990 0.990 0.997 0.997 0.987 0.998 0.994 0.982 0.997

(0.004) (0.006) (0.001) (0.008) (0.009) (0.002) (0.004) (0.006) (0.001) (0.007) (0.009) (0.002)

VCCθ1
0.989 0.985 0.994 0.976 0.979 0.992 0.991 0.962 0.994 0.980 0.941 0.992

(0.014) (0.012) (0.006) (0.027) (0.017) (0.008) (0.014) (0.023) (0.005) (0.026) (0.041) (0.008)

ESTθ1
0.267 0.323 0.177 0.425 0.397 0.229 0.251 0.613 0.182 0.375 0.735 0.244

(0.151) (0.138) (0.084) (0.226) (0.161) (0.119) (0.137) (0.155) (0.087) (0.214) (0.204) (0.120)

MSθ1
11.480 15.330 16.275 15.360 5.580 21.550 8.055 22.340

TPRθ1
1.000 1.000 0.995 1.000 1.000 1.000 1.000 1.000

FPRθ1
0.021 0.031 0.033 0.031 0.006 0.046 0.012 0.048

ACCθ2
0.995 0.991 0.998 0.986 0.987 0.997 0.996 0.982 0.998 0.987 0.971 0.997

(0.006) (0.008) (0.002) (0.017) (0.013) (0.003) (0.009) (0.012) (0.002) (0.019) (0.020) (0.003)

VCCθ2
0.988 0.982 0.994 0.970 0.974 0.992 0.990 0.958 0.994 0.967 0.926 0.992

(0.014) (0.016) (0.007) (0.044) (0.025) (0.009) (0.025) (0.035) (0.007) (0.053) (0.058) (0.009)

MSθ2
5.935 8.035 8.395 7.950 3.190 11.135 4.675 11.570

TPRθ2
1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

FPRθ2
0.019 0.030 0.032 0.030 0.006 0.046 0.013 0.048

again with four cases.

Case 5. ϵ ∼ N(0, 1),V ∼ N(0 d×1,Σ) with Σij = 0.5|i−j| for i, j = 1, . . . , d, and

ϵ and V are independent. Let p1 = p2 = p3 = 200 and p10 = p20 = p30 = 2.

The single-index parameters are β1 = (1,−1, 0, . . . , 0)⊤,β2 = (1, 1, 0, . . . , 0)⊤

and β3 = (−1, 1, 0, . . . , 0)⊤, respectively. The sample size is n = 200.

Case 6. The same as Case 5, except that the error ϵ has a t-distribution with 4

degrees of freedom.

Case 7. The same as Case 5, except that Σij = 0.5 for all i ̸= j.

Case 8. The same as Case 6, except that Σij = 0.5 for all i ̸= j.

The empirical results based on 200 data replications from these four cases

are reported in Table 4. The results are qualitatively similar to those of the

partially linear single-index model.

5. Data Analysis

We applied the proposed method to a dataset of possible advertisements on

Internet pages that is available at the University of California-Irvine machine
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Table 2. Summary of model (4.2). The average absolute correlation co-
efficient (ACCθk

), the average vector correlation coefficient (VCCθk
), the

average estimation error of linear component (ESTθk
), the average number

of nonzero components (MSθk
), the true positive rate (TPRθk

) and the false
positive rate (FPRθk

), based on 200 data replications, are reported. θk = βk

for SCAD and LASSO, and θk = βk1 for Oracle.

Case 1 Case 2 Case 3 Case 4

SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle

ACCθ1
0.996 0.994 0.998 0.989 0.991 0.998 0.997 0.989 0.998 0.995 0.983 0.998

(0.003) (0.005) (0.001) (0.013) (0.009) (0.002) (0.004) (0.006) (0.001) (0.007) (0.010) (0.001)

VCCθ1
0.991 0.988 0.996 0.977 0.982 0.994 0.992 0.968 0.995 0.982 0.948 0.993

(0.007) (0.009) (0.003) (0.033) (0.017) (0.007) (0.015) (0.022) (0.004) (0.032) (0.039) (0.006)

ESTθ1
0.250 0.296 0.167 0.402 0.368 0.211 0.238 0.560 0.182 0.347 0.697 0.222

(0.105) (0.118) (0.078) (0.250) (0.158) (0.098) (0.130) (0.157) (0.083) (0.203) (0.210) (0.099)

MSθ1
14.155 16.760 17.250 15.975 6.825 22.815 8.805 21.955

TPRθ1
1.000 1.000 0.995 1.000 1.000 1.000 0.998 1.000

FPRθ1
0.028 0.034 0.035 0.032 0.009 0.049 0.014 0.047

ACCθ2
0.984 0.985 0.997 0.958 0.974 0.996 0.985 0.970 0.997 0.950 0.945 0.995

(0.017) (0.017) (0.002) (0.035) (0.028) (0.005) (0.025) (0.019) (0.003) (0.068) (0.051) (0.007)

VCCθ2
0.963 0.973 0.992 0.905 0.952 0.988 0.962 0.919 0.992 0.872 0.835 0.987

(0.047) (0.027) (0.009) (0.085) (0.047) (0.015) (0.060) (0.061) (0.011) (0.133) (0.142) (0.020)

MSθ2
7.675 8.740 8.970 8.230 4.020 11.805 4.940 11.650

TPRθ2
1.000 1.000 0.990 1.000 0.997 1.000 0.960 0.987

FPRθ2
0.028 0.034 0.035 0.031 0.010 0.049 0.015 0.048

learning repository. The features or predictors encode the geometry of the image

as well as phrases occurring in the URL, the image’s URL and alt text, the anchor

text, and words occurring near the anchor text. The task is to predict whether

an image is an advertisement or not.

After preprocessing the dataset contains n = 2, 358 observations and p =

1, 430 predictors. Among the predictors, the first three are related to the ge-

ometry of the image and hence are continuous, the rest are binary. We divided

the predictors into groups of the three continuous predictors and of the others.

We restricted the effects of categorical predictors to be linear, granting that the

partially linear single-index model (3.1), or its generalized version with logit link

(Carroll et al. (1997)), works in this setting. The conditional independence im-

plied by model (3.1), and hence Proposition 2, still holds when we consider the

generalized partially linear single-index model.

We carried out the study by repeated random splitting of the full dataset,

one-half of the observations from the advertisement class and one-half of the

observations from the non-advertisement class as training samples, and the rest as

test samples. For each split, SCAD and LASSO were applied to the training data.

Since there were only three predictors in the semi-parametric component, we

included them in the model without shrinkage of their coefficients, with predictors
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Table 3. Summary of model (4.3). The average absolute correlation co-
efficient (ACCθk

), the average vector correlation coefficient (VCCθk
), the

average estimation error of linear component (ESTθk
), the average number

of nonzero components (MSθk
), the true positive rate (TPRθk

) and the false
positive rate (FPRθk

), based on 200 data replications, are reported. θk = βk

for SCAD and LASSO, and θk = βk1 for Oracle

Case 1 Case 2 Case 3 Case 4

SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle

ACCθ1
0.998 0.996 0.999 0.994 0.993 0.998 0.999 0.992 0.999 0.996 0.987 0.998

(0.001) (0.003) (0.000) (0.006) (0.007) (0.001) (0.000) (0.003) (0.000) (0.005) (0.007) (0.001)

VCCθ1
0.995 0.992 0.997 0.987 0.986 0.995 0.996 0.980 0.997 0.988 0.960 0.995

(0.003) (0.007) (0.003) (0.019) (0.012) (0.005) (0.002) (0.013) (0.002) (0.020) (0.030) (0.005)

ESTθ1
0.188 0.233 0.139 0.310 0.320 0.195 0.171 0.462 0.150 0.298 0.610 0.207

(0.076) (0.102) (0.062) (0.181) (0.136) (0.089) (0.082) (0.116) (0.062) (0.171) (0.184) (0.090)

MSθ1
10.815 15.170 15.095 15.215 4.515 24.345 8.000 22.100

TPRθ1
1.000 1.000 0.998 1.000 1.000 1.000 0.998 1.000

FPRθ1
0.019 0.030 0.030 0.030 0.003 0.053 0.012 0.048

ACCθ2
0.992 0.990 0.998 0.966 0.979 0.996 0.992 0.977 0.998 0.968 0.959 0.996

(0.010) (0.012) (0.002) (0.031) (0.022) (0.004) (0.016) (0.017) (0.002) (0.038) (0.031) (0.004)

VCCθ2
0.980 0.980 0.993 0.919 0.961 0.989 0.977 0.942 0.993 0.914 0.886 0.990

(0.029) (0.021) (0.007) (0.076) (0.040) (0.012) (0.045) (0.043) (0.008) (0.114) (0.100) (0.012)

MSθ2
5.775 7.785 7.960 8.165 2.645 12.950 4.315 11.325

TPRθ2
1.000 1.000 0.995 1.000 1.000 1.000 0.990 0.997

FPRθ2
0.019 0.029 0.030 0.031 0.003 0.055 0.011 0.047

given by Xβ̂1 and Zβ̂2. The partially linear model and the generalized partially

linear model with logit link were fitted to the same data. The performance of the

fitted models was evaluated by the test samples. To reduce variability, the split

into training and test sets was repeated 200 times, with the results summarized

in Table 5. The methods considered here were comparable, with LASSO having

slightly lower classification errors but apparently larger in model size. While

LASSO may not be selection consistent, it is often persistent (Greenshtein and

Ritov (2004)); the concept of persistency focuses on expected prediction losses,

not the accuracy of estimated parameters. Unreported results also show that

using the set of selected predictors {Xj : j ∈ M̂} with M̂ = {j : β̂1j ̸= 0},
instead of Xβ̂1, leads to inferior performance. More seriously, the resulting

algorithms often fail to converge due to the large size of M̂.

Supplementary Material. The supplementary file covers the regularity con-

ditions and proofs.
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Table 4. Summary of model (4.4). The average absolute correlation co-
efficient (ACCθk

), the average vector correlation coefficient (VCCθk
), the

average estimation error of linear component (ESTθk
), the average number

of nonzero components (MSθk
), the true positive rate (TPRθk

) and the false
positive rate (FPRθk

), based on 200 data replications, are reported. θk = βk

for SCAD and LASSO, and θk = βk1 for Oracle

Case 5 Case 6 Case 7 Case 8

SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle SCAD LASSO Oracle

ACCθ1
0.988 0.943 0.995 0.974 0.895 0.993 0.983 0.933 0.991 0.960 0.887 0.986

(0.013) (0.037) (0.006) (0.050) (0.092) (0.009) (0.027) (0.061) (0.013) (0.074) (0.095) (0.019)

VCCθ1
0.994 0.970 0.998 0.985 0.937 0.997 0.992 0.967 0.997 0.979 0.937 0.995

(0.005) (0.020) (0.002) (0.064) (0.082) (0.003) (0.014) (0.025) (0.004) (0.044) (0.052) (0.006)

MSθ1
7.380 16.185 10.045 15.595 4.215 13.450 5.250 12.875

TPRθ1
1.000 1.000 0.997 0.995 1.000 1.000 1.000 1.000

FPRθ1
0.027 0.071 0.040 0.068 0.011 0.057 0.016 0.054

ACCθ2
0.990 0.975 0.997 0.958 0.952 0.995 0.989 0.969 0.997 0.951 0.929 0.995

(0.013) (0.018) (0.002) (0.038) (0.032) (0.007) (0.021) (0.033) (0.002) (0.058) (0.080) (0.006)

VCCθ2
0.977 0.960 0.993 0.906 0.921 0.985 0.971 0.924 0.993 0.878 0.830 0.986

(0.035) (0.026) (0.009) (0.090) (0.055) (0.019) (0.059) (0.057) (0.008) (0.138) (0.133) (0.017)

MSθ2
7.355 15.870 9.870 15.725 3.980 13.310 4.990 13.030

TPRθ2
1.000 1.000 0.985 1.000 1.000 1.000 0.955 0.977

FPRθ2
0.027 0.070 0.039 0.069 0.010 0.057 0.015 0.055

ACCθ3
0.986 0.919 0.994 0.939 0.814 0.991 0.979 0.907 0.989 0.922 0.828 0.980

(0.020) (0.053) (0.008) (0.141) (0.155) (0.013) (0.048) (0.078) (0.015) (0.143) (0.142) (0.027)

VCCθ3
0.993 0.955 0.998 0.957 0.871 0.997 0.990 0.953 0.996 0.955 0.897 0.993

(0.015) (0.035) (0.002) (0.143) (0.156) (0.004) (0.025) (0.036) (0.005) (0.108) (0.105) (0.010)

MSθ3
7.055 16.005 10.120 15.855 3.870 13.210 5.140 13.255

TPRθ3
1.000 1.000 0.982 0.967 1.000 1.000 0.982 0.985

FPRθ3
0.025 0.070 0.041 0.070 0.009 0.056 0.016 0.056

Table 5. Advertising data. Classification errors made and the number of
predictors chosen over 200 random splitting of all samples into training and
test sets

Method Training error (%) Test error (%) Number of selected predictors
(mean±sd) (mean±sd) (mean±sd)

LASSO + PLM 1.753±0.377 3.681±0.489 206.380±55.727
LASSO +GPLM 1.423±0.317 3.353±0.495 206.380±55.727
SCAD+ PLM 2.512±0.587 4.439±0.594 61.525±15.083
SCAD+GPLM 2.198±0.551 4.047±0.549 61.525±15.083
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