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Abstract: The problem of allocating experimental units to treatment groups when

variance heterogeneity over treatment groups is present is considered. AA- and DA-

optimal allocations are derived for estimation of linear combinations of treatment

means. Explicit expressions for the design weights are provided for the AA-optimal

design. The minimax strategy is introduced as an approach to handle unknown

variances. Efficiencies of minimax allocations are evaluated.
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1. Introduction

This paper concerns optimal experimental design when the aim of the ex-

periment is to compare one or more treatments and the variance of the outcome

varies across groups. The number of experimental groups is fixed in advance

and the design problem concerns allocating experimental units to experimental

groups. An optimal allocation is sought since a careless allocation may result in

inaccurate estimates of important effects and inefficient use of resources.

Our approach to optimal design is the theory for continuous designs, which

originated in works by Kiefer (e.g., Kiefer (1974)) and is further discussed in

e.g., Atkinson, Donev, and Tobias (2007) and Silvey (1980). Deriving an optimal

design involves choosing an appropriate optimality criterion that will determine

in what sense the design is optimal. If estimation is of primary concern, two

criteria arise as natural candidates, the A criterion, which minimizes the sum

of the variances of the estimators, and the D criterion, which minimizes the

confidence region for the estimators. When interest is in estimation of linear

combinations of parameters, the AA- and DA-criteria correspond to the A- and

D-criteria, respectively.

In many experiments the assumption of homogenous variances across treat-

ment groups is not realistic. Response variables with a binomial or a Poisson

distribution are obvious examples of this. Different group variances have an im-

portant and essential impact on optimal allocation. However, this implies that
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optimal allocations are in general possible to construct only if these variances are

known. Several approaches to deal with the allocation problem when the vari-

ances are unknown have been proposed. One approach is to guess the unknown

group variances, yielding a locally optimal design. Locally optimal AA- and DA-

designs for control group experiments are given in Wong and Zhu (2008). The

case of generalized linear models was studied by Arnoldsson (1996) for 22 and by

Yang, Mandal, and Majumdar (2012) for 2k factorial experiments. If guesses of

group variances are specified in terms of a probability distribution an optimum

on-the-average (Bayesian) design may be obtained, see Pettersson and Nyquist

(2003). A third approach is to minimize the maximum of the criterion function

taken over a specified region of possible group variances, yielding a minimax de-

sign. The goal here is to give formulae for locally optimal designs and minimax

designs when linear combinations of treatment effects are to be estimated and

the DA - or AA-criterion is used. We generalize current research by considering

any linear combination of treatment group means and the minimax allocations

of subjects to treatment groups. A consideration of general linear combinations

extends the application of the theory from control group experiments with one

control group to a large range of important applications including, control group

experiments with several control groups (see e.g., Hedayat, Jacroux, and Majum-

dar (1988) and the discussion therein) and factorial experiments where estimation

of contrasts is a main issue (see e.g. the agricultural experiments on mangold and

sugar beets reported in Rothamsted Report (1936, 1937) and further discussed

in Snedecor and Cochran (1989)).

The setup of the experiments we consider is defined in the next section,

while local and minimax optimality are presented in the two subsequent sections.

Some efficiency comparisons are presented in Section 5. The paper ends with

concluding remarks in Section 6.

2. Preliminaries

Suppose there are m treatment groups and that observations from treatment

group j are stochastically independent observations on a random variable Yj ,

j = 1, . . . ,m. The expectation and variance of Yj are denoted by µj and vj (θj),

respectively, where θj is a vector of parameters, (θ1, θ2, . . . , θm) ∈ Θ, Θ being the

parameter space.

The covariance matrix for the group averages Y j if nj observations are as-

signed to the treatment groups is anm×m diagonal matrixM−1 with elements of

the form ρj = vj/nj . Assume that interest is in inference about p linear combina-

tions ATµ, where A is anm×pmatrix of constants ajk, j = 1, . . . ,m, k = 1, . . . , p.

The covariance matrix for the linear combinations is then C =
(
ATM−1A

)
.
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Example 1 (Control group experiments). In control group experiments, the first
treatment group receive a control or placebo treatment and we wish to make
inference about the differences in expected responses µ1 − µj , j = 2, . . . ,m. The
vector of differences is estimated by ATY , where AT is the (m− 1)×m matrix
AT = (1m−1 −Im−1) with 1m−1 a vector of ones and Im−1 the identity matrix
of order m− 1. The covariance matrix associated to the vector of differences is

C =


ρ1 + ρ2 ρ1 · · · ρ1

ρ1 ρ1 + ρ3 · · · ρ1
...

...
...

ρ1 ρ1 · · · ρ1 + ρm

 .

Example 2 (2× 2 factorial experiment). Let the two treatments be represented
by a and b and assign the treatment combinations (not a, not b), (a, not b), (not
a, b), and (a, b) to the four treatment groups. The interaction effect is estimated
by ATY , with AT =

(
1 −1 −1 1

)
with variance

C = ρ1 + ρ2 + ρ3 + ρ4 =
v1
n1

+
v2
n2

+
v3
n3

+
v4
n4

.

If interest is in inference about the main effects a and b, as well as the interaction
effect, the matrix defining the linear combinations is

AT =

−1 1 0 0

−1 0 1 0

1 −1 −1 1


and the covariance matrix is

C =

 ρ1 + ρ2 ρ1 −ρ1 − ρ2
ρ1 ρ1 + ρ3 −ρ1 − ρ3

−ρ1 − ρ2 − ρ1 − ρ3 ρ1 + ρ2 + ρ3 + ρ4

 .

3. Local AA- and DA−optimality

The AA criterion ΨA minimizes the sum of variances of the estimated statis-
tics while the DA criterion ΨD minimizes (log of) the determinant of the covari-
ance matrix. The latter is equivalent to minimizing the volume of a confidence
ellipsoid and is sometimes called (the log of) the generalized variance.

Let S be the set of subsets of p elements from the set {1,. . . ,m},
(
m

p

)
in

all. Let A[s] be the p× p matrix obtained from selecting the rows s ∈ S from the
matrix A and M[s] be the p×p matrix obtained from selecting rows and columns
s ∈ S from the matrix M . For example, for m = 3, the matrix M[1,3] is the 2× 2
matrix obtained when deleting the second row and second column of M .
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Theorem 1. When estimating ATµ, the criteria for AA-optimality and DA -

optimality are

ΨA = tr (C) =

p∑
k=1

m∑
j=1

a2jkρj ,

ΨD = ln det (C) = ln
∑
s∈S

(
detA[s]

)2∏
j∈s

ρj .

Corollary 1. In the control group experiment the criteria for AA-optimality and

DA-optimality are

ΨA = tr (C) = (m− 1) ρ1 +
m∑
j=2

ρj ,

ΨD = ln det (C) = ln
m∑
j=1

m∏
k=1
k ̸=j

ρk.

Example 1 (continued). If m = 3, then

ΨA = 2
v1
n1

+
v2
n2

+
v3
n3

,

ΨD = ln

{(
v2
n2

v3
n3

)
+

(
v1
n1

v3
n3

)
+

(
v1
n1

v2
n2

)}
.

Example 2 (continued). The criterion functions when interest is in inference

about the interaction effect in a 2×2 experiment are trivially ΨA = v1/n1 +

v2/n2 + v3/n3 + v4/n4 and ΨD = lnΨA, respectively. For inference about main

effects as well as the interaction effect, the criterion functions are obtained from

Theorem 1 as

ΨA = 3
v1
n1

+ 2
v2
n2

+ 2
v3
n3

+
v4
n4

,

ΨD = ln

(
v1
n1

v2
n2

v3
n3

+
v1
n1

v2
n2

v4
n4

+
v1
n1

v3
n3

v4
n4

+
v2
n2

v3
n3

v4
n4

)
.

For finding the AA- and DA-optimal designs we take nj = ωjN , where N

is the total number of observations so the ωj , j = 1, . . . ,m, are design weights.

Denote optimal design weights by ω∗ = (ω∗
1, . . . , ω

∗
m)T .

Theorem 2. For AA-optimal and DA-optimal designs, weights are given by,

respectively,

ω∗
j =

(
p∑

k=1

a2jk

)1/2

v
1/2
j

m∑
r=1

(
p∑

k=1

a2rk

)1/2

v
1/2
r

, j = 1, . . . ,m, (3.1)
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ω∗
j = p−1

( ∑
r∈Rj

(
detA[r]

)2 ∏
k∈r

(
υk
ω∗
k

)
exp

(
ΨD (ω∗)

) )
, j = 1, . . . ,m, (3.2)

where Rj ⊂ S is the set of all s ∈ S that contain j.

For p = 1 and homogenous variances, this result reduces to Corollary 1 of

Pukelsheim and Torsney (1991). The weights for AA-optimality are explicitly

given, while, in general, a system of non-linear equations needs to be solved

to obtain the weights for DA-optimality. Here the Neyman allocation formula,

used in stratified sampling for estimating a population mean, coincides with the

AA-optimal design weights with AT =
(
a1 a2 · · · am

)
, where the constant aj is

interpreted as the relative size of stratum j.

Corollary 2. In the control group experiment, the AA-optimal and DA-optimal

design weights are given by, respectively,

ω∗
1 =

√
(m− 1) v1√

(m− 1) v1 +
m∑
r=2

√
vr

,

ω∗
j =

√
vj√

(m− 1) v1 +
m∑
r=2

√
vr

, j = 2, 3, . . . ,m,

ω∗
j = (m− 1)−1

(
1−

m∏
k=1
k ̸=j

(υk/ω
∗
k)

exp (ΨD (ω∗))

)
, j = 1, . . . ,m.

The weights in the corollary and an approximation to the DA -optimal

weights are also in Wong and Zhu (2008).

Example 1 (continued). In a control group study with m = 2, Corollary 2

gives

ω∗
1 =

υ
1/2
1

υ
1/2
1 + υ

1/2
2

, ω∗
2 = 1− ω∗

1,

for AA- and DA-optimality. With r = υ2/υ1, this is

ω∗
1 =

1

1 +
√
r
.

For equal variances a uniform allocation is optimal, while the treatment weight

ω∗
2 → 1 as r → ∞, and ω∗

2 → 0 as r → 0.
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When there are two treatment groups and one control group, the AA -optimal

weights are ω∗
1 =

√
2v1/D, ω∗

2 =
√
v2/D, ω∗

3 =
√
v3/D, where D =

√
2v1+

√
v2+√

v3. By defining the variance ratios r2 = υ2/υ1 and r3 = υ3/υ1 these are

ω∗
1 =

1

1 +
√
r2 +

√
r3
, ω∗

2 =

√
r2

1 +
√
r2 +

√
r3
, ω∗

3 = 1− ω∗
1 − ω∗

2.

The DA-optimal weights for a three group experiment satisfy

ω∗
1 =

1

2

(
1− (υ2/ω

∗
2)(υ3/ω

∗
3)

expΨD (ω∗)

)
,

ω∗
2 =

1

2

(
1− (υ1/ω

∗
1)(υ3/ω

∗
3)

expΨD (ω∗)

)
,

ω∗
3 =

1

2

(
1− (υ2/ω

∗
2)(υ3/ω

∗
3)

expΨD (ω∗)

)
.

In general, the DA-optimal weights need to be obtained numerically. However,

for the special case of equal treatment group variances, r = r2 = r3,

ω∗
1 =

3−
√
1 + 8r

4 (1− r)
, r ̸= 1,

ω∗
2 = ω∗

3 =
1− ω∗

1

2
.

The AA-optimal allocation is generally more concentrated to the control

group than the DA-optimal allocation.

Example 2 (continued). For inference about the interaction effect in a 2×2

experiment Theorem 2 yields

ω∗
j =

√
vj

4∑
r=1

√
vr

, j = 1, 2, 3, 4,

for both the AA- and DA-criteria. Similarly, for inference about main effects as

well as the interaction effect, the optimal design weights are ω∗
1 =

√
3v1/D, ω∗

2 =√
2v2/D, ω∗

3 =
√
2v3/D, ω∗

4 =
√
v4/D, when using the AA-criterion, where D =√

3v1 +
√
2v2 +

√
2v3 +

√
v4, and

ω∗
j =

1

3

(
1−

4∏
k=1
k ̸=j

υk/ω
∗
k

ΨD (ω∗)

)

when using the DA-criterion.
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The optimal design weights depend on the variances so if they are unknown,

one cannot compute the optimal design weights. If the variances are unknown

but their ratios are known, say υj = γjυ1 for j = 2, . . . ,m, Theorem 2 applies

with υj replaced by γj .

4. Minimax Optimal Allocations

For the minimax approach we define a region Θ0 ⊂ Θ of assumed values for

the parameters defining the variances, υ (θ), and compute a design that minimizes

max
θ∈Θ0

Ψ(ω, υ (θ)) .

In many applications Θ0 is a Cartesian product Θ0 = Θ01 × Θ02 × . . . × Θ0m,

where Θ0j is the set of assumed parameter values θj in group j. This implies

that the assumptions on the variance in one group are made independently of

the assumptions on the variance in another group. With this restriction, the

maximization of the criterion function is considerably simplified.

Theorem 3. Let A be a m × p matrix, let Θ0 be the Cartesian product Θ0 =

Θ01 × Θ02 × . . . × Θ0m , and consider estimation of ATµ. Then, ΨA (ω, υ (θ))

and ΨD (ω, υ (θ)) are maximized over θ ∈ Θ0 at υ (θ) = υ∗ (θ), independently of

ω, where υ∗ (θ) = (υ∗1, υ
∗
2, . . . , υ

∗
m)T and

υ∗j = max
θj∈Θ0j

υj (θj) . (4.1)

Without the restriction of a Cartesian parameter space Theorem 3 does not

hold in general.

Corollary 3. AA- and DA-minimax designs are obtained if υj, j = 1, . . . ,m in

(3.1) and (3.2) are replaced by υ∗j , j = 1, . . . ,m, defined in (4.1).

According to Corollary 3, AA- and DA-minimax designs are based on the

largest possible variance in each group, which corresponds to the largest pos-

sible uncertainty in the group means and is different from the largest possible

uncertainty in parameter values. An illustration of this is when responses are

binary with group variances υj (θj) = θj (1− θj) , where θj ∈ Θ0j is the response

probability in group j and υ∗j is the variance associated to the value of θj being

closest to 0.5. Hence, two regions Θ01 = [0, 1], with complete ignorance about

the parameter, and Θ02 = [0.5− α, 0.5 + α] for some small α > 0, with fairly pre-

cise knowledge about the parameter value, yield the same maximum variance,

υ∗ = 0.25, and thereby yield identical minimax designs. On the other hand, a

region of the form Θ03 = [0.1− α, 0.1 + α] would yield completely different mini-

max designs than those for Θ01 (and Θ02). Further, if concern is on efficiency one

would consider a standardized maximin criterion (see e.g., Dette et al. (2006)).
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5. Efficiency Comparisons

In this section efficiency evaluations are made to clarify (i) robustness of the

minimax allocations to erroneous prior assumptions and (ii) the potential gains

from using an optimal allocation over a uniform allocation. For this DA-efficiency

of the minimax allocation ωMinimax is taken as

effD (ωMinimax, θ) =

[
ΨD (ω∗, υ(θ))

ΨD (ωMinimax, υ(θ))

]1/m
,

and the corresponding AA-efficiency as

effA (ωMinimax, θ) =
ΨA (ω∗, υ (θ))

ΨA (ωMinimax, υ (θ))
,

where ω∗ is the locally optimal allocation given the variances υ (θ).

Example 1 (continued). For the control group experiment with m = 2 the

AA- and DA-criteria result in the same allocations and both efficiences are

eff (ωMinimax, r) =
1/ω∗ + r/(1− ω∗)

1/ωminimax + r/(1− ωminimax)
.

Figure 1 displays the efficiencies for the minimax designs for 0 ≤ r ≤ 20. The

assumed maximum variance ratio defining the minimax design is denoted by

rmax to avoid confusion with true r. The minimax designs are fairly robust

to moderate deviations from the prior assumption about the variance ratio.

For example when rmax = 5 the efficiency of the corresponding minimax design

exceeds 0.95 for values of r between 2 and 15, approximately. If the variances

are assumed equal, the efficiency is close to 1 for values of r between 0.5 and 2,

and one has eff → ωminimax as r → 0 and eff → 1− ωminimax as r → ∞.

Figure 2 shows the contours of effD and effA for minimax allocations when

m = 3. As long as the two variance ratios are roughly equal and neither one

is very large or very small the AA-efficiency of the minimax design (panel a) is

quite high. On the other hand, the AA -efficiency drops substantially, especially

for combinations of relatively high and low values of r2 and r3. The DA-efficiency

(panel b) exceeds 0.9 for most values of the variance ratios. Examples with other

values on r2 and r3 may be obtained from the authors upon request.

The uniform allocation is often chosen in applications. To compare the per-

formance of the minimax allocation with the uniform allocation we evaluate the

relative efficiencies

effU
D (ωMinimax, θ) =

[
ΨD (ωUniform, υ (θ))

ΨD (ωMinimax, υ (θ))

]1/p
,

effU
A (ωMinimax, θ) =

ΨA (ωUniform, υ (θ))

ΨA (ωMinimax, υ (θ))
.
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Figure 1. AA/DA-efficiencies for minimax allocations.

(a) AA-minimax allocation. (b) DA-minimax allocation.

Figure 2. Efficiency contour plots when rmax
2 = rmax

3 = 2.

When m = 2, effU
D = effU

A and is

effU (ωMinimax, r) =
2 + 2r

1/ωminimax + r/(1− ωminimax)
.
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(a) AA-minimax allocation. (b) DA-minimax allocation.

Figure 3. Contour plots of efficiencies for the minimax allocations compared
to a uniform allocation when rmax

2 = 2 and rmax
3 = 10.

The minimax allocation is more efficient than the uniform allocation as long

as the variance ratio r exceeds
√
rmax. If it is believed that the variances are

different in the groups the minimax allocation offers an improvement compared

to the uniform allocation. Note that effU → 2ωminimax as r → 0 and effU →
2 (1− ωminimax) as r → ∞.

When rmax
2 = rmax

3 = 2 the minimax AA-optimal allocation coincides with

the uniform allocation and the relative AA-efficiency is 1. Panel a) of Figure 3

shows the relative AA-efficiency when rmax
2 = 2 and rmax

3 = 10. Apparently, the

relative AA -efficiency favors the minimax allocation in a region where r3 exceeds

r2. The relative DA-efficiencies are shown in panel b). The relative DA-efficiency

is slightly larger than 1 when the variance ratios are in the neighborhood of the

assumed values, and increases as the variance ratios increases. For the minimax

allocation to be superior to the uniform, r3 cannot be too small.

6. Conclusions

General expressions for optimal allocations when estimating linear combina-

tions of treatment means using the DA- and AA-criteria are derived with explicit

expressions obtained for the AA-optimal design weights.

With model parameters and group variances rarely known beforehand, a

minimax strategy can be used. Minimax allocations based on the DA- and AA

-criteria are shown to be particularly simple when the parameter space is the

Cartesian of parameter spaces associated to each treatment group.
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Efficiencies for minimax designs are quite robust and more efficient than

those for the uniform designs in control group experiments, as long as the prior

information is fairly accurate. With a control group and two treatment groups,

the A-efficiency becomes low only when the variances in the two treatment groups

are opposite and differs from what was specified. When information about true

parameter values is vague we recommend using a pilot study to gain more in-

formation and thereby decrease the uncertainty about the treatment group vari-

ances. When efficiency is the primary concern, it would be interesting to con-

sider standardized maximin efficient designs, as in Dette et al. (2006) and Dette,

Trampisch, and Hothorn (2007).
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Appendix

Proof of Theorem 1. The criterion for AA-optimality is obtained by evalu-

ating the matrix multiplications in C = ATM−1A and the stated result follows

immediately.

The criterion for DA-optimality is obtained by applying the Cauchy-Binet

theorem for the matrices ATM−1 and A. With it, det
(
(ATM−1)A

)
=
∑

s∈S

det
((

ATM−1
)
[s]

A[s]

)
. For s = (s1, s2, . . . sp) we find detATM−1A = det

∑
s∈S

AT
[s]M

−1
[s] A[s] and since detM−1

[s] =
∏

j∈s ρj , the desired result is obtained.

Proof of Theorem 2. For AA-optimality we differentiate the Lagrange function,

equate the derivatives to zero, multiply the first m equations by ω∗2
j , take the

square root of both sides and sum over all j. This yields

λ1/2
m∑
j=1

ω∗
j =

m∑
j=1

(
p∑

k=1

a2jkvj

)1/2

.

Since ω∗
j sum to one the stated first order condition follows.

The condition for D-optimality is obtained similarly. Differentiating the La-

grange function, equating the derivatives to zero, multiplying the first m equa-



548 ELLINOR FACKLE-FORNIUS AND HANS NYQUIST

tions by ω∗
j , and summing yields

m∑
j=1

∑
r∈Rj

(
detA[r]

)2 ∏
k∈r

ρ∗k

exp (ΨD (ω∗))
= λ

m∑
j=1

ω∗
j .

The summation over Rj in the left hand side is over the p -combinations that

contain j. Each unique p-combination which contains j is included in the sum-

mation as j runs from 1 to m. Hence, each p -combination appears p times and

sum to p exp (ΨD (ω∗)). It follows that λ = p and the stated first order condition

is obtained.

Proof of Corollary 2. For AA-optimality note that
∑p

k=1 a
2
1k = (m− 1) and∑p

k=1 a
2
jk = 1 for j = 2, 3, . . . ,m. Application of Theorem 2 yields the stated

first order condition.

For DA-optimality note that
(
detA[r]

)2
= 1 for all r ∈ R. With p = m− 1,

Theorem 2 implies

ω∗
j = (m− 1)−1

∑
r∈Rj

∏
k∈r

(
υk
ω∗
k

)
/ exp (ΨD (ω∗))

= (m− 1)−1

{
m∑
s=1

m∏
k=1
k ̸=s

(
υk
ω∗
k

)
−

m∏
k=1
k ̸=j

(
υk
ω∗
k

)}
/ exp (ΨD (ω∗))

and the stated first order condition is obtained.

Proof of Theorem 3. It follows from Theorem 1 that ΨA (ω, υ (θ)) is a

sum of positive constants times ρj = υj (θj) /ωj . Hence, ΨA (ω, υ (θ)) is max-

imized over Θ0 when each υj (θj) is maximized. Similarly, from Theorem 1,

exp (ΨD (ω, υ (θ))) is a sum of positive constants times detM−1
[s] =

∏
j∈s υj/ωj

and it follows that ΨD (ω, υ (θ)) is maximized over Θ0 when υj (θj) is maximized.
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