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Abstract: In this paper we prove a conjecture raised by Tanaka on the first moment

of the limiting distribution of the least squares estimator (LSE) of the unit root

I(d) process. The limiting random variable is a ratio of quadratic functionals of

the d-fold integrated Brownian motion. Its expectation can be found by using

Karhunen-Loéve expansion and a property of the eigenfunctions of its covariance

kernel.
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1. Introduction

Consider the integrated process

(1− L)dyj = ϵj , j = 1, . . . , T, (1.1)

where L is the lag operator such that Lyj = yj−1, d is a positive integer, y0 = 0

and {ϵj} is an i.i.d. sequence with mean zero and variance σ2. The process {yj}
is known as the unit root process, a nonstationary time series. White (1958) and

Dickey and Fuller (1979) showed that, when d = 1, the least squares estimator

(LSE) of the autoregressive coefficient of the the process converges in distribution

to a functional of stochastic integrals of Brownian motion. Chan and Wei (1988)

and Tanaka (1996) showed by the Functional Central Limit Theorem that, for

d > 1, the statistic

ρ̂ =

∑T
j=1 yj−1yj∑T
j=1 y

2
j−1

(1.2)

converges asymptotically to a functional of stochastic integrals of integrated

Brownian motion. Specifically,

T (ρ̂− 1) ⇒


(W 2(1)−1)/2∫ 1

0 W 2(t)dt
, d = 1,

X2
d−1(1)/2∫ 1

0 X2
d−1(t)dt

, d > 1
(1.3)
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where W (t) is the Brownian motion and Xd(t) is the d-fold integrated Brownian

motion, defined recursively as

Xd(t) =

∫ t

0
Xd−1(s)ds, t ≥ 0, d ≥ 1,

for all positive integer d and X0(t) = W (t). As pointed out in Tanaka (1999), ρ̂

in (1.2) can also be interpreted as the LSE of the coefficient ρ of the model

yj = ρyj−1 + vj , (1− L)d−1vj = ϵj , j = 1, . . . , T. (1.4)

The limiting distribution of the LSE is of interest for statistical inference. Chan

and Wei (1988) considered this for a general nonstationary AR(p) model when

the characteristic roots lie on or outside the unit circle. An AR(1) model with

autoregressive coefficient converging to one has been studied in Chan and Wei

(1987). To obtain the percentiles of the limiting distribution in the form of

a stochastic integral of the Ornstein-Uhlenbeck process, Chan (1988) derived

a corresponding expansion using the Karhunen-Loéve expansion. A review of

inference on nonstationary time series models was given in Chan (2006).

For the limiting distribution (1.3) when d = 1, the LSE is the Dickey-Fuller

statistic. The analytic form of the density function of its limiting distribution

is known to be difficult, and earlier researches approximate the distribution by

Monte Carlo simulations and by numerical inversion of its Laplace transform.

For d = 2 and 3, Tanaka (1996) computed the Laplace transform of the limiting

distribution using the Girsanov Theorem. The corresponding transforms for

d ≥ 4 have not been found. However, Tanaka noticed in the same paper that

E

[
X2

d(1)/2∫ 1
0 X2

d(t)dt

]
= d+ 1 (1.5)

for d = 1, 2. Combined with the fact that (1.5) is true for d = 0, he conjectured

that (1.5) holds for any non-negative integer d.

We provide a method to compute the expectation of this type of functional

using the Karhunen-Loéve expansion of Xd(t), and prove the conjecture.

2. Karhunen-Loéve Expansion of Integrated Brownian Motion

Suppose that {X(t) : 0 ≤ t ≤ 1} is a mean zero Gaussian process with co-

variance function K(t, s) = E(X(t)X(s)). The Karhunen-Loéve Theorem states

that X(t) can be decomposed as

X(t) =

∞∑
k=1

√
λkek(t)ξk,
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where λ1 ≥ λ2 ≥ · · · ≥ 0 are the eigenvalues of the kernel K(t, s) corresponding

to the eigenfunctions e1(t), e2(t), . . . such that

λe(t) =

∫ 1

0
K(t, s)e(s)ds for 0 ≤ t ≤ 1,

with {ξk : k ≥ 1} independent N(0, 1) random variables. The eigenfunctions

{ek(t) : k ≥ 1} are orthonormal in L2[0, 1], and

K(t, s) =

∞∑
k=1

λkek(t)ek(s).

A natural consequence of the KL expansion is the distributional identity

J =

∫ 1

0
X2(t)dt law

=

∞∑
k=1

λkξ
2
k.

The characteristic function of J can be derived as

E(exp(iuJ )) =

∞∏
k=1

(1− 2iuλk)
−1/2, for u ∈ R.

The significance of the KL expansion is that it minimizes the total mean

squared error compared to other expansions of stochastic processes. Very few

Gaussian processes have their KL expansion explicitly computed. Freedman

(1999) computed the KL expansion for the integrated Brownian motion Xd(t)

when d = 1, and showed that the eigenvalues are roots of the equation 1 +

cos(1/x1/4) cosh(1/x1/4) = 0. Gao, Hannig, and Torcaso (2003) studied the KL

expansion of Xd(t) for any positive integer d. They showed the eigenfunctions of

Cov(Xd(t), Xd(s)) satisfy the following Sturm-Liouville problem on the interval

[0,1]:

λf (2d+2)(t) = (−1)d+1f(t) = (i)2d+2f(t)

with boundary conditions f (k)(0) = f (d+1+k)(1) = 0 for k = 0, 1, . . . , d, i the

imaginary unit. Thus, the eigenfunctions are the nontrivial functions of the form

f(t) =

2d+1∑
j=0

cje
αjt (2.1)

with the cj ’s undetermined constants, αj = λ−1/(2d+2)iωj and ωj = exp((jπ/(d

+1))i) satisfying the boundary conditions. The eigenvalues λ’s are determined
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by setting the determinant of

M =



1 1 · · · 1

ω0 ω1 · · · ω2d+1
...

...
. . .

...

ωd
0 ωd

1 · · · ωd
2d+1

ωd+1
0 eα0 ωd+1

1 eα1 · · · ωd+1
2d+1e

α2d+1

...
...

. . .
...

ω2d+1
0 eα0 ω2d+1

1 eα1 · · · ω2d+1
2d+1e

α2d+1


to be zero.

We study the behavior of the orthonormal eigenfunctions of Xd(t) for any

positive integer d at t = 1, and show that this is the key for evaluating the

expectation. First, we have a lemma regarding the upper half of a discrete

Fourier matrix. Its proof is given in the Supplementary Material.

Lemma 1. Let ω = exp(iπ/(d+ 1)) be the (2d+2)th root of unity. Let M̃ be the

(d+1)× (2d+2) matrix with entries M̃jk = ω(j−1)(k−1), for j = 1, . . . , d+1, k =

1, . . . , 2d+2. Let c = [c0, c1, . . . , c2d+1]
′ satisfy M̃c = 0. The vector c satisfies

(1)
2d+1∑
j,k=0

|j−k|≠d+1

cjck
ωj + ωk

= 0.

(2)

2d+1∑
j,k=0

|j−k|≠d+1

(−1)j+k cjck
ωj + ωk

= 0.

(3)

2d+1∑
j,k=0

(−1)j+kcjck − (2d+ 2)
∑

|j−k|=d+1

(−1)j+kcjck = 0.

Theorem 1. For the d-fold integrated Brownian motion Xd(t), its orthonormal

eigenfunctions satisfy e2k(1) = 2d+ 2 for every positive integer k.

Proof. Let c̄ = [c̄0, c̄1, . . . , c̄2d+1]
′ with c̄i = (−1)ieαici. The boundary conditions

on the eigenfunction at (2.1) show that Mc = 0. We split this into M̃c = 0 and

M̃ c̄ = 0. Since f(t) is an eigenfunction, for any k we may write

e2k(1) =
f2(1)∫ 1

0 f2(t)dt
.

Thus we only have to show that

f2(1) = (2d+ 2)

∫ 1

0
f2(t)dt. (2.2)
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Plugging (2.1) into (2.2) yields

2d+1∑
j,k=0

cjcke
αj+αk = (2d+ 2)

2d+1∑
j,k=0

|j−k|̸=d+1

cjck
αj + αk

(eαj+αk − 1) + (2d+ 2)
∑

|j−k|=d+1

cjck.

(2.3)

Rearranging the terms in (2.3) and substituting cje
αj with (−1)j c̄j , we have

(2d+ 2)
2d+1∑
j,k=0

|j−k|̸=d+1

cjck
αj + αk

− (2d+ 2)
2d+1∑
j,k=0

|j−k|̸=d+1

(−1)j+k c̄j c̄k
αj + αk

+

2d+1∑
j,k=0

cjcke
αj+αk − (2d+ 2)

∑
|j−k|=d+1

cjck = 0. (2.4)

As both c and c̄ are in the null space of M̃ , by Lemma 1, we obtain

2d+1∑
j,k=0

|j−k|≠d+1

cjck
αj + αk

=
1

λ−1/(2d+2)i

2d+1∑
j,k=0

|j−k|≠d+1

cjck
ωj + ωk

= 0,

2d+1∑
j,k=0

|j−k|̸=d+1

(−1)j+k c̄j c̄k
αj + αk

=
1

λ−1/(2d+2)i

2d+1∑
j,k=0

|j−k|≠d+1

(−1)j+k c̄j c̄k
ωj + ωk

= 0,

2d+1∑
j,k=0

cjcke
αj+αk − (2d+ 2)

∑
|j−k|=d+1

cjck = 0.

Hence, we have proven (2.4) and the result follows.

3. Expectation of the Limiting Distribution

Theorem 2. Suppose X(t) is the mean zero Gaussian process X(t) =
∑∞

k=1

√
λk

ek(t)ξk. If e
2
k(1) = c, then

E

[
X2(1)/2∫ 1
0 X2(t)dt

]
=

c

2
.

Proof. Denote the Laplace transform of J =
∫ 1
0 X2(t)dt by ϕ(u). Then for

u > 0,

ϕ(u) =E [exp(−uJ )] = E
[
exp

{
− u

∞∑
m=1

λmξ2m

}]
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=

∞∏
m=1

E
[
exp

{
−uλmξ2m

}]
=

∞∏
m=1

(1 + 2uλm)−1/2.

Since a−1 =
∫∞
0 e−audu, a > 0, we have

E

[
X2(1)/2∫ 1
0 X2(t)dt

]

=
1

2
E

[
X2(1)

∫ ∞

0
exp

{
−u

∫ 1

0
X2(t)dt

}
du

]

=
1

2
E

( ∞∑
k=1

√
λkek(1)ξk

)2 ∫ ∞

0
exp

{
−u

∞∑
m=1

λmξ2m

}
du


=
1

2

∫ ∞

0
E

 ∞∑
k,j=1

√
λkλjek(1)ej(1)ξkξj

 ∞∏
m=1

exp
{
−uλmξ2m

} du

=
1

2

∫ ∞

0

∞∑
k,j=1

√
λkλjek(1)ej(1) · E

[
ξkξj

∞∏
m=1

exp
{
−uλmξ2m

}]
du

=
1

2

∫ ∞

0

∞∑
k=1

λke
2
k(1) · E

[
ξ2k

∞∏
m=1

exp
{
−uλmξ2m

}]
du

=
1

2

∫ ∞

0

∞∑
k=1

λke
2
k(1) ·

∞∏
m̸=k

E
[
exp

{
−uλmξ2m

}]
· E
[
ξ2k exp

{
−uλkξ

2
k

}]
du.

Here ξ2k has the Chi-squared distribution with moment generating function

E
[
exp

{
−tξ2m

}]
= (1 + 2t)−1/2. (3.1)

Differentiating (3.1) with respect to t, we obtain E
[
ξ2k exp{−tξ2k}

]
= (1+2t)−3/2.

It follows that,

E

[
X2(1)/2∫ 1
0 X2(t)dt

]
=
1

2

∫ ∞

0

∞∑
k=1

λke
2
k(1) ·

∞∏
m̸=k

(1 + 2uλm)−1/2 · (1 + 2uλk)
−3/2du

=
1

2

∫ ∞

0

∞∏
m=1

(1 + 2uλm)−1/2 ·
∞∑
k=1

λke
2
k(1) · (1 + 2uλk)

−1du

=
1

2

∫ ∞

0

∞∏
m=1

(1+2uλm)−1/2 ·
∞∑
k=1

e2k(1) ·
d

du
log
[
(1+2uλk)

1/2
]
du
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=
1

2

∫ ∞

0
ϕ(u) ·

∞∑
k=1

e2k(1) ·
d

du
log
[
(1 + 2uλk)

1/2
]
du

=
c

2

∫ ∞

0
ϕ(u) ·

∞∑
k=1

d

du
log
[
(1 + 2uλk)

1/2
]
du

=
c

2

∫ ∞

0
ϕ(u) · d

du
log

[ ∞∏
k=1

(1 + 2uλk)
1/2

]
du

=− c

2

∫ ∞

0
ϕ(u) · d

du
log [ϕ(u)] du = − c

2

∫ ∞

0
dϕ(u)

=− c

2

(
lim
u→∞

ϕ(u)− ϕ(0)
)
=

c

2
.

Corollary 1. For any positive integer d,

E

[
X2

d(1)/2∫ 1
0 X2

d(t)dt

]
= d+ 1. (3.2)

Remark. If we let X(t) be the Brownian bridge B(t) = W (t) − tW (1), then

B(1) = 0, and

E

[
B2(1)/2∫ 1
0 B2(t)dt

]
= 0,

which can also be verified by its eigenfunction fk(t) = sin(kπt) as above.

As an application of Corollary 1, we obtain the asymptotic expression for

the bias of the least square estimator ρ̂ defined in (1.1).

Proposition 1. As T → ∞, E(T (ρ̂−1)) → d+1, and E(ρ̂−1) = (d+1)T+o(T−1).

Proof. By Lemma 1 and Remark 3 in Ing, Sin, and Yu (2010), we have E(|T (ρ̂−
1)|) = O(1). Thus, T (ρ̂−1) is uniformly integrable and with (3.2), give the result.
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