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Abstract: This paper considers semiparametric inference for longitudinal data col-

lected at irregular and possibly subject-specific times. We propose an irregular time

autoregressive model for the error process in a partially linear model and develop a

unified semiparametric profiling approach to estimating the regression parameters

and autoregressive coefficients. An appealing feature of the proposed method is that

it can effectively accommodate irregular and subject-specific observation times. We

establish the asymptotic normality of the proposed estimators and derive explicit

forms of their asymptotic variances. For the nonparametric component, we con-

struct a two-stage local polynomial estimator. Our method takes into account the

autoregressive error structure and does not drop any observations. The asymptotic

bias and variance of the estimator are derived. We report on simulation studies

conducted to evaluate the finite sample performance of the proposed method. The

analysis of a dataset of CD4 cell counts of HIV seroconverters demonstrates its

application.
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1. Introduction

Longitudinal data arise in many applications, notably in biomedical studies.

Typically, the main objectives of a longitudinal study are to estimate how the

response variable is affected by covariates and how it changes over time. A distin-

guishing feature of longitudinal data is the correlation of repeated observations

from the same subject over time. It is important to model within-subject covari-

ances in the analysis. This increases the efficiency of the regression parameter

estimator, enhances statistical power for hypothesis testing and reduces the bias

of parameter estimation (Wang (2003)); Lin et al. (2004); Wang, Carroll, and Lin

(2005)). The estimation of covariance itself can provide additional information

on the association among observations measured over time.

The estimation of covariance functions with longitudinal data is a challeng-

ing problem due to the presence of a large number of parameters and the positive
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definite constraint. Another difficulty is that longitudinal data are often collected

at irregular and subject-specific times. Wu and Pourahmadi (2003) proposed a

method that transforms the problem of covariance estimation to a series of sim-

pler regression problems. Huang, Liu, and Liu (2007) utilized a smoothing-based

regularization approach combined with a modified Cholesky decomposition for

the estimation of covariance matrices, these methods are suitable for longitudi-

nal data with regular observation times. Fan, Huang, and Li (2007) and Fan

and Wu (2008) proposed a semiparametric approach in which a parametric cor-

relation structure is assumed while allowing a nonparametric variance function.

Li (2011) studied a kernel-based bivariate nonparametric method for covari-

ance estimation with longitudinal data. These methods can be used in analyzing

longitudinal data with irregular and subject-specific observation times.

Different from these methods, we propose an irregular time autoregressive

(AR) model aimed at directly modeling the error process itself but not the co-

variance function. This model can accommodate irregular and possibly subject-

specific observation times. Some authors have studied the analysis technique for

non-stationary and irregular time series (Salcedo et al. (2012)). Ours is a natural

generalization of the standard AR model, which has been used in longitudinal

analysis with equally-spaced observation times (Kenward (1987)). We adopt a

partially linear model for the mean component with the proposed irregular time

AR model for the error process. We propose a unified semiparametric profile

approach to parameter estimation. An interesting aspect of this approach is

that the regression parameters and AR coefficients are estimated simultaneously

based on a single profile least squares criterion. Our method does not drop any

observations and takes into account within-subject correlation structures. We

establish the asymptotic normality of these estimators and derive explicit forms

of their asymptotic covariance matrices. For the nonparametric component, we

consider a two-stage local polynomial estimator that takes into account the AR

error structure and does not drop any observations. Its asymptotic bias and

variance are derived.

There is a large body of literature on longitudinal data regression models.

Various parametric approaches have been developed for longitudinal data anal-

ysis (Liang and Zeger (1986) and Diggle, Liang, and Zeger (1994)). Ruckstuhl,

Welsh, and Carroll (2000) and Wang (2003) proposed nonparametric methods

that allow one to explore possible hidden structures in the data and to reduce

possible modeling biases of the traditional parametric methods. Semiparametric

longitudinal data models, especially partially linear models, have been studied by

He, Zhu, and Fung (2002), Chen and Jin (2006), Fan, Huang, and Li (2007), Qin,

Zhu, and Fung (2009), to mention only a few. Semiparametric models strike a

balance between a general nonparametric approach and a fully parametric spec-

ification, and are now being widely used in longitudinal studies.
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The remainder of the paper is organized as follows. In Section 2 we pro-

pose an irregular time AR process model for correlation structure in longitudinal

data and develop a semiparametric profile least squares approach for parameter

estimation. In Section 3 we study the asymptotic properties of the proposed

estimator. A two-stage local linear estimator of the nonparametric component

is constructed in Section 4. Section 5 presents results from numerical studies.

These results show that the proposed method has good finite sample properties

and performs better than the estimator without considering the correlation in

the data. The proposed method is also applied to CD4 count data to illustrate

its application. Concluding remarks are given in Section 6. The proofs of the

main results are relegated to the Supplementary Material.

2. Model and Method

2.1. Motivation

To motivate the proposed method, we consider the dataset of CD4 cell counts

among HIV seroconverters that has been analyzed by many authors, see for

example Zeger and Diggle (1994), Wang, Carroll, and Lin (2005), Leng, Zhang,

and Pan (2010), and Li (2011). In this dataset, there are 2,376 observations of

CD4 cell counts on 369 men infected with the HIV virus, whose CD4 counts were

measured during a period of 3 years before to 6 years after seroconversion. We

take the root of CD4 cell counts as the response as in the previous studies. Several

factors may affect the level of this count, and an important question is to estimate

the effects of these factors and determine if they are significant. Specifically, the

dataset includes the explanatory variables SMOKE (smoking status measured

by packs of cigarettes), DRUG (drug use, yes, 1; no, 0), SEXP (number of sex

partners), DEPRESSION (larger values indicate increased depressive symptoms),

YEAR (the effect of time since seroconversion), and AGE (relative to a given time

origin). Simple pairwise scatter plots suggest that YEAR affects the dependence

nonlinearly and the others have linear effects on the CD4 counts. Therefore, we

initially use a semiparametric regression model to fit this data,√
CDi,j = AGEi,jβ1 + SMOKEi,jβ2 +DRUGi,jβ3 + PARTNERSi,jβ4

+DEPRESSIONi,jβ5 + g(YEARi,j) + εi,j , (2.1)

where the βl’s (l=1, . . . , 5) are unspecified parameters and g(·) is a smooth

function, all of which need to be estimated.

To explore possible correlations among the εi,j , we examine the residuals of

the fit based on (2.1) via graphical tools. In Figure 1, we plot the jth (j > 2)

residual versus the (j-1)th and (j-2)th residuals of the ith subject in the left two

panels respectively. In addition, it is natural to consider whether the dependence



510 YANG BAI, JIAN HUANG, RUI LI AND JINHONG YOU

Figure 1. Plots for the residuals of model (2.1) that ignore correlations.

between the residuals also varies with their measurement time distance. So we

further plot the jth (j > 2) residual against time-distance dependent residuals

(YEARi,j −YEARi,j−1)εi,j−1 and (YEARi,j −YEARi,j−2)εi,j−2, respectively, in

the bottom two panels in Figure 1.

Motivated by the strong dependence between the lagged errors indicated in

Figure 1, we consider an AR(2) structure for the errors εi,j in (2.2) that accounts

for irregular time intervals,

εi,j = (a1 + b1dY1)εi,j−1 + (a2 + b2dY2)εi,j−2 + ei,j , (2.2)

where dYk = YEARi,j −YEARi,j−k is the time distance between the jth and the

(j − k)th measurements for the ith subject, the ei,j ’s are i.i.d random variables;

the significance of these parameters is discussed further in Section 5.

2.2. Partially linear model with irregular time AR error process

Suppose there are n independent subjects, and the ith subject has mi mea-

surements at times ti,1, . . . , ti,mi , not necessarily equally spaced. These obser-

vation times are also possibly subject-specific. We consider a longitudinal data
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partially linear model

Yi,j = X⊤
i,jβ + g(ti,j) + εi,j , (2.3)

where Yi,j is the jth measurement of the ith subject, Xi,j = (Xi,j,1, . . . , Xi,j,p)
⊤

consists of p(p ≪ n) covariates for the ith subject at times ti,j , 1 ≤ j ≤ mi,
β = (β1, . . . , βp)

⊤ is a vector of regression coefficients, g is an unknown function
that describes the average temporal profile of the subjects after adjusting for the
covariate effects, and the εi,j ’s are random errors.

Let di,j,k = ti,j − ti,j−k be the difference between the jth and (j − k)th
observation times of the ith subject. We propose to model the error process by
the irregular time AR model,

εi,j =

q∑
k=1

(ak + bkdi,j,k)εi,j−k + ei,j , j = q + 1, . . . ,mi, i = 1, . . . , n, (2.4)

where a = (a1, . . . , aq)
⊤ and b = (b1, . . . , bq)

⊤ are unknown parameters, the ei,j ’s
are independent and identically distributed random error terms with mean 0
and variance σ2

e . Here q ≥ 0 is the lag order of the model that needs to be
specified prior to the analysis, or can be determined based on an existing model
selection criterion. This will be discussed in Section 5. The model consists of a
stationary part

∑q
k=1 akεi,j−k and a non-stationary part

∑q
k=1 bkdi,j,kεi,j−k. The

latter accommodates irregular and subject-specific observation times in the data.
If bk = 0, 1 ≤ k ≤ q, or di,j,1 ≡ d, a constant, as in a balanced case, this

model simplifies to a standard AR model. It can be considered a linearly varying-
coefficient AR model, but the coefficients depend on the time differences instead
of times. With this model, the covariance structure mainly depends on the
time differences. This makes sense for longitudinal data because of the natural
ordering of the observations. While there is flexibility in how to define di,j,k, for
example, we can define it based a linear or nonlinear transformation of times,
(2.4) appears to offer a reasonable trade-off between model complexity and the
ability to describe possibly nonstationary correlation patterns.

A similar autoregressive error structure was proposed in Wei and He (2006),
but theirs focused on an autoregressive structure among responses, whereas ours
includes both dependence and the covariates simultaneously to describe the cor-
relations in each individual.

2.3. Unified semiparametric profile least squares estimation

We describe a unified semiparametric profile least squares approach for esti-
mating β and (a, b) simultaneously. For a given β, let Ri,j(β) = Yi,j −X⊤

i,jβ. We
can write (2.3) as

Ri,j(β) = g(ti,j) + εi,j , j = 1, . . . ,mi, i = 1, . . . , n. (2.5)
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We use the local polynomial smoothing technique (e.g., Fan and Gijbels (1996))

for estimating g. For ti,j in a small neighborhood of a given t, we approximate

g(ti,j) using the first order Taylor expansion

g(ti,j) ≈ g(t) + g′(t)(ti,j − t) ≡ ξ + ς(ti,j − t),

where g′ is the first derivative of g. This leads to a local least-squares problem:

finding (ξ, ς) to minimize

n∑
i=1

mi∑
j=1

[
Ri,j(β)− (ξ + ς(ti,j − t))

]2
KhN

(ti,j − t), (2.6)

where K(·) is a kernel function, hN is a bandwidth and KhN
(·) = h−1

N K(·/hN ).

HereN =
∑n

i=1mi is the total number of observations. LetX = (X1,1, . . . , X1,m1 ,

. . . , Xn,mn)
⊤ and Y = (Y1,1, . . . , Y1,m1 , . . . , Yn,mn)

⊤. Let uN = (1, . . . , 1)⊤ be an

N -vector of 1’s, and tN = (t1,1, . . . , t1,m1 , . . . , tn,1, . . . , tn,mn)
⊤. Standard least

squares calculation shows that the solution to (2.6) is

(ξ̂(t;β), ς̂(t;β))⊤ = (D⊤
t WtDt)

−1D⊤
t WtR(β), (2.7)

where R(β) = Y −Xβ, Dt = (uN , tN − uN t), and Wt = diag(KhN
(tN − uN t)).

HereKhN
(tN−uN t) meansKhN

operates on the vector tN−uN t component-wise.

For any given β in (2.7), g can be estimated by ĝ(t;β) ≡ ξ̂(t;β). We estimate

the parameters β and (a, b) in (2.3) and (2.4) based on the profile residuals

R̂i,j(β) ≡ Yi,j −Xi,jβ − ĝ(ti,j ;β) as follows.

Let S = (S1,1, . . . , S1,m1 , . . . , Sn,mn)
⊤, where Si,j = (1, 0)(D⊤

ti,jWti,jDti,j )
−1

D⊤
ti,jWti,j . Let Ŷ = (I − S)Y and X̂ = (I − S)X. Some algebra shows that

R̂i,j(β) = Ŷi,j − X̂⊤
i,jβ, where Ŷi,j is an element in Ŷ and X̂i,j is a column in X̂

corresponding to Yi,j in Y and Xi,j in X position wise, respectively. As shown in

the Supplementary Material, R̂i,j(β) ≈ εi,j +Op(1/
√
NhN ) if β is the underlying

value in the model. This and (2.4) for the εi,j motivate us to propose the profile

least squares criterion

Q(β, a, b) =

n∑
i=1

[ mi∑
j=q+1

(
R̂i,j(β)−

q∑
k=1

(ak + bkdi,j,k)R̂i,j−k(β)
)2

+

q∑
j=1

R̂2
i,j(β)

]
.

(2.8)

The estimator of (β, a, b) is the value (β̂N , âN , b̂N ) that minimizes (2.8).

Here we take advantage of the irregular time AR structure and estimate the

regression parameters and the coefficients in the error model based on a single

profile least squares criterion. This differs from the usual approach in longitudinal

data models where the parameters in the mean function and correlation structure
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are estimated separately. All the observations are used in (2.8). For the first q

observations, because their correlation structure cannot be estimated based on

(2.4) with a lag order of q, we used the estimated residuals directly.

It is not easy to directly minimize Q in (2.8) jointly with respect to (β, a, b).

We use an iterative procedure that alternately updates the regression parameter

β and autoregressive parameter (a, b).

Step 1. For a given (a, b), minimize

Q1(β) =
n∑

i=1

[ mi∑
j=q+1

(
R̂i,j(β)−

q∑
k=1

(ak + bkdi,j,k)R̂i,j−k(β)
)2

+

q∑
j=1

R̂2
i,j(β)

]
with fixed a, b

with respect to β.

Step 2. For a given β, minimize

Q2(a, b) =

n∑
i=1

[ mi∑
j=q+1

(
R̂i,j(β)−

q∑
k=1

(ak + bkdi,j,k)R̂i,j−k(β)
)2

+

q∑
j=1

R̂2
i,j(β)

]
with fixed β

with respect to (a, b).

We start the iteration with (a, b) = (0, 0), which yields the initial solution

corresponding to the ordinary least squares estimate of β. We then carry out

Steps 1 and 2 iteratively until convergence. Since Q1 (with fixed (a, b)) and Q2

(with fixed β) are quadratic functions, it is easy to compute their minimizers.

In our numerical studies, this algorithm converges quickly in both simulation

studies and data analysis.

3. Asymptotic Properties

We consider the theoretical properties of the profile least squares estimator.

We show that β̂N and (âN , b̂N ) are asymptotically normal and asymptotically

independent. We also propose consistent variance estimators for β̂N and (âN , b̂N ).

Let η(t) = (η1(t), . . . , ηp(t))
⊤ be defined by

Xi,j = η(ti,j) + δi,j , j = 1, . . . ,mi, i = 1, . . . , n,

where δi,j = (δi,j,1, . . . , δi,j,p)
⊤ satisfies E(δi,j |ti,j) = 0. Here the conditional

expectation is taken componentwise.
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Let δ∗i,j = δi,j −
∑q

k=1(ak + bkdi,j,k)δi,j−k, i = 1, . . . , n and j = q + 1, . . . ,mi,

and let

ζij = (εi,j−1, . . . , εi,j−q, εi,j−1di,j,1, . . . , εi,j−qdi,j,q)
⊤.

Assume

1

N

n∑
i=1

( q∑
j=1

δi,jδ
⊤
i,j +

mi∑
j=q+1

δ∗i,jδ
∗⊤
i,j

)
→p D > 0, (3.1)

1

N − nq

n∑
i=1

mi∑
j=q+1

ζi,jζ
⊤
i,j →p Λ > 0, (3.2)

1

N

n∑
i=1

[
σ2
e

mi∑
j=q+1

δ∗i,jδ
∗⊤
i,j +(δi,1, . . . , δi,q)Cov{(εi,1, . . . , εi,q)⊤}(δi,1, . . . , δi,q)⊤

]
→p ∆.

(3.3)

Here and in the sequel, any convergence statement is for n → ∞.

Theorem 1. Suppose the ei,j’s are independent and identified distributed random

variables with mean zero, variance σ2
e , and finite fourth moment. Then, under

(A1)−(A5) given in the on-line Supplementary Material and (3.1) to (3.3), we

have

(i)
√
N(β̂N − β) →D N(0, D−1∆D−1).

(ii)
√
N − nd{(â⊤N , b̂⊤N )⊤ − (a⊤, b⊤)⊤} →D N(0, σ2

eΛ
−1).

(iii) β̂N and (âN , b̂N ) are asymptotically independent.

Proofs can be found in the on-line supplement. The asymptotic normality

results here can serve as the basis for the statistical inference for (β, a, b). The

asymptotic covariance matrices for β̂N and (âN , b̂N ) have a relatively simple

and explicit structure that enables us to directly construct variance estimators

without having to resort to resampling-based methods. Part (iii) of Theorem

1 is similar to the standard result from linear regression where the estimated

regression parameters and the estimator of the variance of the error distribution

are asymptotically independent.

Consider the estimation of the covariance matrices of the estimators. This

involves the estimation of σ2
e , D,∆, and Λ. We estimate σ2

e by

σ̂2
e,N =

1

n

n∑
i=1

1

mi − q

mi∑
j=q+1

{
ε̂i,j −

q∑
k=1

(âk,N + b̂k,Ndi,j,k)ε̂i,j−k

}2
,

where ε̂i,j = Ŷi,j − X̂⊤
i,j β̂N , i = 1, . . . , n, j = 1, . . . ,mi. Let X̂∗

i,j = X̂i,j −∑q
k=1(âk,N + b̂k,Ndi,j,k)X̂i,j−k and ζ̂ij = (ε̂i,j−1, . . . , ε̂i,j−q, ε̂i,j−1di,j,1, . . ., ε̂i,j−q
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di,j,q)
⊤, i = 1, . . . , n, j = q + 1, . . . ,mi. We estimate D,Λ and ∆ by

D̂N =
1

N

n∑
i=1

( q∑
j=1

X̂i,jX̂
⊤
i,j +

mi∑
j=q+1

X̂∗
i,jX̂

∗⊤
i,j

)
,

Λ̂N =
1

N − nq

n∑
i=1

mi∑
j=q+1

ζ̂i,j ζ̂
⊤
i,j ,

∆̂N =
1

N

n∑
i=1

[
σ̂2
e,N

mi∑
j=q+1

X̂∗
i,jX̂

∗⊤
i,j +

( q∑
j=1

X̂⊤
i,j ε̂i,j

)( q∑
j=1

X̂⊤
i,j ε̂i,j

)⊤]
.

Theorem 2. Suppose that the conditions of Theorem 1 hold. Then√
N − nq(σ̂2

e,N − σ2
e)

D−→ N(0,Var(e2i,j)),

D̂N →p D, Λ̂N →p Λ, and ∆̂N →p ∆.

Based on this result, a consistent estimator of the covariance matrix of β̂N is

D̂−1
N ∆̂ND̂−1

N /N and a consistent estimator of the covariance matrix of (âN , b̂N )

is σ̂2
e,N Λ̂−1

N /(N − nq).

4. Two-stage Local Linear Estimator of Nonparametric Component

With the estimator β̂N of β, (2.7) gives the local polynomial (linear) estima-

tor of (g(t), g′(t))⊤,

(ĝN (t), ĝ′N (t))⊤ = (D⊤
t WtDt)

−1D⊤
t Wt(Y −Xβ̂N ).

It may not be efficient since it does not take into account the AR error structure.

We describe a two-stage approach for estimating g that explicitly incorpo-

rates the AR error structure (2.4). With Ri,j(β) = Yi,j −X⊤
i,jβ, let

Y ∗
i,j = Ri,j(β)−

q∑
k=1

(ak + bkdi,j,k)Ri,j−k(β) +

q∑
k=1

(ak + bkdi,j,k)g(ti,j−k).

According to (2.3) and (2.4),

Y ∗
i,j = g(ti,j) + ei,j , i = 1, . . . , n and j = q + 1, . . . ,mi. (4.1)

Since Var(ei,j) is usually less than Var(εi,j), based on (4.1) we can construct a

more efficient estimator of g(ti,j). As Y
∗
i,j contains unknown parameters (β, a, b)

and the unknown function g(t), we replace Y ∗
i,j by Ỹ ∗

i,j , where

Ỹ ∗
i,j = Ri,j(β̂N )−

q∑
k=1

(âk,N+b̂k,Ndi,j,k)Ri,j−k(β̂N )+

q∑
k=1

(âk,N+b̂k,Ndi,j,k)ĝN (ti,j−k),
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for i = 1, . . . , n, j = q + 1, . . . ,mi. For the first q observations, define Ỹ ∗
i,j =

Ri,j(β̂N ), i = 1, · · · , n, j = 1, · · · , q. Denote the vector of all the Ỹ ∗
i,j by

Ỹ ∗ = (Ỹ ∗
1,1, . . . , Ỹ

∗
1,q, Ỹ

∗
1,q+1, . . . , Ỹ

∗
1,m1

, . . . , Ỹ ∗
n,1, . . . , Ỹ

∗
n,q, Ỹ

∗
n,q+1, . . . , Ỹ

∗
n,mn

)⊤.

Similar to (2.6), we consider the criterion

n∑
i=1

mi∑
j=1

[
Ỹ ∗
i,j − (ξ + ς(ti,j − t))

]2
Kh∗

N
(ti,j − t),

and obtain a two-stage local linear estimator of (g(t), g′(t)),

(ĝTS
N (t), ĝ

′
TS
N (t))⊤ = (D∗⊤

t W ∗
t D

∗
t )

−1D∗⊤
t W ∗

t Ỹ
∗, (4.2)

where D∗
t ,W

∗
t have the same form as Dt,Wt except that hN is replaced by h∗N .

Let

µk =

∫ ∞

−∞
xkK(x)dx, νk =

∫ ∞

−∞
xkK2(x)dx, k = 0, 1, 2, 3,

τ2 = lim
n→∞

σ2
e

∑n
i=1(mi − d) +

∑n
i=1

∑q
j=1Var(εi,j)

N
.

Theorem 3. Suppose that the ei,j’s are independent and identified distributed
random variables with mean zero, variance σ2

e , and finite fourth moment. Then
under (A1)−(A6) given in the Supplementary Material, we have√

Nh∗N

[
H∗−1

{( ĝTS
N (t)

ĝ
′
TS
N (t)

)
−

( g(t)

g′(t)

)}
−

h∗2N
2

(κ1g′′
(t)

κ2g
′′
(t)

)
+ o(h∗2N )

]
→D N(0,ΓTS ),

where H∗ = diag(1, h∗N ), g
′′
is the second derive of g and

ΓTS = τ2
{
f(t)(µ2 − µ2

1)
2
}−1

(
γ11 γ12
γ21 γ22

)
,

κ1 =
µ2
2 − µ1µ3

µ2 − µ2
1

, κ2 =
µ3 − µ1µ2

µ2 − µ2
1

,

γ11 = µ2
2ν0 − 2µ1µ2ν1 + µ2

1ν2, γ12 = (µ2
1 + µ2)ν1 − µ1µ2ν0 − µ1ν2,

γ21 = (µ2
1 + µ2)ν1 − µ1µ2ν0 − µ1ν2, γ22 = ν2 − µ1(2ν1 + µ1ν0).

Corollary 1. Suppose the conditions of Theorem 3 hold. Then√
Nh∗N

{
ĝTS
N (t)− g(t)−

h∗2N
2

µ2
2 − µ1µ3

µ2 − µ2
1

g
′′
(t) + o(h∗2N )

}
→D N(0, γ2TS),

where γ2TS = τ2 {f(t)}−1 (κ23ν0 − 2κ3κ4ν1 + κ24ν2) with κ3 = µ2/(µ2 − µ2
1) and

κ4 = µ1/(µ2 − µ2
1).
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To apply Corollary 1 or Theorem 3 to make statistical inference for g(·) or
(g(·), g′(·))⊤, a consistent estimator of γ2TS or ΓTS is needed. Since µ1, µ2, µ3, ν0,
ν1 and ν2 are known constants, we just need to estimate τ2 and f(t). Take

τ̂2N =
σ̂2
e,N

∑n
i=1(mi−q)+

∑n
i=1

∑q
j=1(ε̂i,j)

2

N
and f̂N (t)=

1

N

n∑
i=1

mi∑
j=1

Kh∗
N
(ti,j − t).

We can show that τ̂2N and f̂N (t) are consistent estimators of τ2 and f(t), respec-
tively.

We note that ĝTS
N (·) involves both of the smoothing parameters hN and h∗N .

Condition (A6) given in the Supplementary Material requires the smoothing pa-
rameter h∗N to be of the standard order and the smoothing parameter hN for
the initial estimators ĝN (·) to be of a smaller order than the standard O(N−1/5).

This requirement is used to control the bias in the preliminary step of the estima-
tion. Simulation experiments show that the final results are not very sensitive to
the choice of the smoothing parameter hN and that the usual optimal smoothing
parameters divided by a constant, say 1.5 or 2, can be used.

5. Numerical Studies

5.1. Determination of the AR order

In practice, the true AR order in the errors is not known a priori. We consider
a penalized selection method for determining it. By minimizing

P (a, b)=
n∑

i=1

mi∑
j=q+1

{
R̂i,j(β̃N )−

q∑
k=1

(ak + bkdi,j,k)R̂i,j−k(β̃N )

}2

+N

q∑
k=1

λkp(||θk||),

we can specify the significant (ak, bk)’s and the autoregressive order correspond-
ingly, where λk’s are tuning parameters, θk = (ak, bk)

⊤ and the p(·) is a penalty
function. Here, we use the smoothly clipped absolute deviation (SCAD, Fan
and Li (1996)) penalty for its unbiasedness, sparsity, and continuity. We present
simulation results in Example 3 to demonstrate its good selection performance.

5.2. Simulation studies

We conducted simulation studies to examine the finite sample performances
of the proposed estimators. Consider first that the true AR order is known.

Example 1. The data were generated from

Yi,j = X⊤
i,jβ + g(ti,j) + εi,j ,

εi,j =

2∑
k=1

(ak + bkdi,j,k)εi,j−k + ei,j ,
i = 1, . . . , n, j = 1, . . . ,mi,
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where Xi,j,1 = sin(ti,j) + ϱi,j,1, Xi,j,2 = 1+ t2i,j + ϱi,j,2 and g(ti,j) = sin3(2πti,j)−
eti,j+ti,j with ti,j ∼ U(0, 1), ϱi,j,1, ϱi,j,2, and the ei,j wereN(0, 1). The coefficients
were β = (0.5,−0.8)⊤ and (a1, a2) = (0.6,−0.5), (b1, b2) = (−0.3, 0.4).

The sample size was n = 100, 200, 300 and the number of within-subject
observations was mi = m = 5, 10, 15 for each subject. In each scenario, the
number of replications was 1,000. We used the truncated Gaussian kernel

KhN
(·) = 1

hN
√
2π

exp
{−(·)2

2h2N

}
I(| · | ≤ 1).

Bandwidth selection is important in nonparametric regression. Lin and Car-
roll (2001) suggested using cross-validation or the empirical bias bandwidth se-
lection method of Ruppert (1997) with longitudinal data. We used the former for
its simplicity. Half of the optimal bandwidth is used as the bandwidth in the first
stage and the optimal bandwidth used in the second stage for the estimation of
the nonparametric component g(·). Based on our experience, the two-stage esti-
mator is not sensitive to the choice of the bandwidth of the first-stage estimator,
see Table 2.

For the estimator β̂N of the regression parameter β, the average sample bias
(bias), the empirical standard deviation (std) of the estimates of 1,000 repli-
cations, the mean of the estimate of the standard deviation (se) based on the
asymptotic covariance matrix and the empirical coverage probability (cp) of
the 95% confidence intervals are summarized in Table 1. We also present the
corresponding bias, std, se, and cp of the estimator β̌N based on the criterion∑n

i=1

∑mi
j=1 R̂

2
i,j(β), where R̂i,j(β) is defined in Section 2. This estimator is con-

sistent with an asymptotic normal distribution, but does not take into account
the correlation structure in the data.

From Table 1, we see that the proposed estimator β̂N has small bias, even
in the case of moderate sample size (n = 100 and m = 5). The biases decrease
as the sample size increases. The estimated standard deviations approximate
the empirical standard deviations well in all the cases. The empirical coverage
probability of the confidence interval is close to the nominal level 95%. The
proposed estimator β̂N also has smaller variance than the β̌N .

For the estimators of the AR coefficients (a1, b1), their bias, std, se, and cp
are also summarized in Table 1. The biases of the estimated AR coefficients
are small and decrease as the sample increases. Also, on average, the estimated
standard errors are close to the empirical standard deviations.

For the two-stage estimator ĝN of the nonparametric component g, we eval-
uated its performance using the square root of average squared errors (RASE)

RASE(ĝN ) =
[ 1

N

n∑
i=1

mi∑
j=1

{ĝN (ti,j)− g(ti,j)}2
]1/2

.
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Table 1. The average bias (bias), average empirical standard deviation (std)
of the estimates, average of the estimated standard deviation (se) based on
the asymptotic covariance matrix and empirical coverage probability (cp),
calculated based on 1,000 replications.

m 5 10 15

n 100 200 300 100 200 300 100 200 300

β̌1,N bias 0.0021 0.0006 -0.0006 -0.0002 0.0003 0.0003 -0.0001 -0.0005 0.0001

std 0.0360 0.0268 0.0186 0.0228 0.0156 0.0129 0.0175 0.0120 0.0099

se 0.0347 0.0260 0.0188 0.0227 0.0157 0.0128 0.0170 0.0121 0.0099

cp 0.9410 0.9410 0.9480 0.9430 0.9530 0.9490 0.9410 0.9500 0.9500

β̂1,N bias 0.0022 0.0004 -0.0008 -0.0003 0.0001 0.0001 0.0000 -0.0002 -0.0001

std 0.0286 0.0226 0.0159 0.0171 0.0116 0.0102 0.0131 0.0091 0.0076

se 0.0287 0.0220 0.0162 0.0175 0.0121 0.0101 0.0127 0.0092 0.0074

cp 0.9460 0.9480 0.9510 0.9430 0.9600 0.9480 0.9450 0.9540 0.9450

β̌2,N bias -0.0028 0.0001 -0.0010 0.0003 -0.0002 0.0011 0.0008 0.0010 -0.0006

std 0.0741 0.0523 0.0400 0.0442 0.0302 0.0249 0.0333 0.0233 0.0195

se 0.0709 0.0500 0.0401 0.0444 0.0309 0.0251 0.0345 0.0239 0.0197

cp 0.9360 0.9390 0.9450 0.9440 0.9640 0.9540 0.9600 0.9540 0.9500

β̂2,N bias -0.0029 -0.0003 -0.0008 -0.0001 0.0003 0.0004 0.0001 0.0008 0.0004

std 0.0635 0.0434 0.0331 0.0347 0.0239 0.0188 0.0256 0.0177 0.0144

se 0.0604 0.0420 0.0333 0.0349 0.0238 0.0193 0.0264 0.0183 0.0149

cp 0.9320 0.9460 0.9520 0.9510 0.9500 0.9580 0.9570 0.9510 0.9520

â1,N bias -0.0138 -0.0078 -0.0055 -0.0113 -0.0054 -0.0048 -0.0084 -0.0059 -0.0035

std 0.0736 0.0514 0.0413 0.0431 0.0302 0.0251 0.0333 0.0252 0.0195

se 0.0734 0.0499 0.0397 0.0423 0.0298 0.0250 0.0343 0.0246 0.0197

cp 0.9400 0.9370 0.9430 0.9400 0.9420 0.9390 0.9570 0.9420 0.9360

â2,N bias 0.0074 0.0063 0.0050 0.0010 0.0014 0.0027 0.0024 0.0015 0.0010

std 0.0888 0.0598 0.0499 0.0494 0.0360 0.0300 0.0414 0.0301 0.0236

se 0.0857 0.0592 0.0486 0.0496 0.0353 0.0295 0.0413 0.0296 0.0234

cp 0.9330 0.9520 0.9330 0.9450 0.9520 0.9510 0.9580 0.9460 0.9450

b̂1,N bias 0.0037 0.0005 0.0011 0.0058 0.0036 0.0026 0.0069 0.0044 0.0020

std 0.1046 0.0740 0.0602 0.0815 0.0577 0.0483 0.0743 0.0538 0.0420

se 0.1020 0.0713 0.0570 0.0800 0.0572 0.0477 0.0748 0.0519 0.0429

cp 0.9350 0.9490 0.9390 0.9560 0.9540 0.9590 0.9490 0.9490 0.9590

b̂2,N bias -0.0031 -0.0033 -0.0018 0.0042 0.0004 -0.0012 0.0006 0.0012 0.0018

std 0.1138 0.0758 0.0632 0.0801 0.0577 0.0483 0.0730 0.0526 0.0431

se 0.1097 0.0761 0.0621 0.0804 0.0575 0.0471 0.0735 0.0518 0.0421

cp 0.9430 0.9530 0.9440 0.9500 0.9480 0.9440 0.9520 0.9480 0.9460

ĝN (·) Mean(RASE) 0.1429 0.1054 0.0888 0.0987 0.0737 0.0611 0.0820 0.0594 0.0502

Std (RASE) 0.0313 0.0208 0.0173 0.0205 0.0137 0.0110 0.0153 0.0104 0.0084

ĝTS
N (·) Mean(RASE) 0.1219 0.0915 0.0760 0.0856 0.0645 0.0534 0.0712 0.0524 0.0444

Std(RASE) 0.0304 0.0203 0.0169 0.0196 0.0134 0.0107 0.0149 0.0101 0.0084

The empirical mean value (Mean) and standard deviation (Std) of RASE

calculated over 1,000 replications are given in the bottom of Table 1. We see

that the proposed two-stage estimator performs better than the standard one-

stage estimator without considering the correlation structure.

In practice, it is perhaps impossible to correctly specify the correlation struc-

ture in the errors. However, our approach is robust to misspecification of the the
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Table 2. The empirical mean value and average standard deviation (listed
in parentheses) of the proposed estimates for parametric and nonparametric
components calculated based on 1,000 replications with different bandwidth
(hN ) in the first stage estimation.

m 5 10
n 50 100 200 50 100 200

hN = 0.25hopt

β̂1,N 0.4989 (0.0442) 0.4991 (0.0305) 0.4990 (0.0209) 0.4997 (0.0275) 0.5007 (0.0184) 0.4997 (0.0124)

β̂2,N -0.7986 (0.0921) -0.7985 (0.0565) -0.7975 (0.0417) -0.8018 (0.0499) -0.8004 (0.0332) -0.8000 (0.0242)

β̂3,N 1.4992 (0.0493) 1.5003 (0.0300) 1.4997 (0.0221) 1.5002 (0.0263) 1.5003 (0.0175) 1.5001 (0.0126)

β̂4,N 0.2001 (0.0243) 0.2001 (0.0099) 0.2000 (0.0009) 0.1999 (0.0086) 0.2004 (0.0084) 0.2000 (0.0018)

β̂5,N -1.2026 (0.0435) -1.1993 (0.0300) -1.1998 (0.0221) -1.1995 (0.0246) -1.2005 (0.0179) -1.2001 (0.0129)
â1,N 0.5432 (0.1174) 0.5765 (0.0736) 0.5844 (0.0530) 0.5716 (0.0649) 0.5840 (0.0436) 0.5910 (0.0297)
â2,N -0.4766 (0.1453) -0.4933 (0.0963) -0.4916 (0.0646) -0.4845 (0.0748) -0.4893 (0.0536) -0.4936 (0.0363)

b̂1,N -0.2609 (0.1602) -0.2851 (0.1036) -0.2896 (0.0736) -0.2799 (0.1255) -0.2907 (0.0818) -0.2955 (0.0564)

b̂2,N 0.3884 (0.1847) 0.3972 (0.1222) 0.3936 (0.0841) 0.3925 (0.1200) 0.3935 (0.0848) 0.3964 (0.0571)
ĝN (·) 0.1959 (0.0501) 0.1511 (0.0346) 0.1186 (0.0229) 0.1459 (0.0294) 0.1115 (0.0204) 0.0869 (0.0146)

hN = 0.5hopt

β̂1,N 0.4997 (0.0394) 0.4996 (0.0327) 0.4993 (0.0213) 0.5010 (0.0262) 0.5008 (0.0170) 0.5003 (0.0122)

β̂2,N -0.7949 (0.0917) -0.8033 (0.0578) -0.8022 (0.0419) -0.7989 (0.0481) -0.8013 (0.0327) -0.8007 (0.0234)

β̂3,N 1.5015 (0.0447) 1.5010 (0.0286) 1.4999 (0.0216) 1.5012 (0.0249) 1.5007 (0.0166) 1.4991 (0.0118)

β̂4,N 0.1999 (0.0139) 0.2003 (0.0099) 0.2001 (0.0077) 0.1998 (0.0081) 0.2005 (0.0080) 0.2004 (0.0038)

β̂5,N -1.2033 (0.0394) -1.1987 (0.0285) -1.1992 (0.0210) -1.1996 (0.0254) -1.2000 (0.0186) -1.2003 (0.0120)
â1,N 0.5669 (0.1039) 0.5879 (0.0696) 0.5915 (0.0536) 0.5826 (0.0643) 0.5900 (0.0454) 0.5955 (0.0302)
â2,N -0.4999 (0.1392) -0.5003 (0.0851) -0.4968 (0.0624) -0.4977 (0.0720) -0.4982 (0.0506) -0.4983 (0.0361)

b̂1,N -0.2760 (0.1470) -0.2910 (0.1011) -0.2952 (0.0725) -0.2811 (0.1155) -0.2947 (0.0844) -0.2970 (0.0570)

b̂2,N 0.4076 (0.1794) 0.4023 (0.1122) 0.3962 (0.0788) 0.3979 (0.1200) 0.4012 (0.0859) 0.3987 (0.0559)
ĝN (·) 0.1970 (0.0492) 0.1496 (0.0350) 0.1160 (0.0230) 0.1467 (0.0268) 0.1125 (0.0193) 0.0870 (0.0136)

hN = hopt

β̂1,N 0.5065 (0.0456) 0.5050 (0.0324) 0.5018 (0.0226) 0.5021 (0.0260) 0.5021 (0.0167) 0.5018 (0.0122)

β̂2,N -0.8037 (0.0870) -0.7938 (0.0596) -0.7950 (0.0417) -0.8066 (0.0527) -0.7964 (0.0352) -0.7997 (0.0248)

β̂3,N 1.4947 (0.0489) 1.5051 (0.0320) 1.5022 (0.0194) 1.4989 (0.0245) 1.4993 (0.0163) 1.5016 (0.0120)

β̂4,N 0.2018 (0.0180) 0.2006 (0.0124) 0.1997 (0.0065) 0.1996 (0.0076) 0.1999 (0.0074) 0.1999 (0.0031)

β̂5,N -1.2122 (0.0447) -1.2016 (0.0345) -1.1981 (0.0214) -1.2024 (0.0253) -1.1992 (0.0173) -1.1989 (0.0127)
â1,N 0.5883 (0.1106) 0.5893 (0.0733) 0.5971 (0.0488) 0.5950 (0.0649) 0.6007 (0.0429) 0.6000 (0.0303)
â2,N -0.5025 (0.1446) -0.4955 (0.0914) -0.4946 (0.0629) -0.5011 (0.0785) -0.4977 (0.0524) -0.5006 (0.0382)

b̂1,N -0.2984 (0.1602) -0.2991 (0.1010) -0.3056 (0.0703) -0.3129 (0.1196) -0.3136 (0.0812) -0.3091 (0.0578)

b̂2,N 0.4051 (0.1836) 0.3981 (0.1145) 0.3942 (0.0803) 0.4028 (0.1253) 0.4016 (0.0842) 0.4041 (0.0600)
ĝN (·) 0.1996 (0.0522) 0.1616 (0.0365) 0.1186 (0.0236) 0.1531 (0.0305) 0.1151 (0.0194) 0.0936 (0.0137)

correlation structure in the sense that it still leads to consistent estimate of the

mean component, although there is a reduction of efficiency in estimating the

mean component parameters.

Example 2. Consider the model

Yi,j =
5∑

s=1

Xi,j,sβs + g(ti,j) + εi,j ,

where {Xi,j,1, Xi,j,2, εi,j are as in Example 1, Xi,j,3 ∼ Bernoulli(1, 0.5), Xi,j,4 =

cos(ti,j − 0.5) + ϱi,j,4 and Xi,j,5 = exp(sin(ti,j)) + ϱi,j,5 with ϱi,j,4 ∼ t(2) and

ϱi,j,5 ∼ N(0, 1). Let β = (0.5,−0.8, 1.5, 0.2,−1.2)⊤ and other notations are as

in Example 1. The empirical means and standard deviations of parametric and

nonparametric components based on 1,000 replications are reported in Table 2.
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Table 3. The mean value (mean) and the average empirical standard devi-
ation (std) of the estimates are calculated based on 1,000 replications. The
italicized columns give the finite sample performance under the misspecified
model that ignores the quadratic components.

m 5 10

n 100 200 300 100 200 300

β̌1,N mean -1.1986 -1.2000 -1.2013 -1.1988 -1.2004 -1.2002 -1.1996 -1.2003 -1.2008 -1.1997 -1.1996 -1.1992

std 0.0396 0.0405 0.0272 0.0292 0.0224 0.0211 0.0267 0.0291 0.0166 0.0180 0.0147 0.0145

β̂1,N mean -1.1995 -1.2005 -1.2015 -1.2007 -1.2004 -1.1998 -1.1997 -1.1998 -1.2005 -1.2000 -1.1998 -1.1997

std 0.0227 0.0224 0.0159 0.0161 0.0130 0.0122 0.0154 0.0153 0.0095 0.0103 0.0084 0.0086

β̌2,N mean 0.6941 0.6980 0.6963 0.7009 0.6988 0.6999 0.7022 0.6977 0.6985 0.7015 0.7006 0.6995

std 0.0775 0.0786 0.0531 0.0553 0.0455 0.0424 0.0509 0.0521 0.0372 0.0365 0.0284 0.0301

β̂2,N mean 0.6978 0.7003 0.6969 0.7015 0.6995 0.6999 0.7020 0.6975 0.7001 0.6999 0.7002 0.7000

std 0.0458 0.0461 0.0310 0.0312 0.0260 0.0251 0.0295 0.0290 0.0201 0.0207 0.0162 0.0164

ĝN (·) Mean 0.1324 0.1343 0.1000 0.0975 0.0831 0.0811 0.1038 0.1072 0.0750 0.0754 0.0624 0.0631

Std 0.0405 0.0464 0.0315 0.0319 0.0256 0.0239 0.0339 0.0351 0.0224 0.0231 0.0175 0.0185

ĝTS
N

(·) Mean 0.1114 0.1139 0.0839 0.0830 0.0704 0.0688 0.0927 0.0949 0.0673 0.0680 0.0557 0.0571

Std 0.0392 0.0419 0.0294 0.0300 0.0239 0.0230 0.0332 0.0330 0.0227 0.0230 0.0174 0.0186

Table 4. Results of the order determination for error AR process.

m 15 20
n 50 100 150 200 50 100 150 200

Under 198 133 52 10 233 221 61 7
Correct 321 550 673 802 474 585 790 868
Over 481 317 275 188 293 194 149 125

We observe that all the estimations are unbiased with small standard deviations,
and the estimated function ĝN (·) has similar performance for the different values
of hN .

Example 3. The data were generated from

Yi,j = X⊤
i,jβ + g(ti,j) + εi,j , εi,j = ϕ(di,j,1)εi,j−1 + ei,j , i = 1, . . . , n, j = 2, . . . ,mi,

where β = (−1.2, 0.7)⊤, Xi,j,1 = 1 + t2i,j + ϱi,j,1, Xi,j,2 ∼ Bernoulli(1, 0.5) and
g(ti,j) = ti,j sin(2πti,j) with ti,j ∼ U(0, 1), the ϱi,j,1 and ei,j wereN(0, 1). We
considered generation processes ϕ(di,j,1) ≡ 0.8 and ϕ(di,j,1) = 0.8 − 0.5di,j,1 +
0.5d2i,j,1 as examples. If the above function is misspecified as our proposed linear
structure of di,j,1, the resulting estimates are reported in Table 3 in the form of
italics. From that, all the estimates for the mean component are consistent but
with larger standard deviations (or standard errors) which will bring efficiency
loss.

Example 4. The data were generated as in Example 1, but with

εi,j =

10∑
k=1

(ak + bkdi,j,k)εi,j−k + ei,j ,
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Table 5. CD4 data analysis results: estimates of the regression parameters.

Independence Proposed Fan (2007) Leng (2010) Li (2011)
β1 0.0154 (0.0360) -0.0030 (0.0146) 0.016 (0.032) 0.005 (0.030) 0.0182 (0.0019)
β2 1.0181 (0.1908) 0.6796 (0.0646) 0.665 (0.152) 0.768 (0.130) 1.1185 (0.0075)
β3 1.1167 (0.5352) 0.7926 (0.1204) 0.700 (0.358) 0.821 (0.345) 0.5402 (0.0309)
β4 -0.0498 (0.0625) 0.0168 (0.0239) 0.011 (0.040) 0.044 (0.038) -0.0021 (0.0027)
β5 -0.0450 (0.0216) -0.0675 (0.0085) -0.034 (0.014) -0.030 (0.014) -0.0508 (0.0007)

with a = (0.6, 0, 0, 0, 0, 0,−0.5, 0, 0, 0)⊤, b = (−0.3, 0, 0, 0, 0, 0, 0.4, 0, 0, 0)⊤, and

other notations defined in the same way. The determination of the AR order is

then the specification of the signified autoregressive coefficient, and the selection

results are in Table 4.

5.3. CD4 data

Since the structure of the data is completely unknown, we took an initial AR

model with order q = 4, giving the model

εi,j =

4∑
k=1

(ak + bkdi,j,k)εi,j−k + eij with di,j,k = YEARi,j −YEARi,j−1.

The estimated parametric coefficients βl, l = 1, . . . , 5, and the corresponding

standard errors are listed in Table 5. From Table 5, we can see that the effects of

all covariates are significant. The effects of covariates AGE and DEPRESSION

are negative and the effects of covariates SMOKE, DRUG, and PARTNERS are

positive. Table 5 also lists the results obtained by Fan, Huang, and Li (2007),

Leng, Zhang, and Pan (2010), and Li (2011). The effect of covariate AGE based

on our method is negative and significant. However, the effects of covariate AGE

based on the methods developed by Fan, Huang, and Li (2007) and Leng, Zhang,

and Pan (2010) are not significant, while that based on Li (2011) is positive

and significant. For the covariate SMOKE, the results obtained by our proposed

method are comparable with those of the other studies. For the covariate DRUG,

our estimated coefficient is positive, significant, and comparable with that from Li

(2011). For the covariate PARTNERS, our estimated coefficient is positive and

significant, while those based on Fan, Huang, and Li (2007), Leng, Zhang, and

Pan (2010), and Li (2011) are not significant. For the covariate DEPRESSION,

our estimated coefficient is negative and significant, which is comparable with

those of the others. The standard errors of the estimated coefficients based on

the proposed method tend to be smaller, indicating that there is gain in efficiency

by using this approach for modeling the correlation structure in the errors.

We used the SCAD penalized approach of Fan and Li (1996) to determine

the order of the error model. The error model with lag order 2 was selected. The

fitting results based on the selected model are shown in the bottom of Table 6.
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Table 6. CD4 data analysis results: estimates of the autoregressive coeffi-
cients in the error structure and corresponding 95% confidence intervals.

Ignore Correlation Include Correlation
Estimate SE CI Estimate SE CI

Before order determination
â1 0.5198 0.0839 [ 0.3553, 0.6842] 0.5052 0.0805 [ 0.3475, 0.6629]
â2 0.4443 0.1147 [ 0.2194, 0.6692] 0.4623 0.1115 [ 0.2439, 0.6808]
â3 -0.0757 0.1022 [-0.2760, 0.1246] -0.0937 0.0976 [-0.2851, 0.0977]
â4 0.5909 0.1569 [ 0.2835, 0.8984] 0.5836 0.1538 [ 0.2823, 0.8850]

b̂1 -0.0078 0.1375 [-0.2773, 0.2616] 0.0063 0.1348 [-0.2580, 0.2705]

b̂2 -0.2793 0.1748 [-0.6220, 0.0633] -0.2966 0.1709 [-0.6315, 0.0383]

b̂3 0.1886 0.1362 [-0.0783, 0.4555] 0.2103 0.1320 [-0.0484, 0.4690]

b̂4 -0.6142 0.1944 [-0.9952, -0.2332] -0.6050 0.1900 [-0.9775, -0.2326]

After order determination
â1 0.5866 0.0522 [ 0.4842, 0.6890] 0.5839 0.0511 [ 0.4837, 0.6840]
â2 0.3892 0.0755 [ 0.2412, 0.5372] 0.3887 0.0739 [ 0.2438, 0.5336]

b̂1 -0.1206 0.0738 [-0.2650, 0.0239] -0.1146 0.0722 [-0.2561, 0.0268]

b̂2 -0.1999 0.0944 [-0.3850, -0.0149] -0.1984 0.0924 [-0.3795, -0.0173]

The estimates of a1 and a2 are positive and significant, and those of b1 and b2 are
negative,with that of b2 significant. This suggests that the CD4 cell counts, after
adjusting for the covariates within the same subject, are positively correlated,
and that the correlation tends to decrease as the observed time distance increases.
Taking the AR error structure into account leads to more efficient estimates with
smaller standard errors.

Figure 2 shows the local linear and two-stage local linear estimates of the
unknown function g. The 95% pointwise confidence bands of the local polynomial
estimates, and the 95% pointwise confidence bands of two-stage local polynomial
estimates are shown in Figure 2. The two-stage local linear estimate has the
narrower pointwise confidence bands.

6. Concluding Remarks

We have introduced an irregular time AR error model for longitudinal analy-
sis with irregular and possibly subject-specific observation times, and proposed a
unified profile least squares approach to estimating the regression coefficients and
the parameters in the error model. The proposed error model can be generalized
in many different ways. For example, a nonparametric generalization of (2.4) is

εi,j =

q∑
k=1

ck(di,j,k)εi,j−k + ei,j , j = q + 1, . . . ,mi, i = 1, . . . , n,

where the ck’s are unknown functions. Model (2.4) can be viewed a linear ap-
proximation to this model. This type of model has been proposed in the context
of time series analysis (Cai, Fan, and Yao (2000)) but it appears it has not been
used in longitudinal studies.



524 YANG BAI, JIAN HUANG, RUI LI AND JINHONG YOU

Figure 2. Plots of the estimated function g(·) and corresponding pointwise
confidence band (a): that ignore the error correlated structure and fit the
initial model; (b): that take the error correlated structure into account and
fit the initial model; (c): that ignore the error correlated structure and fit
the selected model; (d): that take the error correlated structure into account
and fit the selected model.

The estimation method is based on the least-squares principle that is not

robust to outliers in the data. He, Zhu, and Fung (2002) studied robust methods

for estimation in partially linear regression models, but did not consider within-

subject correlation. It would be interesting to combine the proposed method with

theirs to construct robust and more efficient estimators for both the parametric

and nonparametric components.

We have only considered that the number of covariates in the parametric

component is fixed. Large data set and high dimensionality are characteristics of

many contemporary problems. And, when the number of explanatory variables

is large, it is more realistic to regard it as growing with sample size. Lam and

Fan (2008) and Xie and Huang (2009) considered estimation in partially linear

models with the number of covariates diverging with sample size. They focused
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on the cross sectional data structure. It would be interesting to investigate the

statistical properties with diverging numbers of parameters in the present setting.

We have focused on irregular observations for the sparse longitudinal data

with the observations of each individual fixed. In such disciplines as meteorol-

ogy and economics, one has measurements to an extent that one speaks of dense

longitudinal data. There has not been much attention paid to irregular autore-

gressive time series analysis of dense longitudinal data, and further study here

would be interesting.
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