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Abstract: We consider an experimental design problem in functional magnetic res-

onance imaging (fMRI), a dominant technology for studying brain activity in re-

sponse to mental stimuli presented to the experimental subject. In contrast to

previous studies, we develop analytical results on optimal designs for comparing

hemodynamic response functions, each describing the effect of the corresponding

type of stimulus. In particular, for studies with two stimulus types, we derive a

sufficient condition for an fMRI design to be universally optimal, and show that

designs constructed via m-sequences or Paley difference sets satisfy this sufficient

condition.
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1. Introduction

Experiments for studying functions of human brains via functional magnetic

resonance imaging (fMRI) typically involve presenting to an experimental subject

a sequence of brief mental stimuli of one or more types (e.g., pictures of familiar

and unfamiliar faces). While the subject is exposed to the stimuli, an MRI scan-

ner repeatedly scans the subject’s brain to collect a time series from each brain

voxel (three-dimensional imaging unit). These time series are analyzed to make

statistical inference about brain activity in response to the stimuli. Typically,

such an inference is made based on the hemodynamic response function (HRF),

a function of time describing the noise-free change of the MRI measurements

following a stimulus onset. The HRF can be viewed as the effect of the stimulus

to the brain, and is often the main interest in an fMRI experiment. See Lazar

(2008) for an overview of statistical analysis of fMRI data.

For experiments with two types of stimuli, comparing the HRFs helps to

study the differences in their effects. For this common study objective, we seek

an optimal fMRI design for yielding the most precise estimate of the contrast

between the HRFs. Existing approaches for finding such optimal fMRI designs

mainly rely on computer search algorithms (e.g., Wager and Nichols (2003); Kao

et al. (2009a); Kao, Mandal and Stufken (2009b); Maus et al. (2010)). Analytical
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results, while important, are scarce. Recently, Kao (2013) conducted an analyti-

cal analysis on optimal designs for estimating individual HRFs. However, to our

knowledge, analytical results are unavailable to guide the selection of designs for

comparing HRFs.

Our study addresses this lack. For experiments with two stimulus types, we

derive a sufficient condition for an fMRI design to be universally optimal (Kiefer

(1975)) in comparing HRFs. We then provide designs that satisfy this sufficient

condition. These designs can be used in fMRI studies or serve as benchmarks for

evaluating other fMRI designs. In the next section, we describe our setting and

main results on optimal fMRI designs. We then present some universally optimal

fMRI designs in Section 3. The paper closes with a conclusion and a discussion

in Section 4.

2. Main Results

An fMRI experimental designs with two stimulus types can be written as

an ordered sequence d = (d1, d2, . . . , dN ), where dn ∈ {0, 1, 2}, n = 1, . . . , N ,

and N is the number of time points where a stimulus can possibly occur. The

pre-specified time between these time points is τ (e.g., 4 s). When dn = q > 0, a

qth-type stimulus occurs at the nth time point with a brief presentation duration

(e.g., 1 s). With dn = 0, no stimulus appears at the corresponding time point.

During the time periods with no stimulus presentation, the subject is asked to

rest or, say, gaze at a visual fixation when the experiment involves visual stimuli.

While being presented to the experimental subject, each stimulus gives rise

to a hemodynamic response function, HRF, at each brain voxel responding to the

stimulus. At the same voxel, the HRFs evoked by the stimuli of the same type

are typically assumed to be the same across the experiment. With two stimulus

types, a study objective of interest is often on comparing the two HRFs. This

can be achieved by analyzing the MRI measurements collected every τ seconds

from each voxel. Let yn be the nth MRI measurement of the time series of a

brain voxel, and xq,n be a 0-1 indicator which equals 1 when a qth-type stimulus

is presented at time point n (i.e. dn = q); n = 1, . . . , N and q = 1, 2. We follow

previous studies (e.g., Kao (2013)) to consider a linear model with the assumption

that the last K − 1 elements of the design also appear in the pre-period before

the first valid MRI measurement, y1:

yn = γ +
K−1∑
k=0

{x1,n−kh1,k+1 + x2,n−kh2,k+1}+ εn, 1 ≤ n ≤ N. (2.1)

Here, γ is an unknown parameter, hq,k is the kth HRF height evaluated at (k−1)τ

seconds after an onset of a qth-type stimulus, ε1, . . . , εN represent homoscedastic,

uncorrelated noise, the integer K depends on the duration (e.g., 30 s) of the



UNIVERSALLY OPTIMAL fMRI DESIGNS 501

HRF, and xn−k is interpreted as xN+n−k when n ≤ k. Clearly, for any given

fMRI design, we have x1,n + x2,n ∈ {0, 1} for all n.

Our focus is on θk = h1,k − h2,k, k = 1, . . . ,K, and we rewrite Model (2.1)

as

yn = γ +

K−1∑
k=0

{an,kξk+1 + bn,kθk+1}+ εn, 1 ≤ n ≤ N, (2.2)

where an,k = (x1,n−k+x2,n−k)/2, bn,k = (x1,n−k−x2,n−k)/2, and ξk = h1,k+h2,k.

We proceed to find a universally optimal design for inference on θ = (θ1, . . . , θK)′

over the class DN of designs with N elements.

Definition 1. Let Φ be a class of optimality criteria, ϕ, that are (a) real-valued,

convex functions of non-negative definite matrices, (b) orthogonally invariant,

ϕ(P ′AP ) = ϕ(A) for any orthogonal matrix P and non-negative definite matrix

A, and (c) nonincreasing, ϕ(A1) ≤ ϕ(A2) when A1, A2 and A1 −A2 are non-

negative definite. A design is universally optimal if, for every ϕ ∈ Φ, it minimizes

ϕ(Md[θ]) overDN , whereMd[θ] is the information matrix of θ for a given design

d.

A universally optimal design optimizes a large class of optimality crite-

ria that includes the widely considered A- and D-optimality criteria, which

aim respectively at minimizing the average variance and generalized variance

of parameter estimates (e.g., Pukelsheim (1993)). For any design in DN , let

n
(pq)
k = #{n | (dn−k, dn) = (q, p), n = 1, . . . , N} be the number of time points

when a p is preceded by a q at a time distance k; here, dn−k is set to dN+n−k

when n ≤ k. Our result provides a sufficient condition for an fMRI design to

be universally optimal. Some methods for constructing designs satisfying this

sufficient condition are presented in the next section.

Theorem 1. If there exists a design d∗ ∈ DN for which

n
(11)
k = n

(12)
k = n

(21)
k = n

(22)
k =

N

4
, 1 ≤ k ≤ K − 1, (2.3)

then d∗ is universally optimal in DN for inference on θ = (θ1, . . . , θK)′.

Proof. Let nq =
∑N

n=1 xq,n be the number of occurrences of the qth-type stimu-

lus in a design in DN ; q = 1, 2. For the design d∗ satisfying (2.3), we have n1 =

n2 = N/2, and
∑N

n=1 bn,k =
∑N

n=1 bn,kan,k =
∑N

n=1 bn,kan,ℓ =
∑N

n=1 bn,kbn,ℓ = 0,

1 ≤ k ̸= ℓ ≤ K − 1, where an,k and bn,k are as in (2.2). Thus, d∗ allows estima-

tion of each θk in Model (2.2) orthogonally to γ, ξ1, . . . , ξK , and θh for h ̸= k. In

addition, for any design in DN ,
∑N

n=1 b
2
n,k = (n1 + n2)/4 ≤ N/4 with equality

being attained for the design d∗. Consequently, the information matrix Md∗ [θ]
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is proportional to the identity matrix and tr{Md∗ [θ]} = maxd∈DN
tr{Md[θ]}.

Following Proposition 1’ of Kiefer (1975), the claimed universal optimality of d∗

follows; see also, Kiefer and Wynn (1984).

3. Universally Optimal Designs

3.1. Extended m-sequences

We construct universally optimal designs for comparing two HRFs by mod-

ifying the binary extended m-sequences considered in Kao (2013). A binary

m-sequence of length 2r − 1 can be obtained by a linear recurrence relation

tn+r = a1tn+r−1+a2tn+r−2+· · ·+artn ( mod 2) with a specified nonzero initial r-

tuple (t1, . . . , tr). Here, r is an integer and a1, . . . , ar ∈ {0, 1} are coefficients that

are determined by a primitive polynomial f(x) = xr −a1x
r−1−a2x

r−2−· · ·−ar
over the finite field GF (2) of order 2. A binary extended m-sequence, which is a

de Bruijn sequence (Golomb and Gong (2005)), can be obtained by inserting a

0 to any run of r − 1 zeros in a binary m-sequence. For 1 ≤ k ≤ r − 1, we have

n
(11)
k = n

(10)
k = n

(01)
k = n

(00)
k = 2r−2 in a binary extended m-sequence of length

2r; see also Kao (2013).

Theorem 2. Let t = (t1, . . . , tN ) be a binary extended m-sequence with N = 2K ,

and let d = (d1, . . . , dN ) satisfy dn = tn +1. The design d is universally optimal

for comparing HRFs of length K.

3.2. Paley-difference sets

Another method for obtaining a universally optimal design for comparing

two HRFs is by using difference sets. See, e.g, Jungnickel and Pott (1999) for an

overview of difference sets. Let Zν = {0, . . . , ν−1} and (Zν ,+) be a cyclic group

under addition modulo ν for a prime power ν.

Definition 2. A (ν, κ, λ)-difference set in (Zν ,+) is a κ-subset, s = {s1, . . . , sκ},
of Zν such that the multiset {si − sj (mod ν) | si, sj ∈ s, si ̸= sj} contains every

nonzero element of Zν exactly λ times.

For convenience, the elements in the difference sets considered here are ar-

ranged in an ascending order. When N−1 = 3 (mod 4) is a prime, we construct

fMRI designs of length N by using Paley (N − 1, N/2 − 1, N/4 − 1)-difference

sets, s (Paley (1933)). Such an s contains all the nonzero quadratic residues in

ZN−1; s = {x2 (mod N − 1) | x = 1, . . . , N/2 − 1}. In this s, we identity the

longest run of consecutive integers, and use G and si1 to denote the number of

elements and the last element of this run, respectively. We then obtain another

difference set, sπ = s + π (mod N − 1), by adding π modulo N − 1 to every
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Table 1. Selected universally optimal fMRI designs of length N for compar-
ing two HRFs of length K ≤ G+ 1.

N G design
68 6 1 2 2 1 2 2 2 1 2 1 1 1 2 1 1 2 2 2 2 2 2 1 2 1 2 2 2 2 1 1 1 2 2 1 1 2 1 2 1 1

2 2 1 2 2 1 2 1 2 2 1 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 1 1
132 8 1 2 2 2 2 2 2 2 2 1 1 2 1 2 2 1 1 2 2 1 2 2 2 2 1 2 1 2 2 1 2 2 2 2 1 1 1 1 2 2

1 2 1 1 1 2 2 1 1 1 2 2 1 2 2 2 1 2 1 2 1 2 2 2 1 2 2 1 2 1 1 1 2 1 2 1 2 1 1 1
2 1 1 2 2 2 1 1 2 2 2 1 2 1 1 2 2 2 2 1 1 1 1 2 1 1 2 1 2 1 1 1 1 2 1 1 2 2 1 1
2 1 2 2 1 1 1 1 1 1 1 1

284 9 1 2 1 1 1 2 1 2 1 1 2 2 2 1 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 1 2 1 1 2 2 2 1 1 1
1 1 2 2 1 2 1 1 2 2 2 2 2 1 1 1 2 2 1 2 1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 2 2 1 1 1
2 2 1 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 2 2 1 2 1 2 1 1 2 2 1 1 2 2 1 2 2 1 1 1
2 1 2 2 2 2 2 2 1 2 1 1 2 1 2 2 1 2 1 1 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 1 1 2 2 1
1 2 2 2 1 1 1 1 1 1 2 2 1 2 1 2 2 2 1 2 2 1 2 1 1 2 2 1 2 2 1 2 1 1 2 1 1 1 2 1
2 1 1 2 2 2 2 2 2 1 1 1 2 2 1 1 2 2 2 2 1 2 1 2 1 2 1 1 1 2 1 2 2 2 2 1 2 1 1 2
1 2 2 1 2 1 1 1 1 1 1 2 1 2 2 2 1 1 2 1 1 2 2 1 1 2 2 1 2 1 2 1 1 2 2 1 1 1 1 1
1 1 1 1

si ∈ s, where π = N − 2− si1 . We set the nth element of an fMRI design d to

dn =

{
1, n = 1 or (n− 2) ∈ sπ;

2, otherwise,
n = 1, . . . , N. (3.1)

Theorem 3. The design d obtained via (3.1) is universally optimal for compar-

ing two HRFs of length K ≤ G+ 1.

Proof. By replacing 2 by −1 in (3.1), d forms a column of a normalized Paley

type I Hadamard matrix, H (see Hedayat, Sloane and Stufken (1999), Horadam

(2007)). This remains true when sπ in (3.1) is replaced by sπ+g = s + π +

g (mod N−1) for 1 ≤ g ≤ G. The G+1 designs obtained as sπ+g, g = 0, . . . , G,

are cyclically shifted versions of each other, and form distinct columns of H when

−1 substitutes 2 in the designs. Following the fact that the elements of the first

column (and the first row) of H are 1, and HH ′ = NIN , the d obtained via

(3.1) has n1 = n2 = N/2 and n
(11)
k + n

(22)
k = n

(12)
k + n

(21)
k for k = 1, . . . , G. This

implies that n
(12)
k = n

(21)
k and n

(11)
k = n

(22)
k . The condition (2.3) is thus satisfied.

For each design length N , the value of G can be obtained numerically; see

also Buell and Hudson (1984). In the supplementary material, we provide those

G-values for N ≤ 600 for which Paley difference sets are known. The corre-

sponding designs obtained by (3.1) are also provided. For illustrative purposes,

designs with selected N are presented in Table 1 along with their G-values. It is

noteworthy that, by replacing 2 with 0 in (3.1), the obtained designs satisfy the

sufficient conditions in Kao (2013). These designs are thus universally optimal
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for estimating an HRF of length K ≤ G+ 1. Therefore, by modifying the sym-

bols, all the designs presented in Table 1 can be employed in, say, an experiment

reported in Miezin et al. (2000) for studying an HRF of length K = 7. These

designs enlarge the library of high quality fMRI designs for experimenters to

choose from.

4. Conclusion and Discussion

Research on fMRI experimental designs that increase the precision of sta-

tistical analyses is still underdeveloped. For comparing the HRFs between two

stimulus types, we derive a sufficient condition for fMRI designs to be universally

optimal, and present some universally optimal designs that are constructed using

m-sequences and difference sets.

Universally optimal designs in DN for comparing HRFs of length K ≤ G+1

can also be obtained by using a (G+1)-by-N circulant partial Hadamard matrix

with zero row sums. As described in Craigen et al. (2013), for such a matrix,

C = ((cg,n))g=1,...,G+1,n=1,...,N , we have that the entries cg,n ∈ {−1, 1}, CjN = 0,

CC ′ = NIG+1, and the gth row is obtained by cyclically shifting the (g − 1)st

row one position to the right with cg,1 = cg−1,N and cg,n = cg−1,n−1 for g =

2, . . . , G + 1 and n = 2, . . . , N ; here, jN is the vector of N ones. Clearly, some

of these matrices can be obtained by Paley-difference sets, and a universally

optimal design can be constructed by replacing −1 with 2 in any row of C.

Using a computer search, Low et al. (2005) presented some C matrices having

the maximum G for N = 4r ≤ 52. As also presented in Table 1 of Craigen et al.

(2013), the maximum values of G are 1, 2, 4, 6, 6, 8, 8, 11, 13, 16, 15, 16 and 19 for

N = 4, 8, . . . , 52, respectively. Thus, for a given G, we can obtain designs with a

shorter length than the designs presented in Section 3. However, it is suggested

there that finding a C matrix with the maximum G is a challenging problem.

When deriving our results, we assume that (i) the time between time points

where a stimulus can possibly occur equals the time between consecutive MRI

scans of the same brain voxel, (ii) the last K − 1 elements of the selected design

are also presented in the pre-period before the first valid MRI measurement,

and (iii) there is no drift or trend in the fMRI time series and the error terms

are uncorrelated. The first assumption can be controlled by the experimenter.

In addition, a pre-period allowing the MRI scanner to reach a steady state is

typically needed, and the MRI measurements collected during this pre-period

are discarded from the subsequent statistical analysis. Thus, (ii) may not be a

strong assumption. However, (iii) may sometimes be violated. If so, we can apply

a computational method such as the search algorithm of Kao et al. (2009a) to

obtain (near-)optimal designs. Deriving insightful analytical results on optimal
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fMRI designs by relaxing these assumptions is important. Extension of our results

to cases with three or more stimulus types is a future research topic of interest.

Supplementary Material

The supplementary document available online includes a list of fMRI designs

of length N (≤ 600) that are obtained via (3.1).
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