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Abstract: We propose a general GARCH framework that allows one to predict
volatility using returns sampled at a higher frequency than the prediction hori-
zon. We call the class of models High FrequencY Data-Based PRojectIon-Driven
GARCH, or HYBRID-GARCH models, as volatility dynamics are driven by what
we call HYBRID processes. The HYBRID processes can involve data sampled at
any frequency. We study the theoretical properties as well as statistical inference.
An application reports the superior out-of-sample forecasting performance of the
new class of models, including the time of the recent financial crisis.
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1. Introduction

Multi-period volatility forecasts feature prominently in asset pricing, port-

folio allocation, risk-management, and most other areas of finance where long-

horizon measures of risk are necessary. Such forecasts can be constructed in three

quite different ways. The first approach is to estimate a horizon-specific model

of the volatility, such as a weekly or monthly GARCH, that can then be used to

form direct predictions of volatility over the next week, month, etc. The second

approach is to estimate a daily model and then iterate forward the daily forecasts

to obtain weekly or monthly predictions. The forecasting literature refers to the

first approach as “direct” and the second as “iterated”. A third method is the

mixed-data sampling (MIDAS) approach introduced by Ghysels, Santa-Clara,

and Valkanov (2005, 2006). A MIDAS model uses, for example, daily squared

returns to produce directly multi-period volatility forecasts and can be viewed

as a middle ground between the direct and the iterated approaches. The MIDAS

volatility literature (see Ghysels and Valkanov (2012)) has mostly focused on

regressions-based models. It is the purpose of this paper to introduce ideas simi-

lar to MIDAS models in GARCH-type models. The advantages of this approach

is that one focuses directly on multi-period forecasts, as in the direct approach,

while one preserves the use of high-frequency data.
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We propose a unifying framework, based on a generic GARCH-type model,

that addresses the issue of volatility forecasting involving forecast horizons of

a different frequency than the information set. Hence, we propose a class of

GARCH models that can handle volatility forecasts over the next five business

days and use past (intra-)daily data, or tomorrow’s expected volatility while

using intra-daily returns. We call the class of models High FrequencY Data-

Based PRojectIon-Driven GARCH models as the GARCH dynamics are driven

by what we call HYBRID processes. HYBRID-GARCH models - by their very

nature - relate to many topics discussed in the extensive literature on volatility

forecasting. These topics include - but are not limited to - iterated versus direct

forecasting, temporal aggregation, weak versus semi-strong GARCH, as well as

various estimation procedures. Since there are quite a few papers written on

these topics it is obviously hard to cite a comprehensive list here. Nevertheless,

it is worth noting that we study three broad classes of HYBRID processes: (1)

parameter-free processes that are purely data-driven, (2) structural HYBRIDs

in which one assumes an underlying data generating process (DGP) or some

dynamic structure for the high frequency data, and (3) HYBRID filter processes.

To motivate the class of models, it is worth recalling that a key ingredient of

conditional volatility models is that more weight is attached to the most recent

returns (i.e. information). In the case of the original ARCH model (see e.g.

Engle (1982)) that means the most recent (daily) squared returns have more

weight when predicting future (daily) conditional volatility. How does this apply

to intra-daily financial data? The foundation of so-called realized volatility (RV)

modeling is the theory of continuous time semi-martingale stochastic processes,

more specifically stochastic volatility continuous time jump-diffusions. While

intra-daily data are used to construct RV, prediction models put more weight

on recent (daily) RV but, despite the use of intra-daily data, do not differentiate

among intra-daily returns. If volatility is a persistent process, it would be natural

to weight intra-daily data differently, as pointed out by Malliavin and Mancino

(2005). The arguments also apply to lower frequency volatility prediction models,

such as (total) weekly volatility. Here the choice is between a GARCH model

- using past weekly returns, de facto putting equal weight to the daily returns

within the week - and a GARCH model for weekly forecasts using daily returns.

It is the latter that is novel, and an example of the class of models is introduced

in the paper. Compared to Malliavin and Mancino (2005), we go beyond linear

projections, albeit in a discrete time setting. Our models do have a connection

with continuous time models as well when we restrict our attention to linear

projections.

The paper is structured as follows. Section 2 provides an overview of the

models, and the various classes of HYBRID processes involved. Section 3 is
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devoted to the statistical properties of the HYBRID GARCH model, defining

the various parameter estimators and studying their asymptotic properties. In

Section 4 we study continuous time limiting arguments and examine how the

HYBRID process can be structurally linked to continuous time diffusions. We

also examine the role played by jumps. The small sample behavior of various

estimators is examined in Section 5 via simulation. An empirical application in

Section 6 reports the superior out-of-sample forecasting performance of the new

class of models, including during the time of the recent financial crisis. Section 7

concludes the paper. Technical details are collected in Chen, Ghysels, and Wang

(2014).

2. HYBRID Processes

The paper considers models for the volatility prediction of a log-price process

p
.
= (ps)−∞<s<∞, which is a continuous-time semi-martingale defined on some

probability space (Ω,F , P ). Suppose the process is observed at a frequency

m ∈ N∗, with returns rk/m = pk/m − p(k−1)/m observed for k ∈ Z, where the

unit interval corresponds to one day with m observations per day. The realized

variance on day t, RVt, is defined as RVt
.
=

∑m−1
j=0 r2t−j/m. The volatility object

of interest is

σ2
t+1|t

.
= Pl(RVt+1|It), t ∈ Z, (2.1)

the orthogonal projection of the realized variance RVt+1 onto the information up

to day t, It.
To mimic the volatility dynamics, we consider a GARCH-type recursion

Vt+1|t = α+ βVt|t−1 + γHt(ϕ), t ∈ Z, (2.2)

where α > 0, 0 < β < 1, γ > 0, and Ht(ϕ) is some functional of the observed

returns r⃗t = (rt−1+1/m, rt−1+2/m, . . . , rt−1/m, rt)
⊤ that may or may not depend

on the parameter ϕ ∈ Rd (d ≥ 1). The process Vt+1|t at (2.2) is referred to a High

FrequencY Data-Based PRojectIon-Driven (HYBRID) GARCH process, and Ht

is called a HYBRID process.

Remark 1. The HYBRID process Ht can be purely data-driven and not depend

on parameters. The obvious case would be a simple squared return process such

that Vt+1|t has the typical GARCH(1,1) dynamic.

In this paper, we intend to study volatility forecast under minimal assump-

tions on the log-price process. The structure of σ2
t+1|t is not tractable if the price

or return process is unspecified. Therefore, to facilitate our analysis, we have an

assumption on the discretely sampled return process {rk/m, k ∈ Z}.
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Assumption 1. {rk/m, k ∈ Z} are non-degenerate and linearly independent with

Er4k/m < ∞.

Let Lt be the closed span of {1, rt−k/m, r2t−k/m; k = 0, 1, 2 . . .}, and Fd
t

.
= σ(rt−k/m, k = 0, 1, 2 . . .) the sigma field generated by the discretely observed

return process. We consider two specifications for the information set It.

Assumption 2 (Scenario 1). It = Lt for t ∈ Z, and Pl(rs|Ls−1/m) = 0, where

s = k/m and k ∈ Z.

Assumption 3 (Scenario 2). It = Fd
t for t ∈ Z, and Pl(rs|Fd

s−1/m) = 0 with

s = k/m and k ∈ Z.

In Scenario 1, σ2
t+1|t is viewed as the best linear predictor. Scenario 2 defines

a more general situation, where σ2
t+1|t is a conditional variance. In particular,

under Assumption 3, the prediction equations imply that E(rs|Fd
s−1/m) = 0 and

E(RVt+1|Fd
t ) = E(R2

t+1|Fd
t ) = σ2

t+1|t, where Rt+1 =
∑m−1

j=0 rt+1−j/m.

The distance between Vt+1|t and σ2
t+1|t is determined by the structure of the

HYBRID process as well as unknown parameters. Write Vt+1|t as Vt+1|t(θ) where

θ collects all the distinct parameters in the HYBRID GARCH model (2.2). We

discuss the model σ2
t+1|t = Vt+1|t(θ0), where θ0 can be understood as the ‘true’ pa-

rameter. This is done for simplicity and one could think of generalizations where

Vt+1|t(θ0) is an approximation of σ2
t+1|t. Moreover, we have an assumption that

guarantees that the HYBRID process is non-negative and satisfies measurability

and identifiability when it comes to parameter estimation.

Assumption 4. Let t ∈ Z, Ht ∈ It. For a parameterized Ht and ϕ = (ϕ1, . . .,

ϕd)
⊤, define H(ϕ, r⃗t)

.
= Ht(ϕ). There exists a connected set Φ ⊂ Rd such that, for

j ∈ {1, . . . , d}, (1) the second-order partial derivative ∂2Ht(ϕ)/∂ϕ
2
j exists and is

continuous on Φ; (2) H(ϕ, ·), ∂H(ϕ, ·)/∂ϕj, and ∂2H(ϕ, ·)/∂ϕ2
j are B(Rm)/B(R)

measurable; (3) 1, Ht(ϕ), and ∂Ht(ϕ)/∂ϕ1, . . . , ∂Ht(ϕ)/∂ϕd are linearly inde-

pendent.

A detailed discussion of Assumption 4 is provided in the companion document

Chen, Ghysels, and Wang (2014). The HYBRID process that satisfies Assump-

tion 4 is also referred to as a HYBRID filtering process.

3. Estimation of the HYBRID GARCH Model

The objective is to find an optimal θ which minimizes the distance between

Vt+1|t(θ) and σ2
t+1|t. We work exclusively with returns sampled at fixed frequency

without referring to an explicit data generating process and make the assumption

that
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Assumption 5. {rk/m, k ∈ Z} is strictly stationary and ergodic.

We take the returns as sampled from the underlying continuous-time log price

process. A discussion on the continuous time limits is deferred to Section 4.

Throughout this section, we assume that the HYBRID process is parame-

terized, and the parameter ϕ is not related to α, β, γ appearing in (2.2). Hence

θ = (α, β, γ, ϕ)⊤ ∈ R3+d. The discussion that follows can easily carry over to the

situation where ϕ is functional of α or β or γ. Let Θ = {θ = (α, β, γ, ϕ)⊤ : α >

0, 0 < β < 1, γ > 0, ϕ ∈ Φ} where Φ is a connected set in Assumption 4. We

suppose that C is a convex compact subset of Θ such that the true parameter

θ0 = (α0, β0, γ0, ϕ0)
⊤ is an interior point of C.

3.1. Estimation under Scenario 1

Given the observations {r1/m, . . . , r1, . . . , rT−1+1/m, . . . , rT }, a natural esti-

mator of θ0 in Scenario 1 is the minimizer of T−1
∑T

t=1

(
RVt − Ṽt(θ)

)2
where Ṽt

is defined recursively by

Ṽt(θ) = α+ βṼt−1(θ) + γHt−1(ϕ), t ≥ 1 and Ṽ0 = ṽ, (3.1)

where ṽ is any arbitrary deterministic value. The minimizer exists due to Jen-

nrich (1969) and Gallant and White (1988), and is denoted by θ̃mdrv
T , minimum-

distance RV-based estimator. Let εt(θ) = RVt − Vt|t−1(θ).

Proposition 1 (Scenario 1). If Assumptions 1, 2, 5, hold, θ0 = argminθ∈C Eεt(θ)
2.

Proof. see Section S3.1 of Chen, Ghysels, and Wang (2014).

The true parameter θ0 is identifiably unique – see Gallant and White (1988)

for the definition of identifiable uniqueness. Proposition 1 allows us to establish

the consistency of θ̃mdrv
T . The asymptotic normality needs another assumption.

Assumption 6. {rk/m, k ∈ Z} is strictly stationary and α-mixing with the mix-

ing coefficient α(j) satisfying
∑∞

j=0 α(j)
v2/(2+v2) < ∞ for some v2 > 0, and

Er
4(2+v2)
k/m < ∞.

Denote by∇ the vector differential operator w.r.t θ so that∇f is the gradient

(column vector) of scaler function f : ∇f = (∂1f, . . . , ∂d+3f)
⊤ where ∂k is the

partial derivative w.r.t. the kth parameter in θ = (α, β, γ, ϕ).

Theorem 1 (Scenario 1). Under Assumptions 1, 2, 4, and 5.

(1) θ̃mdrv
T is identifiably unique and is a strongly consistent estimator of θ0.

(2) Under the further Assumption 6, limT→∞ var
(
(1/

√
T )

∑T
t=1 εt∇εt(θ0)

)
ex-

ists and is finite, denoted by Ωmdrv.
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(3) If Ωmdrv is positive definite,
√
T (θ̃mdrv

T −θ0) ⇒ N(0, (Σmd)−1Ωmdrv(Σmd)−1),

where 0 < Σmd = E∇Vt|t−1(θ0)(∇Vt|t−1(θ0))
′
< ∞.

Proof. see Section S3.2 of Chen, Ghysels, and Wang (2014).

The existence of Ωmdrv and the asymptotic normality follows from the fact

that εt∂kεt is near-epoch dependent on the return process, and is therefore a

mixingale when the return process is α-mixing (see Lemma S3.5 of Chen, Ghysels,

and Wang (2014)). It should be noted that the size of α-mixing is −(v2 + 2)/v2
(see Assumption 6). It is weaker than the size required in Theorem 5.7 of Gallant

and White (1988), and of Goncalves and White (2004) as well (see page 24 of

Gallant and White (1988) for the definition of size).

3.2. Estimation under Scenario 2

We consider situations where the HYBRID GARCH model produces con-

ditional variance prediction. In such a case we are at liberty to consider both

minimum distance estimator as in Section 3.1, and the quasi-maximum likelihood

estimator that is standard in the GARCH literature. Consider

θ̃mdrv
T = argmin

θ∈C

1

T

T∑
t=1

(
RVt − Ṽt(θ)

)2
, (3.2)

θ̃mdr2
T = argmin

θ∈C

1

T

T∑
t=1

(
R2

t − Ṽt(θ)
)2

, (3.3)

θ̃lhr2T = argmin
θ∈C

1

T

T∑
t=1

(
log Ṽt(θ) +

R2
t

Ṽt(θ)

)
, (3.4)

θ̃lhrvT = argmin
θ∈C

1

T

T∑
t=1

(
log Ṽt(θ) +

RVt

Ṽt(θ)

)
, (3.5)

where Ṽt is defined in (3.1). We also consider the estimator derived using the

Multiplicative Error Model, which shares some similarities with the likelihood-

RV-based estimator θ̃lhrvT .

To make sure Ṽt(θ) ∈ L2 and its second order partial derivatives are well

defined, we need an assumptions on Ht.

Assumption 7. For r⃗t = (rt−1+1/m, rt−1+2/m, . . . , rt−1/m, rt)
T satisfying As-

sumption 1,

(1) E sup
ϕ∈Φ0 H(ϕ, r⃗t), E sup

ϕ∈Φ0 |∂H(ϕ,r⃗t)
∂ϕi

|, and E sup
ϕ∈Φ0 |∂

2H(ϕ,r⃗t)
∂ϕi∂ϕj

| are finite,

for i, j ∈ {1, . . . , d}.
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(2) E(sup
ϕ∈Φ0 H(ϕ, r⃗t))

2, E(sup
ϕ∈Φ0 |∂H(ϕ,r⃗t)

∂ϕi
|)2, and E(sup

ϕ∈Φ0 |∂
2H(ϕ,r⃗t)
∂ϕi∂ϕj

|)2 are

finite, for i, j ∈ {1, . . . , d}.
(3) E(sup

ϕ∈Φ0 H(ϕ, r⃗t))
4 and E(sup

ϕ∈Φ0 |∂H(ϕ,r⃗t)
∂ϕi

|)4 are finite, for i ∈ {1, . . . , d}.

(4) E(sup
ϕ∈Φ0 H(ϕ, r⃗t))

2(2+v2) and E(sup
ϕ∈Φ0 |∂H(ϕ,r⃗t)

∂ϕi
|)2(2+v2) are finite, for i ∈

{1, . . . , d}, where v2 is defined in Assumption 6.

Remark 2. We do not need Assumption 7 in Scenario 1, because the HYBRID
process Ht in Scenario 1 is a weighted sum of 1, the intermediate returns and
squared returns from day t− 1 to t (see Assumption 4).

3.2.1. Minimum distance and quasi-likelihood estimators

We start by extending Proposition 1 to the case of Scenario 2. Let et(θ) =
R2

t − Vt|t−1(θ).

Proposition 2 (Scenario 2). Under Assumptions 1, 3, 4, 5, and 7(2), θ0 =
argminθ∈C E (εt(θ))

2 = argminθ∈C E (et(θ))
2 .

Here εt(θ0)∂iεt(θ0) and et(θ0)∂iet(θ0) are martingale difference sequences.
Ωmdrv defined in Theorem 1 becomes E[(RVt − Vt|t−1(θ0))

2∇Vt|t−1(θ0)∇Vt|t−1(θ0)
′
].

Let Ωmdr2 = E[(R2
t − Vt|t−1(θ0))

2∇Vt|t−1(θ0)∇Vt|t−1(θ0)
′
]. Both Ωmdrv and Ωmdr2 are

finite and positive definite under suitable regularity conditions. We therefore
have the following regarding θ̃mdrv

T and θ̃mdr2
T defined in (3.2) and (3.3).

Theorem 2 (Scenario 2). Under Assumptions 1, 3, 4, 5, and 7(2),

(1) θ̃mdrv
T , θ̃mdr2

T are identifiably unique and they converge to θ0 a.s.

(2) If further Er8 < ∞ and Assumption 7(3) holds,
√
T (θ̃mdrv

T − θ0) converges in
distribution to N(0, (Σmd)−1Ωmdrv(Σmd)−1) and

√
T (θ̃mdr2

T − θ0) converges
in distribution to N(0, (Σmd)−1Ωmdr2(Σmd)−1).

The proof is an application of the Martingale Central Limit Theorem and
appears in Section S3.3 of the companion document Chen, Ghysels, and Wang
(2014).

Proposition 3 (Scenario 2). Suppose E(sup
ϕ∈Φ0 H(ϕ, r⃗t))

2 < ∞. Under As-

sumptions 1, 3, 4, and 5, θ0 = argminθ∈C E
(
log Vt|t−1(θ) +RVt/Vt|t−1(θ)

)
=

argminθ∈C E
(
log Vt|t−1(θ) +R2

t /Vt|t−1(θ)
)
.

Proof. see Section S3.1 of Chen, Ghysels, and Wang (2014).

Therefore θ0 can be estimated by θ̃lhrvT in (3.4) or θ̃lhr2T in (3.5). Let

Σlh = E
(
V −2
t|t−1(θ0)∇Vt|t−1(θ0)∇Vt|t−1(θ0)

′
)
,

Ωlhr2 = E
(
V −4
t|t−1(θ0)(R

2
t − Vt|t−1(θ0))

2∇Vt|t−1(θ0)∇Vt|t−1(θ0)
′
)
,

and
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Ωlhrv = E
(
V −4
t|t−1(θ0)(RVt − Vt|t−1(θ0))

2∇Vt|t−1(θ0)∇Vt|t−1(θ0)
′
)
.

Theorem 3 (Scenario 2). Suppose E(sup
ϕ∈Φ0 H(ϕ, r⃗t))

2 < ∞ and Assumptions

1, 3, 4, and 5 hold.

(1) θ̃lhrvT , θ̃lhr2T are identifiably unique and they converge to θ0 a.s.

(2) If E(r4+v) < ∞ for some v > 0, and for i, j ∈ {1, . . . , d},∣∣∣∣∂H(ϕ, x⃗)/∂ϕi

H(ϕ, x⃗)

∣∣∣∣ ≤ g(ϕ),

∣∣∣∣∂2H(ϕ, x⃗)/∂ϕi∂ϕj

H(ϕ, x⃗)

∣∣∣∣ ≤ g(ϕ) ∀x⃗ ∈ Rm, ϕ ∈ Φ,

(3.6)

where g is real-valued and continuous in ϕ, then
√
T (θ̃lhrvT − θ0) converges in

distribution to N
(
0, (Σlh)−1Ωlhrv(Σlh)−1

)
, and

√
T (θ̃lhr2T − θ0) converges in

distribution to N
(
0, (Σlh)−1Ωlhr2(Σlh)−1

)
.

The proof is an application of the Martingale Central Limit Theorem and

appears in Section S3.4 of Chen, Ghysels, and Wang (2014).

Remark 3. The likelihood estimation considered here is slightly different from

what is discussed in the literature. First of all, σ2
t|t−1 is studied in L2(Ω,F , P )

instead of L1(Ω,F , P ). Secondly, the objective function appearing in (3.4) is

not the joint quasi-log-likelihood function (modulo a constant) of {R1, . . . , RT }.
Instead of conditioning on R1, . . . , Rt−1, log Ṽt(θ) + R2

t /Ṽt(θ) is conditional quasi-

log-likelihood w.r.t. a finer set, the sigma field generated by the high frequency

returns up to day t− 1.

Remark 4. The discussion can be extended to strictly periodically stationary

and periodically ergodic time series as well; the proofs only require r⃗t to be

strictly stationary ergodic.

Among the four estimators θ̃mdr2
T , θ̃mdrv

T , θ̃lhr2T and θ̃lhrvT , the likelihood-

based estimators are superior to the minimum-distance ones in terms of moment

conditions. However, it is hard to compare the efficiency between the R2-based

and the RV -based estimators, θ̃mdr2
T vs. θ̃mdrv

T , and θ̃lhr2T vs. θ̃lhrvT , because the

sign of E
[
(R2

t − Vt|t−1(θ0))
2 − (RVt − Vt|t−1(θ0))

2|Fd
t−1

]
= E(R4

t −RV 2
t |Fd

t−1) is

unclear for an arbitrary return process. We consider a special case.

Corollary 1. Suppose the DGP is a semi-strong GARCH(1, 1) and E(r3s |Fd
s−1/m)

≥ 0. Then E(R4
t − RV 2

t |Fd
t−1) > 0. Under the assumptions in Theorems 2 and

3, θ̃mdrv
T (or θ̃lhrvT ) has a smaller asymptotic variance than θ̃mdr2

T (or θ̃lhr2T ).

Remark 5. The observation in Corollary 1 does not provide a helpful guide

when it comes to practical implementation, since conditional skewness varies
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significantly over time (see, for instance, Harvey and Siddique (1999), Harvey

and Siddique (2000), and Ghysels, Plazzi, and Valkanov (2011), among others).

The squared daily return R2
t is an extremely noisy estimator of ex-post volatility

compared to the realized variance RVt. The latter results in a more accurate

ex-post volatility forecast.

Remark 6. Theorems 1, 2, and 3 discuss long-span asymptotics: we fix the

length between observations and let the time span increase. It is natural to

tie the discretely sampled returns to the underlying continuous-time log price

process, and to examine the behavior of the estimators when the length between

observations decreases. Let (ps)−∞<s<∞ be a Brownian semimartingale: dps =

σsdWs, with volatility σs strictly stationary and α-mixing of size −(2 + v2)/v2,

and E(σ
4(2+v2)
s ) < ∞. Under Scenario 1, the discretely sampled returns satisfy

Assumption 6 due to the Burkholder-Davis-Gundy inequality and the definition

of α-mixing. Note that θ0 might depend on m. We assume that θ0 is interior

to Θ uniformly in m, and Σmd and Ωmdrv are positive definite uniformly in

m. An application of Theorem 5.1 of Gallant and White (1988) yields that(
Ωmdrv

)−1/2
Σmd

√
T (θ̃mdrv

T − θ0) ⇒ N(0, Id+3), as m,T → ∞, where Id+3 is an

identity matrix.

Under Scenario 2, suppose that the volatility σt is strictly stationary er-

godic, and integrable of order 8. If Σmd, Ωmdrv, Ωmdr2, Σlh, Ωlhrv, and Ωlhr2

are positive definite uniformly in m, we have
(
Ωmdrv

)−1/2
Σmd

√
T (θ̃mdrv

T − θ0),(
Ωmdr2

)−1/2
Σmd

√
T (θ̃mdr2

T −θ0),
(
Ωlhrv

)−1/2
Σlh

√
T (θ̃lhrvT −θ0), and

(
Ωlhr2

)−1/2
Σlh

√
T (θ̃lhr2T −

θ0) are asymptotically N(0, Id+3). When m → ∞, RVt =
∫ t
t−1 σ

2
sds + op(1), but

R2
t =

∫ t
t−1 σ

2
sds+2

∫ t
t−1

∫ s
t−1 σs′dWs′σsdWs. This also explains why the RV -based

estimators are desirable.

3.2.2. Multiplicative error models

Inspired by the Multiplicative Error Model of Engle (2002) and the subse-

quent work by Engle and Gallo (2006), Lanne (2006), Cipollini, Engle, and Gallo

(2006), we consider the model RVt+1 = σ2
t+1|tηt+1, t ∈ Z, where ηt+1 is i.i.d.

with mean 1, and σ2
t+1|t is the conditional expectation of RVt+1 up to time t,

σ2
t+1|t = Vt+1|t(θ0). One can estimate θ0 using the marginal distribution of ηt,

with the estimator denoted by θ̃mem
T .

The marginal distribution is commonly chosen as unit exponential (see En-

gle (2002)), Gamma distribution as suggested in Engle and Gallo (2006), or a

mixture of two Gamma distributions (see Lanne (2006)). Suppose that the error

term is Gamma distributed. The conditional density of RVt+1 is f(RVt+1|Fd
t ) =

Γ(g)−1ggRV g−1
t+1 (σ2

t+1|t)
−g exp(−gRVt+1/σ

2
t+1|t), and the parameter space is Θ×
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{g > 0}. Since estimators of θ0 and g are asymptotically independent (see the

discussion in Engle and Gallo (2006) and Cipollini, Engle, and Gallo (2006)),

the point estimator θ̃mem
T is then the same as θ̃lhrvT . It follows from the proof of

Theorem 3 that
√
T (θ̃mem

T − θ0) converges to N
(
0, (gΣlh)−1

)
in distribution.

If the existence of an appropriate parametric marginal density cannot be

verified, quasi-likelihood estimation is used, which yields the same asymptotic

result as θ̃lhrvT . But since the innovations are independent, Ωlhrv in Theorem 3

is E(RV 2
t /V

2
t|t−1(θ0) − 1)Σlh, and hence the moment condition Er4+v

k/m < ∞ is

unnecessary. The asymptotic variance-covariance matrix is (Eη2t − 1)(Σlh)−1.

4. Continuous Time Limits

With σ2
t+1|t as the volatility prediction based on the discretely sampled re-

turns, it is natural to link it with the continuous-time log-price process. De-

note by [p, p]t the quadratic variation of the process (ps) over [0, t], and Fc
t

.
=

σ(ps, s ≤ t) the sigma field generated by the continuous-time log-price process.

Then for t ∈ Z, Et([p, p]t+1 − [p, p]t)
.
= E([p, p]t+1 − [p, p]t|Fc

t ) is the predictable

daily increment of quadratic variation of the log price process. In this section, we

discuss a special case in which we can explicitly link Et([p, p]t+1 − [p, p]t), σ
2
t+1|t

and Vt+1|t. This allows us to examine how the HYBRID process {Ht(ϕ), t ∈ Z} is

structurally linked to (ps)−∞<s<∞. Moreover, we characterize how the presence

of jumps has an impact on the HYBRID process.

Inspired by Drost and Werker (1996), we consider a continuous-time GARCH

model as the data generating process:

dpt = σtdLt,

dσ2
t = θ(ω − σ2

t )dt+
√
2λθσ2

t dBt,

Lt =
√
1− ηWt +

√
ηNt,

(4.1)

where θ > 0, ω > 0, λ ∈ (0, 1), η ∈ [0, 1]. Bt and Wt are standard Brownian

motions. Nt is a compound Poisson process with jump measure JN and Lévy

measure ν(dy) = ζf(dy) where f is the Normal density with mean 0 and variance

1/ζ. Moreover, Bt, Wt, and Nt are independent of each other.

The discretely sampled return rs = ps − ps−1/m, where s = k/m and k ∈ Z,
follows a weak GARCH(1,1)

Pl(rs+1/m|Ls) = 0, σ2
s+1/m|s = a+ bσ2

s|s−1/m + cr2s , (4.2)

where σ2
s+1/m|s is the orthogonal projection of r2s+1/m onto Ls. The coefficients

(a, b, c) are functionals of the structural parameters in (4.1). The relationship

between (a, b, c, κ) and (θ, ω, λ, v∗L) can be found in Drost and Werker (1996,
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p. 42), where κ is the kurtosis of rs and v∗L = EL4
1 − 3 = 3η2/ζ. With some

algebra, we have σ2
s+k/m|s = a

(
1− (b+ c)k−1

)
/(1− (b+ c)) + (b+ c)k−1σ2

s+1/m|s
for k ∈ Z+. Consequently, the total volatility over the period (t, t+ 1] for t ∈ Z,∑m

k=1 σ
2
t+k/m|t = Pl(RVt+1|Lt) = σ2

t+1|t, can be characterized by

σ2
t+1|t = αm + βmσ2

t|t−1 + γm

m−1∑
j=0

βj/m
m r2t−j/m, (4.3)

where αm = a((1− bm)/(1− b))((m(1− b)− cdm)/(1− (b+ c))), βm = bm, γm =

cdm, and dm = (1− (b+ c)m)/(1− (b+ c)). Equation (4.3) has the form of (2.2)

with Ht =
∑m−1

j=0 β
j/m
m r2t−j/m, and σ2

t+1|t coincides with the HYBRID GARCH

process Vt+1|t.

Remark 7. When the return series follows a weak GARCH(1,1) as in (4.2),

the HYBRID process is structurally linked to the return process, and hence

Ht is referred to as a structural HYBRID process. The structural HYBRID

specification allows the parameters evaluated under different sampling frequencies

to be linked to each other explicitly:

αm = α1
1−βm

1
1−β1

m(1−β1)−γ1dm
1−(β1+γ1)

, βm = βm
1 , γm = γ1dm, (4.4)

where dm = (1− (β1+ γ1)
m)/(1− (β1+ γ1)), and (α1, β1, γ1) = (a, b, c). A direct

implication of (4.4) is that one can use parameter estimates from say a daily

model with for example 5-min returns, to formulate a weekly or lower frequency

model with the same 5-min returns.

We turn our attention to the predictable increment of quadratic variation.

Note that [p, p]t = (1 − η)
∫ t
0 σ

2
sds + η

∫ t
0

∫∞
−∞ σ2

sy
2JN (ds, dy). We start with

examining how Vt+1|t (or σ2
t+1|t) relates to the prediction Et([p, p]t+1 − [p, p]t).

We write Vt+1|t as V
(m)
t+1|t to emphasize the role of sampling frequency m. On the

one hand, using a continuous time filtration, the forecast of the daily increment

of the quadratic variation is

Et([p, p]t+1 − [p, p]t) = ω
(
1− θ−1(1− e−θ)

)
+ θ−1(1− e−θ)σ2

t , t ∈ Z. (4.5)

On the other hand, the forecast using Lt yields the HYBRID GARCH equation

(4.3). In view of the relation between (θ, ω, λ, v∗L) and (a, b, c, κ) stated in Drost

and Werker (1996), we have the following.
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Proposition 4. When the Lévy measure associated with the jump process fea-

tures excess kurtosis, v∗L > 0, then

lim
m→∞

αm = ω
(
1− e−θ(1+ϕ)

)(
1− ϕ

1 + ϕ
θ−1(1− e−θ)

)
,

lim
m→∞

βm = e−θ(1+ϕ), lim
m→∞

γm = (1− e−θ)ϕ,

lim
m→∞

m−1∑
j=0

βj/m
m r2t−j/m =

∫
(t−1,t]

e−θ(1+ϕ)(t−s)d[p, p]s in probability, (4.6)

where ϕ =
√

1 + 2λ/(θv∗L) − 1. When there are no jumps in the price process,

v∗L = 0, we have limm→∞ αm = ω
(
1− θ−1(1− e−θ)

)
, limm→∞ βm = 0, and

limm→∞ γm/
√
m =

√
λ/θ(1 − e−θ). Moreover

√
m

∑m−1
j=0 β

j/m
m r2t−j/m converges

to (θλ)−1/2σ2
t in L2.

Proof. see Section S3.5 of Chen, Ghysels, and Wang (2014).

Though RVt+1 =
∑m−1

j=0 r2t+1−j/m is a consistent estimator of [p, p]t+1−[p, p]t,

the HYBRID GARCH process V
(m)
t+1|t may not consistently estimate Et([p, p]t+1−

[p, p]t). From Proposition 4, V
(m)
t+1|t consistently estimates Et([p, p]t+1−[p, p]t) only

when there are no jumps in the price process.

Corollary 2. Given a continuous time GARCH (4.1) as the DGP, the process

{V (m)
t+1|t, t ∈ Z}m≥1 at (4.3) converges to {Et([p, p]t+1 − [p, p]t), t ∈ Z} uniformly

on compacts in probability if and only if there are no jumps in the price process.

Proof. see Section S3.5 of Chen, Ghysels, and Wang (2014).

Remark 8. The realized multipower variation cannot be incorporated into our

framework; the underlying information set is Lt, the closed span of {1, rt−k/m,

r2t−k/m; k = 0, 1, 2 . . .}, and the realized multipower variation is made up of

products of the successive returns.

Without jumps, the HYBRID GARCH process still involves intra-period

weighted returns: (4.3) has intra-period weights that are powers of βm. It follows

from the proof of Proposition 4 that what drives the HYBRID process (as m

→ ∞) is the instantaneous volatility σ2
t , not the integrated process estimated

by the RV. The instantaneous volatility σ2
t can be consistently estimated by the

same intra-period weighted sum mc
∑m−1

j=0 bjr2t−j/m. Put differently, we can view

the HYBRID process as a spot volatility estimator that shares some features

with other data-driven spot volatility estimators considered by Foster and Nel-

son (1996), Zhang (2001), Andreou and Ghysels (2002), Fan, Fan, and Jiang
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(2007), Fan and Wang (2008), Mykland and Zhang (2008), Zhao and Wu (2008),

Malliavin and Mancino (2005), among others.

One could think of continuous time limits in the general HYBRID filtering

context and potentially link them to Et([p, p]t+1 − [p, p]t). The discussion relies

on the approach of Drost and Werker (1996) using exact discretization limits,

which is compatible with structural HYBRID processes. The continuous time

limits of the HYBRID GARCH process also pertain to the joint long-span and

infill asymptotics of minimum distance and quasi-likelihood estimators. We leave

the broader question of diffusion limits, as in Nelson (1992), Nelson and Foster

(1995), among others, and HYBRID filtering processes for future research.

5. Simulation Study

We consider a finite sample simulation study in this section as it will become

clear that asymptotic analysis is not sufficient to appraise which estimators are

the most attractive for empirical work.

We consider two data generating processes. The first is a discrete-time

GARCH process, strong GARCH(1,1):

rs+1/m =
√
vs+1/m|sεs+1/m, εs+1/m

i.i.d.∼ N(0, 1),

vs+1/m|s = a+ bvs|s−1/m + cr2s ,
(5.1)

where s = k/m and k ∈ Z. The second is a GARCH diffusion process: Model

(4.1) with η = 0. The discretely-sampled high frequency return rs = ps−ps−1/m,

where s = k/m and k ∈ Z, is therefore a weak GARCH(1,1):

Pl(rs+1/m|Ls) = 0, Pl(r
2
s+1/m|Ls) = σ2

s+1/m|s,

σ2
s+1/m|s = a+ bσ2

s|s−1/m + cr2s ,
(5.2)

where a = m−1ω(1 − e−m−1θ), c = e−m−1θ − b, and |b| < 1 is the solution to

b/(1 + b2) = (ρe−θ/m − 1)/(ρ(1 + e−2θ/m) − 2) with ρ = [4(e−θ/m − 1 + θ/m) +

2θ/m(1+θ/m(1−λ)/λ)]/(1−e−2θ/m). We then construct the HYBRID GARCH

process (4.3) based on model (5.1) and model (5.2) respectively.

The values of the parameters in model (5.1) were a = 2.8E − 06, b =

0.9770, c = 0.0225, and are taken from Meddahi and Renault (2004). It is easy

to check that rs has finite 8th moment (see Bollerslev (1986)) and it satisfies

Assumption 5. For the GARCH diffusion process, we considered θ = 0.0350, ω =

0.6365, λ = 0.2962 (values taken from Andersen, Bollerslev, and Lange (1999)).

The values of αm, βm and γm are reported in Table 1.

In the simulation experiment, we considered 1,000 replications of sample

path (4.3), each having the first 1,000 observations burn-in and consisting of 500
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Table 1. Summary of structural parameters in simulation study.

a b c αm βm γm
Strong GARCH (1,1)

m = 5 2.8E-06 0.9770 0.0225 0.0001 0.8902 0.1124
m = 78 2.8E-06 0.9770 0.0225 0.0147 0.1628 1.7216
m = 288 2.8E-06 0.9770 0.0225 0.1429 0.0012 6.0365

Weak GARCH (1,1)
m = 24 3.86e-05 0.9794 0.0192 0.0216 0.6065 0.4523
m = 144 1.07e-06 0.9915 0.0082 0.0204 0.2945 1.1619
m = 288 2.69e-07 0.9940 0.0059 0.0195 0.1776 1.6590

and 1,000 observations left in the estimation sample. For the continuous-time

case, we used Euler discretization to simulate the diffusion process: take one day

as a reference measure, and simulate 24 hours of trading with dt = 1/86,400.

The estimators considered were: θ̃mdrv
T , defined at (3.2), the companion es-

timator θ̃mdr2
T replacing RV by R2, the (quasi-)likelihood-based estimators θ̃lhr2T

defined at (3.4), and θ̃lhrvT at (3.5). The study also included the MEM method

described in Section 3.4. Note that the estimators of θ0 and g are asymptotically

independent, and thus θ̃mem
T is asymptotically the same as θ̃lhrvT .

The simulation results for strong GARCH(1,1) are reported in Table 2. The

results for weak GARCH are similar and therefore appear in the companion

document Chen, Ghysels, andWang (2014, Table 1). To streamline the discussion

we refer to the estimators θ̃mdrv
T , θ̃mdr2

T , θ̃lhrvT , θ̃lhr2T , and θ̃mem
T as respectively

MDRV, MDR2, LHRV, LHR2, and MEM. The numbers in parenthesis in Table

2 are MSE for LHR2, and relative MSE (with respect to LHR2) for LHRV,

MDR2, MDRV, and MEM. For g (in the MEM estimator), we only report the

sample variance.

The results in Table 2 are quite easy to summarize. The bold-faced entries

between parentheses indicate the best estimator for the various parameters. The

estimator that appears to have the best finite sample properties is LHRV. It is

typically vastly better than the estimators based on R2, either minimum distance

or likelihood-based. Compared to the LHR2 estimator, we also see that MDRV

- which uses also RV but via a minimum distance criterion - is also less efficient,

except when m = 5 and T = 1,000. The MEM estimator, which is asymptotically

equivalent to LHRV, is occasionally in small samples the most efficient for one

parameter in particular, namely αm. This means that the most efficient estima-

tion of the unconditional mean of the volatility dynamic process can be achieved

with the MEM principle which directly estimates the volatility process.

Overall, the simulation results suggest that θ̃lhrvT and θ̃mem
T have the most

desirable finite sample properties.
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Table 2. Small sample property of various estimators, Strong
GARCH. The table displays estimation of αm, b, γm (and g for the MEM
estimation procedure) of a high frequency data GARCH(1,1) appearing in
equation (5.1) with sample size 500 (Panel I:III) and sample size 1,000 (Panel
IV:VI), where the true values of αm, b, γm are shown in the first line of each
panel. The estimators considered are: mdrv, defined in (3.2), and the com-
panion estimator mdr2, replacing RV by R2, as well as (quasi-)likelihood-
based estimators lhr2, defined in (3.4), and lhrv, defined in (3.5). The table
also includes the mem method described in subsection 3.4. The numbers in
the parenthesis are MSE for lhr2, relative MSE (with respect to lhr2) for
lhrv, mdr2, mdrv, mem. For g, we only report sample variance.

αm b γm g

Panel I: m = 5, T = 500

True Value 0.000070 0.977000 0.112388

LHR2 0.000259 (0.000000) 0.972401 (0.000194) 0.128465 (0.004700)

LHRV 0.000261 (1.015169) 0.974313 (0.271144) 0.119444 (0.258291)

MDR2 0.000454 (9.371349) 0.966299 (11.194958) 0.145875 (5.802282)

MDRV 0.000328 (6.150788) 0.975828 (0.502932) 0.108347 (0.278161)

MEM 0.000052 (0.154507) 0.976053 (0.782214) 0.117574 (0.790375) 2.344735 (0.022762)

Panel II: m = 78, T = 500

True Value 0.014749 0.977000 1.721640

LHR2 0.022270 (0.000429) 0.971857 (0.000324) 2.012838 (1.733246)

LHRV 0.016544 (0.053291) 0.976488 (0.018644) 1.743047 (0.018305)

MDR2 0.052818 (9.689061) 0.944327 (28.476856) 3.505934 (16.788438)

MDRV 0.029753 (1.037355) 0.975510 (0.319931) 1.742003 (0.327187)

MEM 0.004353 (0.430669) 0.979426 (0.049645) 1.575400 (0.043334) 9.716956 (6.113690)

Panel III: m = 288, T = 500

True Value 0.142879 0.977000 6.036455

LHR2 0.154505 (0.008603) 0.970251 (0.000693) 7.462548 (38.821448)

LHRV 0.147024 (0.062688) 0.976511 (0.033043) 6.133488 (0.046095)

MDR2 0.381905 (22.197008) 0.891170 (63.448471) 20.803390 (38.496335)

MDRV 0.222810 (2.186104) 0.970839 (1.738098) 7.032169 (1.141032)

MEM 0.131788 (0.289360) 0.976838 (0.129298) 6.109518 (0.185204) 7.711094 (2.311111)

Panel IV: m = 5, T = 1, 000

True Value 0.000070 0.977000 0.112388

LHR2 0.000245 (0.000000) 0.972167 (0.000110) 0.129344 (0.002517)

LHRV 0.000245 (0.967746) 0.972823 (0.487674) 0.126027 (0.416324)

MDR2 0.000313 (3.687974) 0.971769 (4.640177) 0.128260 (3.806918)

MDRV 0.000252 (0.877527) 0.976031 (0.274003) 0.109991 (0.265061)

MEM 0.000039 (0.212108) 0.976308 (0.955344) 0.116601 (1.014513) 2.347128(0.011373)

Panel V: m = 78, T = 1, 000

True Value 0.014749 0.977000 1.721640

LHR2 0.018895 (0.000220) 0.974736 (0.000127) 1.830847 (0.648751)

LHRV 0.015719 (0.054137) 0.976620 (0.023895) 1.742325 (0.024776)

MDR2 0.049303 (16.035449) 0.948179 (72.655723) 3.356842 (50.957657)

MDRV 0.027384 (1.388565) 0.975913 (0.425466) 1.735309 (0.445478)

MEM 0.003780 (0.858029) 0.979336 (0.105341) 1.585187 (0.090727) 9.866582 (5.116359)

Panel VI: m = 288, T = 1, 000

True Value 0.142879 0.977000 6.036455

LHR2 0.144974 (0.004208) 0.974875 (0.000156) 6.480715 (10.762565)

LHRV 0.145066 (0.065397) 0.976639 (0.187942) 6.117979 (0.226982)

MDR2 0.344683 (31.382805) 0.912688 (207.120933) 17.660329 (107.729227)

MDRV 0.210306 (2.883476) 0.972164 (4.841902) 6.853770 (3.094757)

MEM 0.126214 (0.591231) 0.977462 (0.273088) 5.971204 (0.299844) 7.479886 (3.057745)
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6. HYBRID GARCH Models in Practice

The proposed class of HYBRID GARCH processes allows us to investigate

some intriguing empirical modeling strategies. We pose a number of practical

questions pertaining to model specification.

• To predict daily volatility, are we better off estimating intra-daily weight-

ing schemes, despite the additional parameters involved, compared to using

realized volatility and related data-driven HYBRID processes?

• How should we handle asymmetries? Can we simply rely on sign-sensitive

aggregates such as semi-variances, or should we rather estimate intra-daily

news impact curves as suggested by Chen and Ghysels (2011), albeit at a cost

of additional parameters?

• When we are interested in weekly horizon forecasts, should we keep using

intra-daily data with their own weighting scheme, or should we rely on simple

daily realized volatilities? Hence, is the right sampling frequency of returns

intra-daily? Or, can we get by with daily aggregates?

• Considering the recent financial crisis, should we choose a totally different

modeling strategy, or do model specifications successful prior to the crisis

remain?

To address these questions we need to formulate appropriate HYBRID fil-

tering processes that feature weighting schemes, news impact functions etc. We

start with the specification:

H(ϕ, r⃗t) =

m−1∑
j=0

Ψj(ϕ)r
2
t−j/m,

m−1∑
j=0

Ψj(ϕ) = 1, (6.1)

where the weights (Ψ0(ϕ),Ψ1(ϕ),Ψ2(ϕ), . . . ,Ψm−1(ϕ))
⊤ are determined by the

low-dimensional functional specification used by Chen and Ghysels (2011), and

inspired by the MIDAS regression format of Ghysels, Santa-Clara, and Valkanov

(2006), Ghysels, Sinko, and Valkanov (2006), and Ghysels, Rubia, and Valkanov

(2009). The weighting schemes can also handle intra-daily seasonal patterns - a

topic discussed in further detail by Chen, Ghysels, and Wang (2011).

Deviating from the linear projection paradigm, the HYBRID filtering struc-

ture allows us also to consider HYBRID GARCH models that feature intra-daily

news impact curves, similar to the framework of Chen and Ghysels (2011), ex-

cept that the latter uses a MIDAS regression format. The HYBRID processes

we consider are

H(ϕ, r⃗t) =

m−1∑
j=0

Ψj(ϕ)NIC(ϕ, rt−j/m),

m−1∑
j=0

Ψj(ϕ) = 1, (6.2)
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where NIC(ϕ, ·) stands for a high frequency data news impact curve. The pa-

rameter vector ϕ contains parameters pertaining to the weights as well as the

news impact curve. Regarding the specification of the latter, we consider

NIC(ϕ, r) = br2 + δr21r<0, (6.3)

with b and δ the parameters that are in ϕ. The HYBRID process constructed

using news impact curve (6.3) is in Scenario 2. A detailed discussion about the

weights and the parameter space is provided in Section S2 of Chen, Ghysels, and

Wang (2014).

As an application, we consider a comparison of daily and weekly volatility

forecasts using models that belong to the HYBRID GARCH family. The models

are shown in Tables 5, 6, and 7.

We used the S&P 500 Futures 5-minute returns from April 21st, 1982 to

March 31st, 2013. To estimate the models and perform out-of-sample evaluations,

we used a rolling window sampling scheme that moves forward monthly. There

are 229 rolling windows and each window contains 120-months in-sample data

and 24-month set-aside for out-of-sample appraisals. To understand the impact

of the subprime mortgage crisis on modeling strategies, we also considered two

subsets: a before-crisis sample that contained 160 rolling windows from April

21st, 1982 to July, 2007; an including-crisis sample that contained 69 rolling

windows from August, 1996 until March, 2013.

All models were estimated using MEM and LHRV, inspired by our Monte

Carlo simulation findings. The out-of-sample forecast performance of models us-

ing the same estimation method and across different estimation methods were

evaluated via the Giacomini and White (2006) test, henceforth denoted by GW,

which can be viewed as a generalization, or a conditional version of the Diebold

and Mariano (1995) and West (1996) tests. Another appeal of using the GW test

is that it can handle non-nested models, which is the case in our application. In

fact, Giacomini and White (2006) stress the difference between what they call

forecasting methods versus forecasting models. Loosely speaking, forecasting

methods are the combination of estimation sample, model specification, and pre-

diction sample. In our application this is most relevant, as we not only compare

models involving high frequency data directly, or daily aggregate measures, but

we also include ARCH-type models involving daily returns, the original models

that were used in the literature on asymmetries in volatility. The loss function

we used in the GW test is QLike, which has desirable properties and is robust

to measurement error noises in volatility (see Patton (2011)). The QLike loss

function is defined as L(ht, RVt) = log ht +RVt/ht − (logRVt + 1).
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We constructed a performance score for each model based on the GW tests’

p-values and ratios,

sA =

∑
B ̸=A 1pAB<=αrAB + 0.5(1− 1pAB<=α)

(n(n− 1)/2)
, (6.4)

where sA is the score of model A; pAB is the p-value of GW test comparing models

A and B; α is the significance level and set as 10% in the paper; rAB is the ratio

of model A being predicted as better choice than model B; n is the number of

models. The performance score is normalized such that the summation across

all models is one.

We start with a comparisons of conditional predictive ability for each model

between the two methods. We skip the details, as the results are easy to sum-

marize. The results consistently show that the choice of estimation method,

LHRV or MEM, is not important, with a few exceptions where LHRV is pre-

ferred. Hence, to compare the forecast performance of models, we only consider

the LHRV estimation method.

The ranks of forecast performance based on GW tests are shown in Tables

3 and 4 for daily models and weekly models, respectively. Examining the results

in Table 3, we note the following for daily model comparisons. GARCH and

TGARCH models using daily returns are dominated by models using intra-daily

data. Symmetric models are always dominated by their asymmetric counterparts,

which implies that asymmetry does matter despite the extra parameters required

to estimate the news impact curves. Focusing on the first two columns of Table

3 for full-sample results, we find that for symmetric models, RV GARCH model

is dominated by all other HYBRID or slope constrained HYBRID models; for

asymmetric models, SemiRV GARCH model is also always less preferred than

any HYBRID or slope constrained HYBRID asymmetric model. These results

support two key findings for daily forecasting of volatility: (i) asymmetries matter

and (ii) the weighting scheme does matter. Including the samples which cover

the recent financial crisis does have some impact on modeling strategy. Focusing

on the last two columns of Table 3, we find that SemiRV (RV) GARCH model

is not always dominated by HYBRID models in the asymmetric (symmetric)

model category. However, whether or not we consider to include the crisis, the

best model always belongs to the HYBRID TGARCH class, with or without

slope and other parameter constraints.
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Weights News Impact Curve

Weights News Impact Curve

Weights News Impact Curve

Figure 1. Best Daily Models in Three Subsamples - Panels (a), (c), and (e)
display the weights of the best daily models for three samples: FC1 HYBRID
SC TGARCH model for the full sample, HYBRID TGARCH model for
the before-crisis sample, and FC0 HYBRID SC TGARCH model for the
including-crisis sample. The three representative subsamples of our rolling
sample scheme are: P1 is for period May 1982 to April 1992; P2 for period
September 1991 to August 2001; P3 for period April 2001 to March 2011.
Panels (b), (d), and (f), display the news impact curve of the same models
in the same samples.

To further document these findings, Figure 1 panels (a), (c), and (e) dis-

play the weights of the best daily models for three samples: FC1 HYBRID SC

TGARCH model for the full sample, HYBRID TGARCH model for the before-

crisis sample, and FC0 HYBRID SC TGARCH model for the including-crisis

sample. The three representative subsamples of our rolling sample scheme are:



780 XILONG CHEN, ERIC GHYSELS AND FANGFANG WANG

Figure 2. Best Weekly Model in Three Subsamples. The three representative
subsamples of our rolling sample scheme are: P1 is for period May 1982 to
April 1992; P2 for period September 1991 to August 2001; P3 for period
April 2001 to March 2011.

P1 is for period May 1982 to April 1992; P2 for period September 1991 to August

2001; P3 for period April 2001 to March 2011. It appears from the figure that

the weighting scheme patterns are fairly stable across subsamples. In Figure 1

panels (b), (d), and (f), we display the news impact curve of the same models

in the same samples. We see again a stable pattern across subsamples and a

pattern that is distinctly asymmetric and features larger impact of bad news -

as commonly documented in the literature.

For weekly models, we report the rank of forecast performance in Table 4.

As the forecast horizon increases from one day to one week, the importance

of weighting schemes and the asymmetry effect decreases, although they still

do matter. Moreover, for the sample which includes the crisis, we note that

the SemiRV GARCH model using daily returns shows better performance than

the SemiRV GARCH model using 5-minute returns. However, the best forecast

model is FC0 HYBRID SC TGARCH model in all three sets of samples. Figure

2 shows the weighting schemes and news impact curves in three representative

subsamples of our rolling sample scheme: P1 is for period May 1982 to April

1992; P2 for period September 1991 to August 2001; P3 for period April 2001 to

March 2011. We see again a stable weighting scheme pattern and an asymmetric

effect, similar as those in daily models.
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7. Discussion

We introduced the versatile class of HYBRID GARCH models involving data

sampled at any higher frequency. We studied the theoretical properties as well

as statistical inference of this new. An empirical application reports the supe-

rior out-of-sample forecasting performance of the new class of models, including

during the recent financial crisis. In particular, to predict daily volatility, we

find that GARCH and TGARCH models using daily returns are dominated by

models using intra-daily data. Symmetric models are always dominated by their

asymmetric counterparts, which implies that asymmetry does matter despite the

extra parameters required to estimate the news impact curves. Overall, we have

two key findings for daily forecasting of volatility: asymmetries matter, and the

weighting scheme does matter. These are the salient features of our new class of

models. Including the samples which cover the recent financial crisis does have

some impact on modeling strategy, but the main conclusions remain. Similar

results hold for a weekly volatility forecast horizon. The new class of models also

features appealing theoretical properties. We show that in the absence of jumps

and a continuous time GARCH diffusion DGP, we obtain unbiased predictions

of the increment of quadratic variation. We leave the broader question of diffu-

sion limits - as in Nelson (1992), Nelson and Foster (1995), among others - and

HYBRID filtering processes for future research.
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