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Abstract: In this article, we use a Hilbert-Schmidt Independence Criterion to pro-

pose a new method for estimating directions in single-index models. This approach

enjoys a model free property and requires no link function to be smoothed or es-

timated. Further, we propose a permutation test to check whether the estimated

single-index is sufficient. The sampling distribution of our estimator is established.

Finite sample performance of proposed estimates is examined through simulation

studies and compared with two well-established methods: the refined Minimum

Average Variance Estimation method (rMAVE, Xia et al. (2002)) and the Estimat-

ing Function Method (EFM, Cui, Härdle, and Zhu (2011)). A New Zealand Horse

Mussels data set is analyzed via our approach to demonstrate the efficacy of our

proposed approach.

Key words and phrases: Central subspace, Hilbert-Schmidt independence criterion,

permutation test, single-index models, sufficient dimension reduction.

1. Introduction

Dimension reduction plays an important role in high-dimensional statistical

modeling. The general goal is to infer the conditional distribution of the response

given the reduced predictors without loss of regression information. Single-index

models, as a special case of sufficient dimension reduction with one dimension, re-

fer to regression problems where the regression information can be fully described

by a single linear combination of the predictors. Single-index models have been

widely applied in such disciplines as biostatistics, economics, and medicine.

There is a huge literature on estimating single-index models via a nonpara-

metric approach, for instance Härdle, Hall, and Ichimura (1993), Ichimura (1993),

and Hristache et al. (2001). We consider estimation from the standing of

sufficient dimension reduction. Many sufficient dimension reduction methods

have proven useful in coefficient estimation for single-index models, such as the

refined minimum average function method (rMAVE, Xia et al. (2002)) and the

expected likelihood based method that minimizes a Kullback-Leiblier distance
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by Yin and Cook (2005). As well, there are methods specially designed to es-

timate the single-index coefficients, for example, the average derivative method

(ADE, Härdle and Stoker (1989)) and the estimating function method (EFM,

Cui, Härdle, and Zhu (2011)). These methods often involve kernel smoothing

techniques and require such assumptions as smooth link functions and at least

one continuous predictor.

In this article, we study the independence between the response and the pre-

dictors via a Hilbert-Schmidt Independence Criterion (HSIC) and develop a new

method for estimating directions in single-index models. The article is organized

as follows. Section 2 describes our method, including motivation, theoretical

results, estimation algorithm, and testing procedure. Section 3 contains simula-

tion studies as well as a data analysis, followed by a short discussion in Section

4. Proofs are provided in the Appendix, while longer derivations are arranged in

a supplementary file.

2. Methodology

We study a general statistic, based on HSIC that measures the independence

between random variables, for estimating the coefficients in single-index models.

2.1. Definitions

Let X be a p×1 vector, and Y be a univariate response. The ultimate goal of

sufficient dimension reduction is to search a number of linear combinations of X,

say βTX, where β is a p×dmatrix, d ≤ p, such that Y depends onX only through

βTX, Y X|βTX, where means independence. The column space of β forms

a dimension reduction subspace (Li (1991); Cook (1996)). The central subspace,

SY |X, is defined as the intersection of all dimension reduction subspaces when

itself is a dimension reduction subspace (Cook (1996)). The dimension of SY |X,

denoted by dim(SY |X) = d, is called the structural dimension. The existence and

uniqueness of the central subspace has been shown by Cook (1996) and Yin, Li,

and Cook (2008) under mild conditions. We assume the central subspace exists,

and consider the special case of d = 1, the single-index models. We assume that

η is a p × 1 basis vector, spanning the central subspace, with β a generic p × 1

vector.

Most traditional approaches estimate the single-index through a pre-specified

model of Y |βTX, which makes the single-index βTX best related to Y . Intu-

itively, a measure of independence could help to identify such an index. Indeed,

HSIC is one such. It is used to measure the independence between random vari-

ables X and Y without pre-specifying any models (Sejdinovic et al. (2012)). As

with correlation, low magnitudes in HSIC suggest weak relations. Thus, the lin-

ear combination βTX that maximizes HSIC is the single-index that most relates
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to Y . For univariate X and Y , HSIC characterizes the distance between the joint

distribution P := PX,Y and the product of the marginal Q := PXPY as

H(X,Y ) =

∫
|fP (t, s)− fQ(t, s)|2W (t, s)dtds, (2.1)

where fP and fQ are the characteristic functions of P and Q, respectively. Ap-

plying Bochner’s theorem, Gretton et al. (2008), Gretton, Fukumizu, and Spipe-

rumbudur (2009) showed that H(X,Y ) can be rewritten as

H(X,Y ) = E[K(X −X ′)L(Y − Y ′)] + E[K(X −X ′)]E[L(Y − Y ′)]

−2E{E[K(X −X ′)|X]E[L(Y − Y ′)|Y ]}, (2.2)

where X ′ and Y ′ denote independent copies of X and Y , and K(·) and L(·) are
positive definite kernel functions. See Gretton et al. (2008), Gretton, Fukumizu,

and Spiperumbudur (2009) for the restrictions on the choices of W (t, s), and

hence K(·) and L(·) so that the equivalence of (2.1) and (2.2) holds. We refer to

Kankainen (1995) for some specific conditions and choices for W (t, s).

Definition 1. The HSIC covariance between random variables βTX and Y is

the nonnegative number of
√
H,

H(βTX, Y ) = E[K(βT (X−X′))L(Y − Y ′)] + E[K(βT (X−X′))]E[L(Y − Y ′)]

−2E{E[K(βT (X−X′))|βTX]E[L(Y − Y ′)|Y ]}. (2.3)

Following the arguments in Gretton et al. (2008), Gretton, Fukumizu, and

Spiperumbudur (2009) and Kankainen (1995), for certain W (t, s), H(βTX, Y )

characterizes the distance between P := PβTXY and Q := PβTXPY , and can be

written asH(βTX, Y ) =
∫
|fP (t, s)−fQ(t, s)|2W (t, s)dtds. Clearly,H(βTX, Y ) ≥

0, and H(βTX, Y ) = 0 if and only if βTX and Y are independent.

The HSIC covariance is a generalization of covariance in the sense that

H(βTX, Y ) = 0 characterizes the independence of βTX and Y . There are many

choices for weights W (·), variously the kernels K and L in (2.1). We adopt the

kernel choice from Kankainen (1995): for univariate variables X and Y ,

K := exp

(
−∥X −X ′∥2

2σ2
X

)
and L := exp

(
−∥Y − Y ′∥2

2σ2
Y

)
.

One can develop a variety of properties for H, but our purpose is to use this

measure for estimating the coefficients of the single-index. There is a recent

method in Sheng and Yin (2013) that makes similar use of equation (2.1), but

with a different weight, as in Székely, Rizzo, and Bakirov (2007) and Székely and

Rizzo (2009). Their goal is the same as ours, but leads to a different theory,
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and different asymptotic properties. Another approach developed in Fukumizu,

Bach, and Jordan (2004, 2009) using reproducing kernel Hilbert spaces for kernel

dependence measures via covariance operators. This is related to our proposed

method.

2.2. Property

We show that H(βTX, Y ) can be used for estimating the coefficients of the

single-index, and assume (X, Y ) has finite first two moments.

Let ΣX be the covariance matrix of X, assumed nonsingular. Let (η, α) form

a p× p matrix such that (η, α)TΣX(η, α) = I.

Proposition 1. Assume the support of X ∈ Rp, S, is a compact set, and

that η spans the central subspace, ηTΣXη = 1. If ηTX αTX, then η =

arg maxβTΣXβ=1H(βTX, Y ).

In general, the support of X is not compact. But Yin, Li, and Cook (2008,

Proposition 11) showed that, as long as a compact set S is large enough, then

SY |Xs
= SY |X, where Xs is X restricted onto S. We can restrict to a compact set

S for simplicity. Proposition 1 states that maximizing H(βTX, Y ) over β under

βTΣXβ = 1 recovers the single-index.

When X is normal, the condition ηTX αTX is satisfied, but normality is

not necessary. For example, ifX = (X1, X2, . . . , Xp), withX1 (X2, . . . , Xp) and

η = (1, 0, . . . , 0), then ηTX αTX. In general, a distribution with the “linearity

condition” does not necessarily satisfy such condition. Hall and Li (1993) showed

that when p is large, the independence condition holds asymptotically. We take

the condition as not very restrictive; this is supported in our simulations later.

Since H(ηTX, Y ) = H(−ηTX, Y ), η and −η are both solutions that span the

same space, we select η to have its first nonzero element positive. The proof of

Proposition 1 is in the Appendix.

2.3. Estimation

Following Kankainen (1995), the sample version of HSIC for univariate vari-

ables (X,Y ) with (Xi, Yi) being an i.i.d. sample, i = 1, · · · , n, is

Hn =
1

n2

∑
i,j

KijLij −
2

n3

∑
i,j,k

KijLik +
1

n4

∑
i,j,k,l

KijLkl, (2.4)

where

Kij := exp

(
−∥Xi −Xj∥2

2σ2
X

)
and Lkl := exp

(
−∥Yk − Yl∥2

2σ2
Y

)
.

Consider a random sample (X, Y ) = {(Xi, Yi) : i = 1, . . . , n} of n i.i.d.

random vectors (X, Y ). If Σ̂X and σ̂Y denote the sample covariance matrix and
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sample variance of X and Y , respectively, the sample HSIC can be defined as

follows.

Definition 2. The sample HSIC covariance statistic Hn is

Hn(β
TX, Y ) =

1

n2

∑
i,j

KijLij −
2

n3

∑
i,j,k

KijLik +
1

n4

∑
i,j,k,l

KijLkl,

where

Kij := exp

(
−(βT (Xi −Xj))

2

2βT Σ̂Xβ

)
and Lkl := exp

(
−∥Yk − Yl∥2

2σ̂2
Y

)
.

2.4. Asymptotic properties

Proposition 2. Under the assumptions in Proposition 1, if ηn=arg maxβT Σ̂Xβ=1

Hn(β
TX, Y ), then ηn converges in probability to η as n → ∞.

Here we consider only ηn with first nonzero element positive. Due to the

property of the chosen kernel (scale-free), no constraint on the support of X is

needed.

Proposition 3. Under the assumptions in Proposition 1 and in the supplement

file, if ηn = arg maxβT Σ̂Xβ=1Hn(β
TX, Y ), then

√
n(ηn − η) → N(0, V11), where

V11 is a covariance matrix defined in the Appendix.

An explicit formula for V11 is to be derived, and used for calculating confi-

dence intervals for the coefficients in the single-index later. Proofs of Propositions

2 and 3 are in the Appendix.

2.5. Algorithm

Our goal is to find the estimator ηn of η,

ηn = arg max
βT Σ̂Xβ=1

Hn(β
TX, Y ). (2.5)

We propose a global search algorithm. There are multiple ways to obtain initial

estimates, for example, one could adopt such well-known dimension reduction

methods as SIR in (Li (1991)), pHd (Li (1992)), or OPG (Xia et al. (2002)). But

we propose a choice of initial estimates based on HSIC.

2.5.1. Initial choice: approximation of Hessian matrix SVD

We propose the initial estimate based on the Hessian matrix of Hn(β
TX, Y )

at (2.4). We first standardize X, taking Z = Σ
−1/2
X (X−E(X)), such that ΣZ = I,

the p × p identity matrix. Then the direction of single-index in X-scale is η =
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Σ
−1/2
X ηZ where ηZ is the single-index direction in Z-scale. The sample version of

Z is Ẑi = Σ̂
−1/2
X (Xi − X̄)), where Σ̂X and X̄ are the sample covariance matrix

and mean of Xi for i = 1, · · · , n, respectively.
Step 1 : Construct the p× p matrix Hessn(Ẑ, Y ), where

Hessn(Ẑ, Y )

=
1

n2

n∑
i=1

n∑
j=1

e−
1
2
(Ẑi−Ẑj)

T (Ẑi−Ẑj) · ((Ẑi − Ẑj)(Ẑi − Ẑj)
T − I) · e

−
∥Yi−Yj∥

2

2σ̂2
Y

− 2

n3

n∑
i=1

n∑
j=1

n∑
k=1

e−
1
2
(Ẑi−Ẑj)

T (Ẑi−Ẑj) · ((Ẑi − Ẑj)(Ẑi − Ẑj)
T − I) · e

− ∥Yi−Yk∥2

2σ̂2
Y

+
1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

e−
1
2
(Ẑi−Ẑj)

T (Ẑi−Ẑj) · ((Ẑi−Ẑj)(Ẑi−Ẑj)
T−I) · e

− ∥Yk−Yl∥
2

2σ̂2
Y ;

Step 2 : Take the Singular Value Decomposition (SVD), Hess∗n = UΣV ;

Step 3 : Take the first column of U matrix as the initial estimate of βZ,0.

Here Hessn(Ẑ, Y ) is a naive one-step approximation to the Hessian matrix

of Hn(β
T Ẑ, Y ), say, Hessn(β

T Ẑ, Y ), with I replacing ββT in all related terms of

Hessn(β
T Ẑ, Y ), since β is unknown.

2.5.2. Global optimization

We propose a global optimization algorithm based on (2.5), but in Z-scale.

Here the constraint is βT
ZβZ=1. We maximize βZ,n=arg maxβT

ZβZ=1Hn(β
T
ZZ, Y ),

then transform the solution back to X-scale.

Step 1 : Select the initial estimate βZ,0 as in Section 2.5.1.

Step 2 : Construct n× n kernel matrices K and L, with entries

Kij = exp

(
−(βT

Z (Ẑi − Ẑj))
2

2βT
ZβZ

)
and Lkl = exp

(
−(Yk − Yl)

2

2σ̂2
Y

)
.

Step 3 : Obtain an estimate βZ,n = arg maxβT
ZβZ=1Hn(β

T
ZZ, Y ) based on optim,

available in R.

Step 4 : Return to Step 2 and iteratively optimize the target function to converge

to obtain βZ,n. The estimate is ηn = Σ̂
−1/2
X βZ,n.

Maximization is carried out iteratively through the general purpose opti-

mization function optim, available in R, that implements the Broyden-Fletcher-
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Goldfarb-Shanno (BFGS) method (Bonnans et al. (2006)). Our codes in R are

available upon request.

2.6. Testing d = 1

Utilizing HSIC, we consider a permutation test to verify the single-index

assumption, H0 : Y Z|ηTZZ. For testing the HSIC distance, d, is zero, or Y Z

(which implies that Y βTZ for any β), we propose the following procedure.

• Find the estimate βZ,n as in Section 2.5.2;

• Permutate Y a total of B times and calculate the indices Hn,i(Y
(i), βT

Z,nẐ), i =

1, . . . , B;

• If Hn(Y, β
T
Z,nẐ) is greater than the 95% quantiles of Hn,i(Y

(i), βT
Z,nẐ), i =

1, . . . , B, infer d ≥ 1; otherwise d = 0.

To test d = 1, we use a result of Cook (1998, Proposition 4.6):

(Y, βTZ) β⊥,TZ ⇒ Y β⊥,TZ|βTZ.

We test the left-hand side here to infer an upper-bound for the goal of testing the

right-hand side. More details about this permutation test can be found in Cook

and Yin (2001) and Yin and Cook (2002). We propose the following procedure.

• Form the orthogonal matrix (βZ,n, β
⊥
Z,n);

• Calculate the index Hn((Y, β
T
Z,nẐ), β

⊥,T
Z,n Ẑ);

• Permutate and calculate indices Hn,i((Y, β
T
Z,nẐ)

(i), β⊥,T
Z,n Ẑ), for i = 1, . . . , B;

• IfHn((Y, β
T
Z,nẐ), β

⊥,T
Z,n Ẑ) is greater than the 95% quantiles ofHn,i((Y, β

T
Z,nẐ)

(i),

β⊥,T
Z,n Ẑ), i = 1, . . . , B, infer d ≥ 2; otherwise d = 1.

Our simulation studies (Section 3.2) suggest that this algorithm (a modified

version, incorporating sample size) is efficient in computation and reliable in

determining the true dimensionality of the central subspace.

Several papers have discussed the asymptotic distributions of the empirical

estimates related to Hn, specifically for the independence test of X and Y . For

instance, Theorem 2 in Gretton et al. (2008) states a result relating to the so-

lutions of the eigenvalue problem depending on the unknown distribution of X

and Y . We find that this distribution of a complex form that cannot be evalu-

ated directly, and it is not useful for estimating d. Kankainen (1995) suggests

approximating this null distribution as a two-parameter Gamma distribution in

hypothesis testing. This is a straightforward approximations of an infinite sum

of Chi-squared random variables, but the asymptotic distribution is not helpful

in developing a test to determine d either.
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Table 1. Model 1: Entries are ∆(β, ηn) calculated from 100 replicates.

Design (A) Design (B) Design (C)
n rMAVE EFM HSIC rMAVE EFM HSIC rMAVE EFM HSIC
100 0.6667 0.5563 0.1600 0.8826 0.8865 0.3673 0.8887 0.7970 0.4045

±0.2670 ±0.4444 ±0.0944 ±0.1757 ±0.2633 ±0.2621 ±0.1692 ±0.3426 ±0.3201
200 0.3924 0.4329 0.1007 0.7242 0.7539 0.1951 0.7397 0.4974 0.1326

±0.2561 ±0.4570 ±0.0260 ±0.2648 ±0.3961 ±0.1219 ±0.2933 ±0.4466 ±0.0486
400 0.1859 0.1251 0.0710 0.5101 0.6194 0.1245 0.2867 0.2354 0.0797

±0.1144 ±0.2872 ±0.0155 ±0.2936 ±0.4638 ±0.0731 ±0.2627 ±0.3554 ±0.0210

3. Numerical Studies

In this section, we present some results of simulation studies and the analysis

of a data set. For simulation studies, we chose two well-established dimension

reduction methods: the refined Minimum Average Variance Estimation method

(rMAVE, Xia et al. (2002)) and the Estimating Function Method (EFM, Cui,

Härdle, and Zhu (2011)) to compare the finite sample performance with our

proposed HSIC method. Xia’s Matlab code and Cui’s R code were used. We used

the following measure (Li, Zha, and Chiaromonte (2005)) to evaluate accuracy:

∆(S1,S2) = ∥PS1 − PS2∥, where ∥ · ∥ stands for the maximum singular value of

a matrix; S1 and S2 are two q-dimensional subspace of Rp; PS1 and PS2 are the

orthogonal projections onto S1 and S2, respectively.

3.1. Simulations

We used four single-index models. For each model, β = (2, 1, 0, 0, 0, 0, 0, 0,

0, 0)T /
√
5 is the true direction, sample sizes were n = 100, n = 200 and n = 400,

and ran 100 replicates with p = 10 (results, not reported, were similar with 200

and 500 replicates). Three designs on predictors were used for each model to cover

a variety of model assumptions. Design (A) had predictorsX ∼ N(0, I10); Design

(B) had non-normal predictors; Design (C) concentrated on discrete predictors.

Model 1: Mean function model. We took oscillating mean function model

discussed in Cui, Härdle, and Zhu (2011): Y = sin(3π/4 · βTX) + ϵ with ϵ ∼
N(0, 0.22). Here Design (B) had X1 ∼ t(5), X2 ∼ F (4, 10), X3 ∼ χ2(5),

X4 ∼ N(−8, 4), and Xj ∼ N(0, 1), j = 5, . . . , 10; Design (C) had X1 ∼
Binomial(10, 0.2) and Xj ∼ Poisson(1), j = 2, . . . , 10. The simulation results

listed in Table 1 show that the HSIC approach has a much better performance,

consistently across designs.

Model 2: Variance function model. We took the constant mean but variance

function model discussed by Yin and Cook (2005): Y = 0.2(βTX)2ϵ with ϵ

is standard normal. Here Design (B) was X1 ∼ N(0, 1), X2 ∼ t(5), X3 ∼
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Table 2. Model 2: Entries are ∆(β, ηn) calculated from 100 replicates.

Design (A) Design (B) Design (C)
n rMAVE EFM HSIC rMAVE EFM HSIC rMAVE EFM HSIC
100 0.7993 0.8437 0.2901 0.7998 0.8894 0.2900 0.8029 0.9140 0.3677

±0.1825 ±0.1409 ±0.1471 ±0.1800 ±0.1524 ±0.1419 ±0.1621 ±0.1103 ±0.1266
200 0.7531 0.8165 0.1763 0.7372 0.8590 0.2029 0.8145 0.8995 0.2320

±0.1767 ±0.1577 ±0.0445 ±0.1851 ±0.1622 ±0.1202 ±0.1660 ±0.0997 ±0.0640
400 0.7281 0.8009 0.1208 0.7130 0.8721 0.1214 0.7437 0.8774 0.1587

±0.1823 ±0.1785 ±0.0305 ±0.1955 ±0.1476 ±0.0300 ±0.1692 ±0.1235 ±0.0396

Table 3. Model 3: Entries are ∆(β, ηn) calculated from 100 replicates.

Design (A) Design (B) Design (C)
n rMAVE EFM HSIC rMAVE EFM HSIC rMAVE EFM HSIC
100 0.5783 0.7239 0.6099 0.5187 0.6661 0.5129 0.5717 0.6612 0.5336

±0.1396 ±0.1846 ±0.1961 ±0.1384 ±0.1990 ±0.1793 ±0.1034 ±0.1813 ±0.1586
200 0.4117 0.4674 0.4263 0.3760 0.4367 0.3533 0.4202 0.4900 0.4088

±0.1097 ±0.1721 ±0.1400 ±0.0883 ±0.1921 ±0.1119 ±0.0868 ±0.1285 ±0.0380
400 0.2929 0.2578 0.2764 0.2587 0.2431 0.2374 0.3437 0.4090 0.4014

±0.0713 ±0.0790 ±0.0716 ±0.0658 ±0.0697 ±0.0614 ±0.0859 ±0.0838 ±0.0917

Gamma(9, 0.5), X4 ∼ F (5, 12), and Xj ∼ N(0, 1), j = 5, . . . , 10; Design (C)

was Xj ∼ Poisson(1), j = 1, 2, 3, 4, and Xj ∼ N(0, 1), j = 5, . . . , 10. Results in

Table 2 show that the HSIC approach has the best performance across all sample

sizes and settings considered. The advantage becomes more obvious as sample

size increases. The EFM and rMAVE methods do not work well since the mean

function they focused on is mostly noise, and the main available information lies

in variance function. However, dMAVE (Xia (2007)) performs well in this case;

it is not reported here.

Model 3: Categorical response model. We took the binary response model

discussed by Cui, Härdle, and Zhu (2011):

P (Yi = 1|X) =
exp{g(βTX)}

[1 + exp{g(βTX)}]
,

g(βTX) =
exp(5βTX− 2)

1 + exp(5βTX− 3)
− 1.5.

In Design (B), Xj , j = 1, . . . , 10, were uniform U(−2, 2). In Design (C), Xj ,

j = 1, . . . , 10, were Bernoulli with probability of success 0.5. Results are shown

in the Table 3. Here all methods have comparable results.

Accuracy of the Asymptotic Variance. To examine the performance of the

asymptotic variance of the proposed estimator, we report results for Model 1
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Table 4. Performance of the Asymptotic Variance of Model 1 with n = 100.

Design (A)

η̂1 η̂2 η̂3 η̂4 η̂5

SE 0.0034 0.0078 0.0116 0.0078 0.0074

ηn 0.8705 0.4769 -0.0597 -0.0588 0.0133

SE(ηn) 0.0866 0.0684 0.0860 0.1036 0.0920

95% C.I. (0.7008, 1.0402) ( 0.3428, 0.6110) (-0.2283, 0.1088) (-0.2618, 0.1443) (-0.1671, 0.1936)

η̂6 η̂7 η̂8 η̂9 η̂10

SE 0.0063 0.0076 0.0094 0.0061 0.0088

ηn -0.0188 0.0214 -0.0246 -0.0603 0.0506

SE(ηn) 0.0894 0.1095 0.0858 0.1079 0.1136

95% C.I. (-0.1941, 0.1564) (-0.1932, 0.2360) (-0.1927, 0.1436) (-0.2718, 0.1512) (-0.1720, 0.2733)

SE: standard error of the 100 variances for each estimated parameter based on 100 replicates.

For randomly generated data, ηn, SE(ηn), and 95% C.I. represent, respectively, the direction estimate, its

standard error, and 95% confidence interval.

Design (A) in Table 4 for sample size n = 100. Sample variance was calculated

for each of the 100 replicates using the derived asymptotic variance formula.

Standard error (SE) of these variances for each estimated parameter is reported

to show the stability of the variance estimates. The direction estimate ηn, its

standard error (SE(ηn)), and the associated 95% confidence interval from ran-

domly generated data are also reported in the table. The results show that our

variance estimates are quite stable at n = 100. We expect results are improved

when sample size increases. The results for other models and designs have shown

similar patterns, and are not reported.

Model 4: Classic linear model. We took the simple linear regression model

Y = βTX+0.2ϵ, where ϵ is a standard normal random variable. The Design (B)

was X1 ∼ t(5), X2 ∼ F (4, 10), X3 ∼ χ2(5), X4 ∼ N(−8, 4), and Xj ∼ N(0, 1),

j = 5, . . . , 10; Design (C) was X1 ∼ Binomial(10, 0.2), and Xj ∼ Poisson(1),

j = 2, . . . , 10. The purpose here was to see, in a classic linear model, where

the least squares method (LS) has the best performance, how our method per-

forms. As shown in Table 5, the LS method has the best performance and, not

surprisingly, EFM has the second best; it was designed for single-index models

and in particular for the mean direction. rMAVE, which is also designed to re-

cover directions in the mean function, is the third best. Here HSIC doesn’t lose

much in estimation accuracy. Indeed, all four methods have quite comparable

results. Table 6 shows the variance performance in Model 4, indicating that our

asymptotic variance estimates are stable in the classic linear model setting.

3.2. Permutation results

To illustrate how the proposed permutation test performs in predicting the

true dimensionality (d = 1) of central subspace, we conducted simulation studies

using the models of the previous section. We found that in the models that
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Table 5. Model 4: Entries are ∆(β, ηn) calculated from 100 simulated sam-
ples.

Design (A) Design (B) Design (C)

n LS rMAVE EFM HSIC LS rMAVE EFM HSIC LS rMAVE EFM HSIC

100 0.0596 0.0908 0.0615 0.1083 0.0544 0.0819 0.0554 0.1347 0.0582 0.0938 0.0600 0.1188

±0.0163 ±0.0240 ±0.0160 ±0.0288 ±0.0168 ±0.0252 ±0.0165 ±0.0407 ±0.0142 ±0.0253 ±0.0145 ±0.0283

200 0.0421 0.0576 0.0431 0.0736 0.0377 0.0510 0.0381 0.0889 0.0416 0.0580 0.0423 0.0847

±0.0109 ±0.0147 ±0.0109 ±0.0203 ±0.0097 ±0.0136 ±0.0097 ±0.0262 ±0.0098 ±0.0151 ±0.0100 ±0.0201

400 0.0298 0.0360 0.0299 0.0507 0.0266 0.0359 0.0270 0.0651 0.0307 0.0396 0.0309 0.0576

±0.0079 ±0.0093 ±0.0078 ±0.0123 ±0.0067 ±0.0083 ±0.0069 ±0.0200 ±0.0069 ±0.0094 ±0.0070 ±0.0156

Table 6. Performance of the Asymptotic Variance of Model 4 with n = 100.

Design (A)

η̂1 η̂2 η̂3 η̂4 η̂5

SE 0.0019 0.0032 0.0030 0.0025 0.0029

ηn 0.9016 0.4219 -0.0173 0.0143 0.0620

SE(ηn) 0.0673 0.1003 0.1004 0.0918 0.0857

95% C.I. (0.7697, 1.0336) ( 0.2254, 0.6185) (-0.2140, 0.1795) (-0.1656, 0.1943) (-0.1060, 0.2300)

η̂6 η̂7 η̂8 η̂9 η̂10

SE 0.0032 0.0033 0.0028 0.0028 0.0026

ηn -0.0181 -0.0346 -0.0511 -0.0062 -0.0219

SE(ηn) 0.0883 0.0892 0.1104 0.1132 0.1288

95% C.I. (-0.1911, 0.1550) (-0.2094, 0.1403) (-0.2675, 0.1653) (-0.2281, 0.2156) (-0.2743, 0.2306)

SE: standard error of the 100 variances for each estimated parameter based on 100 replicates.

For randomly generated data, ηn, SE(ηn), and 95% C.I. represent, respectively, the direction estimate, its

standard error, and 95% confidence interval.

we simulated, the proposed permutation test provided accurate estimates of d

when the underlying distribution of X was normal (Design (A)). Under Design

(B) and Design (C), our permutation test tended to be conservative, in the

sense that it tended to predict a higher dimensionality (d > 1). For n = 400

compared to n = 100, we saw less accuracy of the estimated d: for Designs

(B) and (C), the percentages of correctly estimated d had a decreasing trend

as sample size increased. For our test, a smaller sample size, say 100, may be

best for prediction of the true dimensionality of central subspace. We propose a

modified version of our test, when n > 100. We randomly select 100 observations,

for m times without replacement, and record the estimated dimension as dj ,

j = 1, . . . ,m. Then, the estimated d has the largest frequency among the dj ’s.

In our simulations, we set m = 20. Table 7 indicates that the modified test

provides reliable estimates for the cases considered in Designs (A), (B), and (C).

Entries are percentages of the estimated dimension calculated from 100 replicates,

and the number of permutations for each replicate was 200.

3.3. Data

We analyzed a New Zealand Horse Mussels data set; it has been discussed
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Table 7. Permutation test results. Percentages of estimated dimensionality
for single-index models. Entries are calculated from 100 replicates. Number
of permutations is 200.

Design (A) Design (B) Design (C)
n d = 0 d = 1 d > 1 d = 0 d = 1 d > 1 d = 0 d = 1 d > 1

Model 1

50 0 98 2 4 93 3 0 98 2
100 0 97 3 0 87 13 0 94 6
200 0 100 0 0 98 2 0 99 1
400 0 100 0 0 99 1 0 100 0

Model 2

50 3 94 3 1 94 5 2 94 4
100 0 95 5 2 96 2 0 90 10
200 0 100 0 0 100 0 0 91 1
400 0 100 0 0 99 1 0 100 0

Model 3

50 2 97 1 0 100 0 1 89 10
100 0 100 0 0 100 0 0 80 20
200 0 100 0 0 100 0 0 98 2
400 0 100 0 0 100 0 0 100 0

by Cook (1998). This data set contains 201 observations collected at 5 sites in

the Marlborough Sounds of the Northeast of New Zealand’s South Island. The

response variable is muscle mass M , the edible portion of the mussel, in grams.

The quantitative predictors of interests are shell length L, shell width W , each

in mm, and shell mass S in grams. We used the transformation of the predictors

that was suggested by Cook (1998): X = (L,W 0.36, S0.11).

Noticing that shell length L is on a larger scale than the other predictors,

we standardized all predictors into Z-scale, Z = (ZL, ZW , ZS), with mean 0 and

unit variance. Our permutation test indicated that a single-index model would

be appropriate to model these data. The normalized single direction estimated

by HSIC approach was β̂H = (0.1897,−0.0604, 0.9800)T . A 2D scatter plot of

M versus single-index β̂T
HZ suggests a second degree polynomial model, Fit1,

(Fit1= 14.16+8.05(β̂T
HZ)+1.40(β̂T

HZ)2). Fit1 in Figure 1 shows a good fit of the

single-index model. Model diagnostic plots (not reported), including residual and

QQ plots, indicate no significant evidence that normality assumption is violated.

We conclude that the edible portion of the mussel, is positively related to the

single-index, while single-index is dominated by the mussel’s shell mass: increases

in shell mass tend to grow the edible portion of the mussel polynomially.

The HSIC estimate was compared to the rMAVE, EFM, and SIR estimates

reported in Cook (1998), denoted as β̂M , β̂E , and β̂S , respectively. We then

investigated the pairwise correlations Corr(β̂T
HZ, β̂T

MZ), Corr(β̂T
HZ, β̂T

EZ), and

Corr(β̂T
HZ, β̂T

SZ), as well as the distances ∆ (Table 8) between the directions.

The benchmark criterion proposed in Li, Wen, and Zhu (2008) was adopted for

closeness of directions: the average of 10,000 distances, ∆m(β1, β2) = ∥Pβ1−Pβ2∥,
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Figure 1. Second order polynomial fit of single-index model.

Table 8. Comparisons of Correlation and Distance.

Method Correlation Distance Proportion
HSIC vs. rMAVE 1.0000 0.3778 0.0737
HSIC vs. EFM 0.9997 0.2700 0.0385
HSIC vs. SIR 1.0000 0.1352 0.0097

where β1 and β2 are randomly generated directions in R3 such that β1 β2.

Benchmark distance has an average of 0.7848 with standard error 0.2243. The

proportion of benchmark distances less or equal to a distance between two di-

rection estimates in comparison are reported in Table 8. A small proportion

indicates two estimates agree with each other in recovering the true direction.

Both correlation and benchmark criteria suggest that rMAVE, EFM, and SIR

methods obtain essentially the same direction as does HSIC.

The asymptotic variance formula derived earlier can be incorporated here to

judge the significance of the predictors. Their standard errors are 0.3355, 0.4033,

and 0.4471, respectively. The 95% confidence intervals for the standardized pre-

dictors are (-0.4679, 0.8473), (-0.8508, 0.7301), and (0.1037, 1.856), respectively,

which suggests that only the standardized shell mass predictor, ZS , is significant.

A second degree polynomial model, Fit2, (Fit2= 14.14+8.87ZS +1.72Z2
S), is fit-

ted and plotted in the right panel of Figure 1. Compared to Fit1, we can see that

two models perform very similar to each other. Leave-one-out cross validation

was conducted on both models, with Residual Sum of Squares (RSS) 36.2 for

Fit1 and 36.4 for Fit2. We conclude that the parsimonious model (Fit2) is our

model, and that shell length L and shell width W are statistically insignificant in

predicting muscle mass M , the edible portion of the New Zealand horse mussel.
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4. Discussion

Our HSIC approach requires relatively weak conditions for estimating single-

index models. There are many choices for the weights or kernel. We only choose

Gaussian kernel in this paper. Simulation studies have shown its merits for

models we studied, as it consistently provides stable results for normal predictors

as well as robust estimates for non-normal and categorical cases. The proposed

permutation test based on HSIC can be useful in practice. It provides a statistical

justification for applying single-index methods. Although this paper focuses on

single-index estimation, the idea can be extended to multiple-index models. This

is currently under investigation.
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Appendix

Proof of Proposition 1. Let η0 be the projection of β onto η, η0 = cη, where

c is a scalar. If η⊥0 = β − η0, where the orthogonality ‘⊥’ means ηT0 ΣXη⊥0 = 0,

then 1 = βTΣXβ = c2 + η⊥,T
0 ΣXη⊥0 ≥ c2. Hence, |c| ≤ 1. Now,

H(βTX,Y) =

∫
|Eei<t,βTX>+i<s,Y > − Eei<t,βTX>Eei<s,Y >|2dw

=

∫
|E{ei<t,βTX>[E(ei<s,Y >|X)]} − Eei<t,βTX>Eei<s,Y >|2dw

=

∫
|E{ei<t,(ηT0 +η⊥,T

0 )X>[E(ei<s,Y >|ηT0 X)]}

−Eei<t,(ηT0 +η⊥,T
0 )X>Eei<s,Y >|2dw

=

∫
|E{ei<t,η⊥,T

0 X>}{Eei<t,ηT0 X>+i<s,Y > − Eei<t,ηT0 X>Eei<s,Y >}|2dw

=

∫
|E{ei<t,η⊥,T

0 X>}|2|Eei<t,ηT0 X>+i<s,Y > − Eei<t,ηT0 X>Eei<s,Y >|2dw

≤
∫

|Eei<t,ηT0 X>+i<s,Y > − Eei<t,ηT0 X>Eei<s,Y >|2dw

=H(ηT0 X,Y) = H(ηTX,Y).

The third equality follows from the assumption Y X|ηTX, and η0 = cη, where

|c| ≤ 1. The fourth equality follows from the assumption ηTX αTX, where

(η, α) forms a p×p matrix such that (η, α)TΣX(η, α) = I. The last inequality fol-

lows from the characteristic function with equality if |c| = 1. Thus the maximum
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is achieved when |c| = 1. The last equality holds because H is scale invariant,

due to the choice of kernel (Kankainen (1995)).

Proof of Proposition 2. If G = (Ip, 0), then ηn = Gθn and η = Gθ. The

conclusion follows from Lemma 3. Lemma 3 is proved in the supplementary file.

Proof of Proposition 3. Let G = (Ip, 0) be a p × (p + 1) matrix, where Ip is

a p × p identity matrix. Then ηn = Gθn and η = Gθ. By Lemma 4, we have
√
n(ηn − η) =

√
nG(θn − θ)

D−→ N(0, V11), where V11 = GV GT . Lemma 4 is

proved in the supplementary file.
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