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Abstract: Selective inference using multiple confidence intervals is an emerging

area of statistical research whose importance is being realized very recently. We

consider making such inference in the context of analyzing data with sparse signals

in a Bayesian framework. Although the traditional posterior credible intervals are

immune to selection, they can have low power in detecting the true signals because

of covering no-signal too often if the sparse nature of the data is not properly taken

into account. We demonstrate this phenomenon using a canonical Bayes model

with the parameters of interest following a zero-inflated mixture prior. We propose

a new method of constructing multiple intervals for any given selection rule taking

a Bayesian decision theoretic approach under such a model. It involves the local

fdr, the posterior probability of a parameter being null which is commonly used in

multiple testing. It controls an overall measure of error rate, the Bayes or posterior

false coverage rate, at a desired level among the selected intervals. We apply this

method to the regression problem and demonstrate via simulations as well as data

analyses that it is much more powerful in terms of enclosing zero less frequently

than the traditional and some alternative methods.
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1. Introduction

In modern statistical problems involving a large number of parameters, in-

ference is often made on parameters that are selected based on the data; see,

for instance, Rossouw et al. (2002), Giovannucci et al. (1995), Qiu and Hwang

(2007), Benjamini, Heller and Yekutieli (2009), Zhao and Hwang (2012), and

Hwang and Zhao (2013). The statistical challenges associated with such selec-

tive inference have not been realized until recently. For constructing confidence

intervals, scientists often proceed with the naive approach of constructing stan-

dard confidence intervals for the selected parameters, pretending there was no

selection process (see, for instance, Giovannucci et al. (1995) and Rossouw et al.

(2002)). However, the bias introduced by the selection, the so-called “winner’s

curse”, can cause the usual confidence interval to have an extremely low coverage

probability. One can see this phenomenon from the following:
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Toy Example: We generated a random sample of pairs (Yi, βi), i = 1, . . ., 1,000,

as Yi|βi
ind∼ N(βi, 1) where βi = 0 with probability 0.8, and βi ∼ N(0, 1) with

probability 0.2. Let Y(1) = max1≤i≤p Yi and β(1) be the corresponding parameter.

Construct the usual 95% confidence interval for β(1), CI(1) = Y(1) ± 1.96. We

repeated this experiment 10,000 times to simulate the coverage probability. It

was 42.4%. Here, of course, Y(1)|β(1) is no longer normal. Indeed, it is easy to

see that EY(1) ≥ β(1). When using such a biased estimator as the center of the

confidence interval, the margin of error should account for this bias as well as

the randomness.

This example illustrates the importance of developing a confidence interval

for a selected parameter that is statistically sound. This paper addresses the

problem of constructing confidence intervals for multiple selected parameters

subject to controlling an overall measure of false coverage. There are pioneering

works in this direction, Benjamini and Yekutieli (2005), Qiu and Hwang (2007),

Benjamini, Heller and Yekutieli (2009), Efron (2011), Zhao and Hwang (2012),

and Hwang and Zhao (2013). We address the problem in the context of a Bayes

model with a zero inflated mixture prior (ZIMP) that is relevant for data arising

in many modern applications.

There is some belief that the Bayes rule is immune to selection bias (Efron

(2011), Senn (2008), and Dawid (1994)). We argue that the usual posterior

credible intervals may lack good inferential property in the sense of enclosing

zero very often, particularly under the ZIMP model

Y |β ∼ f(y|β), (1.1)

where β = (β1, . . . , βp) and, marginally,

βi ∼ π(βi) = π01(βi = 0) + (1− π0)ψ(βi). (1.2)

Here, π0 is the prior probability of βi being zero, and ψ(βi) is the distribution

of βi given βi ̸= 0. This model is useful in genetic experiments where many of

the genes are believed to be non-differentially expressed, and in regressions with

sparsity structure (Chen and Dunson (2003), Rodriguez, Dunson and Taylor

(2009)). If π0 is large, the posterior probability of βi being 0 can also be large.

This is problematic for equal-tail credible intervals or highest-posterior-density

(HPD) regions: equal-tail credible intervals can contain zero a high proportion of

times and HPD regions always include zero due to the existence of a point mass

at zero. The same problem occurs under the regression model Y = Xβ + ϵ,

where X is an n× p matrix and the βi’s follow ZIMP.

With selection, we need to properly account for ZIMP while obtaining Bayes

credible intervals. Here, we adopt the Bayesian decision theoretic approach to
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constructing such intervals (see Faith (1976), Casella and Hwang (1983), He

(1992), and Hwang, Qiu and Zhao (2009)), but with loss functions adjusted for

ZIMP.

We consider a loss function that penalizes the inclusion of zero when βi is

indeed non-zero. The Bayesian decision interval is then forced to include zero if

there is overwhelming evidence that βi is 0, or equivalently, if the local fdr score

P (βi = 0|Y ) (see Efron et al. (2001), Efron (2005, 2010)) is large. The local fdr

score is compared to a tuning parameter k2 used in the loss function, and the

zero component is included in the interval if the local fdr score is greater than

k2. The choice of k2 is critical, and difficult to determine. Some ad-hoc values

for k2 have been suggested in the literature, such as 0.2 (Efron (2008, 2010) and

Zhao and Hwang (2012)). For a given selection rule, we determine k2 so that the

posterior false coverage rate (PFCR) or the Bayes false coverage rate (BFCR,

Zhao and Hwang (2012)) is controlled at a desired level. Such k2 is often larger

than α, implying that the proposed interval doesn’t necessarily include zero even

if P (βi = 0|Y ) > α. The proposed intervals account for the selection via the

choice of k2 and meet the goal of controlling an overall measure of false coverage.

Their usefulness is confirmed in simulations and in data analysis.

Here is how the article is organized. In Section 2, we discuss why the tra-

ditional Bayes intervals can be unreliable under ZIMP, particularly when π0 is

large, and recall the concepts of PFCR and the BFCR. In Section 3, we introduce

our newly proposed loss function and present the derivation of the correspond-

ing Bayesian decision intervals under the model (1-2). The choice of the tuning

parameter k2 guaranteeing control of the PFCR and the BFCR is also discussed

in this section. In Section 4, we present the results of simulation studies and a

real data analysis we conducted to compare our proposed intervals for regression

coefficients under a hierarchical Bayesian lasso model using ZIMP with the usual

equal tail credible intervals and the intervals that Park and Casella (2008) de-

rived for the original Bayesian lasso model without assuming ZIMP. The technical

proof and the steps of Gibbs sampling are put in the supplementary document.

2. Traditional Bayes Credible Intervals: Some Issues under ZIMP

There are two measures of false coverage that we consider from a Bayesian

point of view. These are the Posterior False Coverage Rate (PFCR) and the

Bayes False Coverage Rate (BFCR), defined as follows. Let R(Y ) be the set of

indices of the parameters selected based on the observation Y , and R = #R(Y ).

Given the credible intervals CIi for βi, i ∈ R(Y ), let V consist of i ∈ R(Y ) such

that βi /∈ CIi, and V = #V. Let Q be the proportion of the selected parameters

that are not covered by their respective intervals: Q = V/R if R > 0, and = 0 if

R = 0. Benjamini and Yekutieli (2005) proposed the False Coverage Rate (FCR),
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FCR = E(Q|β), as a measure of false coverage among the selected parameters

in a frequentist sense. A Bayesian analog of this measure is the Posterior False

Coverage Rate (PFCR),

PFCR(Y ) = E(Q|Y ) =

{ 1
R

∑
i∈R(Y ) P (βi /∈ CIi|Y ) if R > 0,

0 if R = 0.
(2.1)

Zhao and Hwang (2012) considered averaging the FCR with respect to the prior

distribution of β to define the BFCR,

BFCR =

∫
PFCR(Y )m(Y )dY , (2.2)

where m(Y ) is the marginal density of Y .

Clearly, if P (βi /∈ CIi|Y ) ≤ α, for all i = 1, 2, . . . , p, then both PFCR and

BFCR are less than or equal to α for any selection rule R(Y ). Thus, 100(1 −
α)% credible intervals obtained directly from the posterior distributions of βi’s

can avoid adjusting for the selection rule, but such intervals do not have good

inferential properties.

Let ψ(βi|Y , βi ̸= 0) be the posterior distribution of βi conditional on βi ̸= 0.

Then,

ψ(βi|Y ) = fdri(Y )1(βi = 0) + (1− fdri(Y ))ψ(βi|Y , βi ̸= 0),

where fdri(Y ) = P (βi = 0|Y ) is the local fdr score that is widely used in the

multiple testing literature. Generally, calculations of fdri(Y ) and ψ(βi|Y , βi ̸=
0) require something like MCMC. But, our main interest is the post inference

assuming that the posterior draws of all the parameters are available via certain

methods. Whether or not we construct these intervals based on the posterior

draws, there might be problems with 100(1 − α)% credible intervals directly

based on this posterior distribution, particularly when π0 is large.

Theorem 1. Let CIi be a posterior interval for βi such that P (βi /∈ CIi|Y ) ≤ α.

If fdri(Y ) > α, then 0 ∈ CIi.

Thus, whenever fdri(Y ) > α, the posterior 100(1 − α)% credible interval

appears to enclose zero. In fact, when π0 is large, most of the time the local fdr

score will exceed α. To see this, consider the following:

Toy Example: Assume that Yi|βi
ind∼ N(βi, 1) and βi’s are i.i.d. draws from

the population that follows (1.2) with π0 = 0.8 and ψ(βi) ∼ N(0, 1). The

dimension is p = 10, 000. We randomly generated the i.i.d. random vectors

(Yi, βi)’s, i = 1, 2, . . . , p, and calculated fdri(Y ) for each βi. We then plotted

the histogram of fdri(Y ), and present it in Figure 1. As seen from this figure, the
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Figure 1. The histogram of P (βi = 0|Y ) based on 10,000 random pairs

(βi, yi) generated from the following distribution: Yi|βi
ind∼ N(βi, 1), where

βi = 0 with probability 0.8 and βi ∼ N(0, 1) with probability 0.2.

proportion of the fdri(Y )’s exceeding 0.10 can be overwhelmingly large. One

can theoretically determine how large this proportion could be, since for this

example,

fdri(Y ) = P (βi = 0|Y ) =
π0ϕ(yi)

π0ϕ(yi) + π1ϕ(yi/
√
2)/

√
2
,

where ϕ(x) is the density of the standard normal distribution. After some calcu-

lations, we find that P (fdri(Y ) ≥ 0.10) ≥ P (|Yi| ≤ 3.96) ≥ 0.999. Thus, more

than 99.9% of the time the 90% credible intervals will include zero.

A similar phenomenon has been seen in hypothesis testing. It appears to be

conservative if we accept a null hypothesis when the local fdr is larger than α.

Efron (2008) suggested the threshold of the local fdr for rejecting a hypothesis

as 0.2. Scott and Berger (2006) argued that it is important to separate the zero

component and P (βi|Y , βi ̸= 0) for the posterior distribution ψ(βi|Y ). They

further applied decision theory to derive the testing procedure with a loss function

involving a tuning parameter. Sarkar, Zhou and Ghosh (2008) considered the
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optimal testing procedure which controls the Bayes FDR. None of these papers
provide an answer to the construction of credible intervals.

3. Bayesian Decision Theoretic Confidence Intervals under ZIMP

There have been many attempts to apply the Bayesian decision theoretic
approach to the construction of confidence sets/intervals. Faith (1976) con-
sidered a loss function for confidence set CS of the vector β as L(β, CS) =
kV olume(CS) − ICS(β), where ICS(β) equals 1 if and only if the vector β is
in the confidence set CS. Casella and Hwang (1983) used the same loss where
the tuning parameter k was determined so that the usual 100(1 − α)% confi-

dence set would be minimax. When assuming Yi|βi
ind∼ N(βi, σ

2), He (1992)
used L(βi, CIi) = kLen(CIi) − ICIi(βi) as the loss function for the interval es-
timator CIi of the parameter βi. Hwang, Qiu and Zhao (2009) modified this
loss function as L(βi, CIi) = kLen(CIi)/σi − ICIi(βi), assuming unknown and
unequal variances, and constructed confidence intervals that shrink both means
and variances. These loss functions are not appropriate for the model (1.1-1.2).

As these loss functions have risks reduced by the addition of zero to the
confidence intervals, we need to penalize the inclusion of zero when βi is indeed
non-zero. We take the loss function

L(βi, CIi) = {(ki1Len(CIi)−ICIi(βi))1(βi ̸= 0)+ICIi(0)(k2−1(βi = 0))}, (3.1)

where 0 ≤ k2 ≤ 1.
The first term (ki1Len(CIi) − ICIi(βi))1(βi ̸= 0) balances length and true

coverage. The second term ICIi(0)(k2 − 1(βi = 0)) affects the loss function only
when the corresponding interval does include zero. If 0 ∈ CIi and βi is indeed
zero, then k2 − 1(βi = 0) = k2 − 1 ≤ 0, and including zero reduces the loss
and is beneficial. On the other hand, if 0 ∈ CIi but βi is non-zero, this term
is positive and becomes a penalty. Unlike existing loss functions, the inclusion
of zero is not always beneficial in reducing the risk. When βi is nonzero, the
tuning parameter k2 decides the amount of penalty for including zero in the
interval. When k2 = 1, the interval is forced to exclude zero. We allow the
tuning parameter ki1 to depend on the observation Y . Otherwise, it leads to a
paradox, as demonstrated in Casella, Hwang and Robert (1993).

We want to construct the Bayes intervals CIBD
i ’s that minimize E(L(βi, CIi)

|Y )) for any observation Y , assuming the mixture model (1.1)−(1.2) and the loss
function (3.1).

Theorem 2. Assume the model (1.1)−(1.2) and the loss function (3.1). Then
the Bayesian decision theoretic interval for βi is

CIBD
i =

{
{βi : ki1 < ψ(βi|Y , βi ̸= 0)} \ {0} if fdri(Y ) < k2,

{βi : ki1 < ψ(βi|Y , βi ̸= 0)} ∪ {0} if fdri(Y ) ≥ k2.
(3.2)
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Here, if the fdr score is smaller than the tuning parameter k2, implying strong

evidence that the corresponding parameter βi is non-zero, zero is excluded from

the interval. If the score is larger than k2, we force the interval to include zero.

In (3.2), the component {βi : ki1 < ψ(βi|Y , βi ̸= 0)} relies on the tuning

parameters ki1’s, and the posterior density of βi, conditional on βi ̸= 0, given

Y . One can thus choose the ki1 in such a way that the resulting interval is a

100(1 − α)% HPD region CIi(α) based on ψ(βi|Y , βi ̸= 0). With this choice of

CIi(α), we define our Bayesian decision interval as

CIBD
i =

{
CIi(α) \ {0}, if fdri(Y ) < k2,

CIi(α) ∪ {0}, if fdri(Y ) ≥ k2.
(3.3)

Since we mix zero with another connected set, the derived intervals could be

disconnected, which is in agreement with a comment from Efron (2008), stating

that “this kind of disconnected description is natural to the two groups models”.

We will still use the word “interval” in our discussion. In the intervals (3.3),

k2 is the same for all βi’s, the choice of which should take into account both

the multiplicity and selection issues when we are interested in multiple selected

parameters.

Theorem 3. Assume the model (1.1)−(1.2), and that the intervals are con-

structed according to (3.3), where the ki1’s are chosen such that P (βi /∈ CIi|Y , βi ̸=
0) ≤ α. Let

k2 = argmaxk{k :
1

R

∑
i∈R(Y )

fdri(Y )(I(fdri(Y ) < k)− α) ≤ 0}. (3.4)

Then, the PFCR and BFCR for these intervals is controlled at α.

The choice of k2 in (3.4) thus guarantees that the PFCR is less than or equal

to α. This criterion is different from that of the posterior coverage probability

P (βi ∈ CIi|Y ) being greater than or equal to 1 − α for all i ∈ R. Also, k2 is

larger than α in general. For the toy example we considered in Section 2, our

numerical calculation shows that k2 is 0.179 if we choose α = 0.1 and select the

top 1% of the most important parameters according to the magnitude of the

observation. The proposed intervals thus enclose zero less frequently than the

traditional approaches.

4. Application to Variable Selection

In this section, we apply (3.3) to the problem of making multiple inference

about the components of β in the regression model: Y = Xβ + ϵ, although the

application does not have to be restricted to this particular setup.
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Park and Casella (2008) considered the Bayes version of the lasso (Tibshirani

(1996)) and derived the Gibbs sampler to construct credible intervals based on

the posterior draw of the parameters. Kyung et al. (2010) further extended this

work to other methods such as Group Lasso (Yuan and Lin (2006)), Fused Lasso

(Tibshirani et al. (2005)), and Elastic Net (Zou and Hastie (2005)). In these

work, Park and Casella (2008) and Kyung et al. (2010) did not assume ZIMP

for the parameters βi’s. Since it is common to assume a sparsity structure for

the βi’s when the dimension p is much larger than n, we consider a hierarchical

Bayesian lasso model with ZIMP for the βi’s:

Y = Xβ + ϵ,where ϵ ∼ Nn(0n, σ
2In),

βi|τ21 , . . . , τ2p , π0
ind∼ π01(βi = 0) + (1− π0)N(0p, σ

2τ2i ),

π0 ∼ Beta(kη, k(1− η)), σ2 ∼ (σ2)−1dσ2,

τ21 , . . . , τ
2
p ∼

p∏
j=1

λ2

2
exp

(
−
λ2τ2j
2

)
dτ2j ,

λ2 ∼ δr

Γ(r)(λ
2)r−1e−δλ2

.

(4.1)

The steps for the Gibbs sampler are in the supplementary document. The

code is available at http://astro.temple.edu/~zhaozhg/software.html.

4.1. Simulation

We conducted extensive simulation studies to investigate how the confidence

intervals (3.3) compare to the Bayes equal-tail 100(1 − α)% credible intervals

(abbreviated as Equal Tail) and the equal-tail credible intervals for the Bayesian

lasso without ZIMP (abbreviated as No ZIMP).

Three simulation settings were considered differing on how the design matrix

X and the parameters (β, σ) were chosen before generating the data from the

model:

Yi = X ′
iβ + ϵi, i = 1, . . . , n, where ϵi

i.i.d.∼ N(0, σ2),

with X ′
i being the ith row of X.

Setting 1. We set n = 100, p = 500, π0 = 0.95, and generated each Xi

from Np(0,Σ), where Σ = (σij)i,j=1,2,...,p with σij = 0.5|i−j|. Of the 500 βi’s,

p(1−π0) = 25 were randomly selected prior to generating them according to (4.1)

with the hyper parameters of the Gamma distribution for λ2 chosen as r = 1 and

δ = 10, the rest were set at 0, and σ = 1, 3, and 5.

Setting 2. We set n = 100 and p = 40, generated each Xi from Np(0,Σ),

where Σ = (1−ρ)Ip+ρ1p1Tp (with 1p = (1, . . . , 1)′) and ρ = 0.5, and considered

http://astro.temple.edu/~zhaozhg/software.html
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β = (0,2,0,0), with both 0 and 2 ten-dimensional. For σ, the values 1, 3 and 5

were chosen.

Setting 3. This was similar to Setting 1 except that, out of the 25 non-zero βi’s,

15 were chosen randomly with their values set to 2 and the rest set to −1.5.

We fit the hierarchical Bayesian model with ZIMP assuming unknown π0
and setting the hyper parameters at k = 2 and η = 1/2 for the Beta distribution.

We took r = 1 and δ = 10. The Gibbs sampler was run 11,000 times. The first

1,000 of these iterations were considered as burn-in and every 10th value ob-

tained from the remaining 10,000 was chosen to lessen the sequential dependence

between iterations. We also fit this model by using the Bayesian lasso (Park and

Casella (2008)) without assuming ZIMP. All the simulation codes were written

in R except the Gibbs sampler was implemented using C with gnu scientific li-

brary. The simulation was performed on a desktop with Debian Wheezy x86 64

operation system. The CPU was Intel (R) Core(TM) 2 Quad Core Q9650 @ 3.00

GHz. The total memory was 8GB. It took 5 minutes and 55 seconds to finish

one simulation in Setting 1; it took 14 seconds to finish one simulation in Setting

2, and the simulation time in Setting 3 was comparable to that of Setting 1.

Two selection rules were considered in each simulation setting. One of these,

a multiple testing procedure abbreviated as MTP, selected the parameters us-

ing a method for controlling the Bayes FDR at 15% (Sarkar, Zhou and Ghosh

(2008)): found R = max{1 ≤ k ≤ p : (1/k)
∑k

i=1 fdr(i)(Y,X) ≤ 0.15}, where
fdr(1)(Y,X) ≤ · · · ≤ fdr(p)(Y,X) are the ordered versions of the local fdr scores

fdri(Y,X) = P (βi = 0|Y,X), and then selected the parameters corresponding

to fdr(1)(Y,X), . . . , fdr(R)(Y,X). The second rule, a screening method abbre-

viated as SCR, selected the top d = min(⌈3n/log n⌉, p) predictors after sorting

them in descending order of the magnitude of correlation between each of them

and Y (Fan and Lv (2008)).

The proposed intervals according to (3.3), the Bayes equal-tail 100(1− α)%

credible intervals, and the equal-tail credible intervals for the Bayesian lasso with-

out ZIMP were then constructed. We set α = 0.1 in all the simulations. For each

construction, we calculated the false coverage proportion V/(R ∨ 1) to simulate

BFCR based on 100 replications. Also calculated were the simulated values of two

quantities measuring inferential properties of the intervals produced by a partic-

ular method: ETP = E(#{i : θi ̸= 0, θi is selected, 0 /∈ CIi}/#{i : θi ̸= 0, θi
is selected}), the expected proportion of intervals not containing zero among all

intervals for the selected non-zero parameters, and EFP = E(#{i : θi = 0, θi is

selected, 0 /∈ CIi}/#{i : θi = 0, θi is selected}), the expected proportion of in-

tervals not containing zero among all intervals for the selected zero parameters.

The simulated values of the average length (Leng) of the selected parameters
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Table 1. The results of simulation studies

Proposed Equal Tail No ZIMP
σ Sel k2 BFCR Leng ETP/EFP(%) BFCR Leng ETP/EFP(%) BFCR Leng ETP/EFP(%)

1

1
MTP 0.19 0.069 0.841 51/0.021 0.063 0.996 45/0.0042 0.66 1.16 16/0.023
SCR 0.71 0.026 0.787 69/0.81 0.019 0.322 45/0.0042 0.13 0.99 16/0.023

3
MTP 0.14 0.076 2.4 39/0.025 0.071 2.81 33/0.0063 0.59 2.83 15/0.013
SCR 0.63 0.047 2.1 59/0.9 0.03 1.05 33/0.0063 0.12 2.33 15/0.013

5
MTP 0.12 0.074 3.96 32/0.0063 0.061 4.63 27/0.0042 0.57 4.37 13/0.015
SCR 0.61 0.051 3.39 56/0.78 0.031 1.73 27/0.0042 0.11 3.51 13/0.015

2

1
MTP 0.13 0.21 1.68 84/0.033 0.2 1.7 68/0 0.26 1.66 95/1.8
SCR 0.3 0.17 1.55 100/8.6 0.082 1.4 68/0 0.11 1.52 95/1.8

3
MTP 0.15 0.11 1.93 87/2 0.059 1.94 76/0.33 0.13 1.94 95/4.7
SCR 0.34 0.14 1.76 98/12 0.026 1.56 76/0.33 0.06 1.75 95/4.7

5
MTP 0.11 0.092 2.47 56/1.9 0.058 2.53 42/0.57 0.12 2.43 69/3.8
SCR 0.3 0.13 2.22 85/9.4 0.045 1.97 42/0.57 0.071 2.16 69/3.8

3

1
MTP 0.11 0.057 1.15 71/0.013 0.079 1.47 60/0 0.59 1.66 14/0.0042
SCR 0.69 0.026 1.27 100/0.72 0.025 0.669 60/0 0.15 1.53 14/0.0042

2
MTP 0.1 0.025 2.39 16/0.0063 0.021 2.66 12/0 0.45 2.03 11/0.0021
SCR 0.46 0.052 1.81 50/0.57 0.038 1.24 12/0 0.14 1.46 11/0.0021

3
MTP 0.1 0.19 2.27 4.5/0.025 0.11 2.36 1.8/0 0.4 1.86 4.8/0.025
SCR 0.27 0.19 1.68 28/0.85 0.12 1.47 1.8/0 0.17 1.39 4.8/0.025

were also calculated for the different approaches. The simulated values of BFCR,

Leng, ETP, and EFP for the different procedures, selection rules, and simulation

settings are presented in Table 1.

As anticipated, the BFCR of the Equal Tail method, being selection-free, is

well controlled under both selection rules. However, the ETP for this method

is uniformly smaller than that for our proposed method. In Setting 3 when

σ = 1, the proposed method is seen to identify all of the non-zero parameters

under SCR, a significant improvement over the existing methods. The EFP

of the proposed method is larger than that of the equal-tail credible intervals.

This usually translates into a larger ETP as long as the BFCR is controlled.

In all studies, the number of proposed intervals for the non-zero parameters

selected by MTP and not containing zero is uniformly smaller than that for

SCR. One explanation is that the MTP tends to select fewer parameters for

further investigation, missing a large portion of the non-zero parameters in the

selection step.

The maximum value of the BFCR for the proposed method is 21%; it occurs

because the dataset is not generated from (4.1). The BFCR is controlled very

well in Setting 1 with the dataset generated according to (4.1), except σ and π0
are considered fixed. This raises the issue of robustness of the model, as pointed

out by one of the referees but left for the future investigation.

In Table 1, we include the simulated values of k2 for our method as defined in

(3.4). These values are all seen to be greater than α, a good feature as explained

in Section 3.
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Remark 1. We checked that the usual frequentist t-intervals, not adjusted for

the selection rule, did not work when used for the selected parameters.

The proposed intervals generally have less shrinkage effect than the equal-tail

intervals. To demonstrate this, we took two selected parameters and plotted the

intervals in Figure 2. As seen from these figures, when the selected parameter

is zero, with larger shrinkage effect, the traditional approach appears to produce

much shorter intervals than the proposed one; when the parameter is non-zero,

large shrinkage effect causes the traditional 1 − α credible intervals to enclose

zero while the proposed intervals avoid this.

Small shrinkage appears to be an appealing feature for the proposed intervals,

especially for the non-zero βi’s about which statisticians care most, because they

tend not to enclose zero. One side effect, of course, is that the proposed intervals

can be longer than the traditional ones, especially for those zero parameters.

By taking a Bayesian decision theoretic approach, we have balanced the

length, a measure of true coverage, and statistically meaningful inferential prop-

erties of the intervals. This, we would argue, is an appropriate way to construct

credible intervals for sparse signals.

4.2. Diabetes data analysis

We applied our proposed intervals to the diabetes data used by Efron et al.

(2004) that has 442 (= n) subjects and 10 baseline variables. We included all

the baseline variables, squares of the baseline variables except the dichotomous

variable “sex”, and all the first-order interactions; so there were 64 (= p) predic-

tors in total. We had each column of the design matrix X with mean 0 and unit

length through appropriate scale and location transformations. We then fit the

regression model

Y − 1

n
1nȲ = Xβ + ϵ,

where Ȳ = (1/n)
∑n

i=1 Yi, along with the Bayesian lasso model with ZIMP with

hyper parameters k = 2, η = 1/2, r = 1, and δ = 10. As in the simulations, we

ran the Gibbs sampler 11,000 times, with the first 1,000 of these being the burn-

in and every 10th generated value from the remaining 10,000 iterations being

chosen to avoid sequential dependence.

We considered the selection rules MTP and SCR, as described in Section

4.1. Among the 64 parameters, 27 were selected by the MTP whereas all 64 were

selected by the SCR.

We constructed the intervals for the corresponding regression coefficients

using (3.3) and the equal-tail credible intervals, both under the assumption of

Bayesian lasso with ZIMP for all the regression coefficients, and the credible in-

tervals based on the Bayesian lasso without ZIMP for these regression coefficients
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Figure 2. Different confidence intervals for two selected parameter in one
simulation. In the left panel, the parameter β is non-zero and the parameter
β in the right panel is zero. The curve is the kernel density estimator of
ψ(βi|Y,X, βi ̸= 0).

(Park and Casella (2008)), considering α = 0.05. These intervals are displayed in

Figure 3 for the MPT, and in Figure 4 for the SCR. Table 2 reports the average

lengths of the selected parameters.

The proposed method identified seven predictors with confidence intervals

excluding zero, for each of the two selection rules we have considered. Specifically,

bmi, map, ltg, hdl, sex, and the interactions between age and sex and between bmi

and map were the seven predictors. The traditional equal-tail credible intervals

under Bayesian lasso with ZIMP identified only three predictors: bmi, map,

and ltg, and the credible intervals based on the Bayesian lasso without ZIMP

identified five predictors: bmi, map, ltg, sex, and age:sex.

We ran the lars algorithm of Efron et al. (2004) and the solution path indi-

cated that the variables bmi, ltg, map, hdl, bmi:map, age:sex, entered into the

model consecutively. Two predictors, hdl and bmi:map, enter into the model

early but were only detected by the proposed method.
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Figure 3. Confidence intervals for the 27 parameters selected out of the total
64 parameters using MPT constructed under Bayesian lasso with ZIMP using
(3.3) (Panel 1), the traditional equal-tail credible intervals (Panel 2), and
under Bayesian lasso without ZIMP using equal-tail credible intervals (Panel
3).
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Figure 4. Confidence intervals for all the 64 parameters selected upon screen-
ing the parameters according to the marginal correlation under Bayesian
lasso with ZIMP using (3.3) (Panel 1), the traditional equal-tail credible in-
tervals (Panel 2), and under Bayesian lasso without ZIMP using equal-tail
credible intervals (Panel 3).
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Table 2. Confidence intervals for selected parameters of the diabetes data
analysis.

Proposed Equal Tail No ZIMP
Ave. length based on MTP 272.0 220.0 268.4
Ave. length based on SCR 263.5 178.6 262.9

Number of intervals excluding zero 7 3 5

5. Conclusion

We have been motivated by the need for a method of constructing confidence

intervals for multiple parameters selected from the data in a Bayesian framework

under ZIMP. One usually aims at maintaining a high frequency of true coverage,

and short length or small volume. When these parameters are selected from the

data, maintaining these properties may not be possible without accounting for

the selection. A way out of this difficulty is to consider Bayes credible intervals

that are immune to this selection. Under ZIMP, particularly when π0 is high,

low frequency of enclosing zero for those selected parameters needs to be taken

into account in traditional Bayes intervals.

A decision theoretic formulation with a loss function penalizing wrong in-

clusions of zero has led us to a method that allows us to maintain this low

frequency of enclosing zero for the selected parameters via the local fdr, the pos-

terior probability of the parameter being null. The method turns out to have

better performance than its alternatives, as we have seen through an application

to the regression problem. Our proposed intervals work for any given selection

rule, although we have considered just the MTP and the SCR in our numerical

studies.
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