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Abstract: Statistical methods for analyzing disease incidence and mortality data

over time and geographical regions have gained considerable interest in recent years

due to increasing concerns of public health, health disparity and legitimate resource

allocation. Trend analysis of cancer incidence and mortality rates is essential for

subsequent public health investigations. For example, the National Cancer Institute

provides software for fitting statistical models to track changes in cancer curves.

Currently available models for detecting trend changes over time are designed for a

single curve. When multiple curves are available, current methods could be applied

multiple times, however, this may not be efficient in the statistical sense. This

paper proposes a statistical model that allows concurrent change-point estimation

and grouping for multiple curves while maintaining local variabilities. The Bayesian

analysis is carried out by eliciting a Dirichlet process prior on the relevant func-

tional space to model change-points. Improper priors are elicited and the resulting

posterior is shown to be valid and proper. The age-adjusted lung cancer mortality

rates of U.S. states are analyzed to detect change-points and rates of change as

well as clusters of states that share similar trends over time. The procedure is also

compared with an approach that group states according to a penalized likelihood

criterion.

Key words and phrases: Age-adjusted mortality rates, Bayesian non-parametrics,

change-point analysis, clustering, conditional autoregressive Model (CAR), Dirich-

let process priors, Markov Chain Monte Carlo methods.

1. Introduction

Cancer is a leading cause of mortality in the United States. The American

Cancer Society (ACS, www.cancer.org) provides such information on cancer as

time trends of age-adjusted cancer morality rates for different cancer types, for

different sub-populations defined by geographic and socio-demographic charac-

teristics. It is a fact that there was an increased number of cancer deaths in 2007

as a result of aging and growth of the US population (ACS (2010)). Moreover,

the impact of cancer surveillance is not uniformly effective over different U.S.

states.

Authors’ names are in alphabetical order.

http://dx.doi.org/10.5705/ss.2012.308
www.cancer.org


678 SARAT C. DASS, CHAE YOUNG LIM, TAPABRATA MAITI AND ZHEN ZHANG

Statistical methods for analyzing disease incidence or mortality rates over

time have gained considerable interest in recent years due to increasing con-

cerns of public health, health disparity, and legitimate resource allocation. One

important question is whether the trends before and after a change-point are sig-

nificantly different (statistically speaking) from each other. Several such models

(called joinpoint models) have been developed (see, Carlin, Gelfand, and Smith

(1992), Kim et al. (2000, 2004), Tiwari et al. (2005) and Ghosh, Ghosh, and

Tiwari (2011)) for detecting time points associated with significant changes in

the disease trend. The models developed by Kim et al. (2000, 2004), for example,

are implemented as software for the National Cancer Institute (NCI) (Ries et al.

(2002)). These models are used to fit a single curve of disease rates for detecting

joinpoints over time. The joinpoint models assume piecewise linear regression

functions connected at the joinpoints. In contrast, we consider piecewise linear

regression functions that do not have to be connected at the change-points. We

point out that although joinpoint and change-point methods are technically dif-

ferent, they can be applied in the same context for trend analysis. Thus, we

consider only change-point detection and clustering, instead of joinpoints, but

note that the proposed method can be modified to a joinpoint setting.

When multiple cancer curves are available for trend comparisons, a natural

interest is whether there are groups (or, clusters) of curves with similar change-

points but with significant variations between and within groups. For example,

Figure 1 gives age-adjusted lung cancer mortality rates from 1969 to 2006 for all

48 contiguous states in continental United States (excluding Alaska and Hawaii)

and Washington D.C. It is evident that some states such as Ohio and Pennsylva-

nia (red in Figure 1), show similar change-points and rates of change in each time

interval. On the other hand, some other states such as Missouri and Iowa (blue

in Figure 1, share similar change-points and rates of change but these attributes

are different from those for Ohio and Pennsylvania. For a better view, we provide

a separate plot for these four states in Figure 2. Figure 1 also demonstrates that

each state has different levels of variability over time around the mean trend.

The presence of such heterogeneities (different change-points, rates of change

and local variabilities) among states is not reflected in the US data. observed

in Missouri is not revealed in the US lung cancer mortality curve shown in the

lower left corner of Figure 1.

We are interested in developing a model that concurrently detects change-

points in trends and clusters multiple curves by similar trends. Such a model

may help administrators identify sub-populations (generally a set of states) that

are affected by changes (increase or decrease) in risk so that unified surveillance

for the group can be done for the prevention of cancer. Concurrent estimation of

grouping and detection of change-points cannot be done using existing change-

points or joinpoint methodologies that are developed for a single curve analysis.
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Figure 1. Age-adjusted mortality rates of lung cancer from 1969 to 2006 for
all 48 contiguous states, Washington D.C., and the entire US.

Figure 2. Age-adjusted incidence rates of lung cancer from 1969 to 2006 for
four states: Ohio, Pennsylvania, Missouri, Iowa.
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One could apply an existing change-point method designed for a single curve to

each curve and subsequently apply a clustering algorithm, but existing clustering

algorithms are not directly applicable since we want to allow a different number of

change-points for each curve. The difficulty here is to come up with a similarity

measure since the dimension of feature spaces (of the change-points and rate

of changes) can be different between curves. We introduce a similarity measure

based on penalized likelihood to account for the varying dimensions and compare

the clustering results with the approach we propose here. The comparison is

discussed in detail in Section 5.1.

We assume that the mean trend of each curve is piece-wise linear over time.

We make use of the Dirichlet Process (DP) methodology (Ferguson (1973, 1974))

in an innovative way to cluster these piecewise linear trends of the different curves.

Since change-points are determined by the rates of change in each time interval,

the DP prior is developed on the space of piecewise constant functions where

each constant level represents the slope of the linear trend in the corresponding

time interval. The locations of change-points and the rates of change are random

and estimated during the inferential stage.

The rest of the paper is organized as follows. Section 2 presents the proposed

change-point model and prior specifications for Bayesian inference. Some prior

components are taken to be improper, and therefore, propriety of the posterior

is a concern. Section 3 establishes propriety of the posterior distribution under

mild conditions. Section 4 gives details of the Bayesian inference: performance

measures of change-points and clustering configuration for the comparison. Sec-

tion 5 present results when the proposed model is applied to simulated data as

well as to lung cancer data. We also compare the results of the proposed model

with the penalized likelihood approach introduced as an alternative approach.

Section 6 gives a summary and discussion for the proposed model and future

research.

2. A Change Point Model

The description of characteristics of cancer curves are given first, which mo-

tivates the proposed model. Cancer data are obtained from the Surveillance, Epi-

demiology, and End Results (SEER) program (seer.cancer.gov) of the NCI. An

age-adjusted mortality rate is the primary measure for monitoring cancer trends

over time and over states; it is a weighted average of the age-specific (crude)

rates with the proportions of the reference population in the corresponding age

groups as weights so that the potential confounding effect of age is reduced. See

the SEER program website or Dass, Lim, and Maiti (2011) about this.

We consider age-adjusted lung cancer mortality rates from 1969 to 2006 for

the 48 contiguous states (excluding Alaska and Hawaii) and Washington D.C.
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(See Figure 1). Thus, mortality rates are observed at 38 time points over 49

locations. For simplicity, we re-index the time as t = 1, . . . , 38. It is clear from

Figure 1 that there exists at least one change-point for the most of states. Some

states show similar change-points even though the variability around the mean

curve differs. To model exponential growth or decay of the age-adjusted rates,

we model the logarithm of the age-adjusted rates as a linear function of time, the

usual practice in joinpoint analysis literature (see e.g., Kim et al. (2000, 2004),

Tiwari et al. (2005), Ghosh, Basu, and Tiwari (2009); Ghosh, Ghosh, and Tiwari

(2011)).

2.1. Model specification

Let Ys,t be the logarithm of the age-adjusted mortality rate for state (or,

site) s and time t, where s = 1, 2, . . . , 49 = N , and t = 1, . . . , 38 = n. For site

s, suppose there are Ks change-points. Then we have Ks + 1 time intervals,

[T
(s)
0 , T

(s)
1 ), [T

(s)
1 , T

(s)
2 ), . . . , [T

(s)
Ks−1, T

(s)
Ks

), [T
(s)
Ks

, T
(s)
Ks+1] that form a partition of

T ≡ {1, . . . , n} with T
(s)
0 = 1 and T

(s)
Ks+1 = n. For simplicity, we use [T

(s)
l−1, T

(s)
l )

for the lth time interval for all l = 1, . . . ,Ks+1, with the last interval to include

the right-end point. For t ∈ [T
(s)
l−1, T

(s)
l ), we consider the model:

Ys,t = α
(s)
l + t · β(s)

l + ϵs, t, (2.1)

where l = 1, . . . ,Ks + 1. We further assume that ϵs,t
i.i.d.∼ N (0, σ2

s).

The model (2.1) assumes Ks change-points for site s and the unknown trend

between change-points to be linear. We do not assume that the line segments

are connected at the change-points although we observe in practice that the dis-

continuities between adjacent fitted line segments are negligible. The parameters

α
(s)
l and β

(s)
l are the intercept and slope, respectively, for the lth time segment,

l = 1, . . . ,Ks +1, for site s. ϵs, t represents i.i.d. errors over and above the mean

trend α
(s)
l + t · β(s)

l . Since the variability of Ys,t around the mean curves can be

different for the different sites, we take Var (ϵs,t) = σ2
s , the site-specific variance.

2.2. Functional DP prior and other prior specifications

To model clustering of N sites with respect to their change-point locations

and corresponding magnitudes, we consider the piecewise constant function,

θs(t) = β
(s)
l if T

(s)
l−1 ≤ t ≤ T

(s)
l − 1, (2.2)

where β
(s)
l is the true but unknown slope in the interval [T

(s)
l−1, T

(s)
l ) for each site

s. The piecewise constant function θs contains all information on the number of
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change-points, Ks, the locations of change-points, T
(s)
l , and the slopes (rates of

change), β
(s)
l , for the corresponding time segments.

We denote the space of all piecewise constant functions on T by Θ. The

generic element θ ∈ Θ has the form

θ(t) = βl if Tl−1 ≤ t ≤ Tl − 1, (2.3)

for l = 1, . . . , k + 1 with 1 ≡ T0 < T1 < · · ·Tk < Tk+1 ≡ n. The set of all

probability distributions on Θ is denoted by P(Θ). The Dirichlet process (DP)

prior developed subsequently on P(Θ) will enable us to cluster the N functions

θs ∈ Θ related to the sites s = 1, . . . , N .

The traditional DP ≡ DP(α0G0) depends on two hyper-parameters, α0 and

G0. G0 is the baseline (or centering) distribution on Θ and α0 > 0 is the

precision parameter that controls variability around the centering distribution.

A randomly generated distribution F from DP (α0G0) is almost surely discrete

and admits the representation

F =

∞∑
i=1

ωi δθi , (2.4)

where δz denotes a point mass at z, ω1 = η1, ωi = ηi
∏i−1

k=1(1−ηk), for i = 2, 3, . . .

with η1, η2, . . . , iid Beta(1, α0) random variables and θ1, θ2 . . . i.i.d. from G0

(Sethuraman (1994)). In the traditional DP formulation, θi is assumed to be

scalar or vector-valued taking values in Rp. The functional DP as a prior on

P(Θ) conceptually extends the θis in (2.4) to piecewise constant functions θi for

i ≥ 1 where each θi ∈ Θ. Clearly, the random F ∈ P(Θ) and the functional DP

is a prior on P(Θ) with centering measure G0 ∈ P(Θ).

Clustering via functional DP is achieved in the same way as in traditional

DP. Assuming θ1,θ2, . . . ,θN iid from F and F ∼ DP (α0G0), we note that,

conditional on F , there is a positive probability that each θs will be equal to

one of the functions drawn previously since F is discrete. In fact, marginalizing

over F , the well-known sequence of conditional distributions given by the Polya

urn scheme, (θs |θ1, . . . ,θs−1) = (G0(dθs) +
∑s−1

s′=1 δθs′
)/s for s = 1, . . . , N ,

explicitly describes the a-priori clustering distribution: The function θs is either

a new piecewise continuous function generated from G0 with probability 1/s

or one of the previously generated functions θ1,θ2, . . . ,θs−1 with probability

(s− 1)/s, for s = 1, . . . , N .

Since we want to cluster curves based on the number and locations of change-

points and the slopes, we do not include α
(s)
l in the definition of θs. Here,

the parameters α
(s)
l are considered as nuisance parameters for clustering. The

proposed methodology enables clustering of piecewise linear curves that have
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similar slopes but different intercepts. interested in clustering curves that have

similar slopes as well as intercepts, one can extend the definition of θs to include

α
(s)
l as well. The definition of the space Θ will change accordingly and the

functional DP prior will be defined on a new P(Θ).

To complete the functional DP prior specification for the proposed model,

we introduce a specification of the baseline distribution G0. The distribution G0

on Θ is described in hierarchical fashion.

(i) Distribution on the number of change-points, K: Let K follow a truncated

Poisson distribution. We assume that each time interval has at least w > 0

units to avoid a zero-length interval. Then, K ≤ k∗ where

k∗ ≡
[
(n− 1)

w

]
− 1 (2.5)

to ensure n0 ≡ n− 1− (K + 1)w > 0 with probability 1. The corresponding

probability when K = k is given by p(k) = (e−λλk/k!)/(
∑k∗

l=0 e
−λλl/l!) =

(λk/k!)/(
∑k∗

l=0 λ
l/l!) for k = 0, 1, . . . , k∗ and E(K) = λ(1− (λk∗/k∗!)/(

∑k∗

l=0

λl/l!)).

(ii) Distribution on the time intervals between change-points: Let nl be the

interval length for the lth time segment after subtracting w. We assume

that, conditional on K = k,

(n1, . . . , nk+1)
∣∣K = k ∼ Multinomial

(
n0,

1

k + 1
, . . . ,

1

k + 1

)
.

The times {Tl, l = 1, . . . , k } in (2.3) are recursively obtained as T0 = 1, and

Tl = nl + Tl−1 + w for l = 1, . . . , k.

(iii)Distribution on the constant levels βl: Given K = k, {βl, l = 1, . . . , k + 1 }
are generated from the probability density function π0 on R independently

of each other.

(iv) Set θ(t) according to (2.3) based on the random quantities generated in

(i)−(iii).

It then follows that the infinitesimal measure for G0 is

G0(dθ) = p(k)

(
Γ(n0 + 1)∏k
i=1 Γ(ni + 1)

(
1

k + 1

)n0
)

k+1∏
l=1

π0(βl) dβl, (2.6)

where θ is a randomly generated piecewise constant function. We take

π0(βl) ∝ 1, (2.7)
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independently for all l = 1, . . . , k+1. The proposed DP prior involves the hyper-

parameters, α0 and λ. For Bayesian inference, their priors are taken to be π1
and π2, respectively with

π1(α0) = gamma(α0 | aα0 , bα0) and π2(λ) = gamma(λ |, aλ, bλ). (2.8)

Next, we assign priors to model parameters and hyperparameters that are

not involved in the functional DP-based clustering. These are the collection of all

intercepts α = (α(s), s = 1, . . . , N), where α(s) = (α
(s)
1 , α

(s)
2 , . . . , α

(s)
Ks+1)

T , and

all site-specific variance parameters σ = (σ2
1, . . . , σ

2
N ). The prior on α is taken

as

π3(α) =

N∏
s=1

π0(α
(s)|Ks) =

N∏
s=1

Ks+1∏
l=1

π0(α
(s)
l ) (2.9)

independently for l = 1, . . . ,Ks + 1 and s = 1, . . . , N , where π0 is as defined in

(2.7). The site-specific variance parameters σ are given independent priors with

π4(σ) =

N∏
s=1

igamma(σ2
s | aσ, bσ), (2.10)

where igamma(x |, a, b) is the inverse Gamma probability density function with

shape parameter a and scale parameter 1/b.

Bayesian inference is obtained by implementing the Gibbs sampler for all

the unknown parameters involved (see Section 4). The Gamma and inverse

Gamma distributions are used here for their conjugacy with the appropriate

likelihood components during the Gibbs updating steps. The flat priors on βl and

α
(s)
l provide analytical simplifications (and hence, computational efficiency) when

calculating their posterior conditional distributions; with them, we are able to

obtain explicit expressions for the conditional probability that θs belongs to a new

cluster (see the expression H(n1, . . . , nk+1) in Appendix B, for example). The

hyper-parameters for the Gamma and inverse Gamma distributions are chosen to

have large variance so that the impact of the prior input is minimal. The specific

choices of the hyper-parameters for the various Gamma and inverse Gamma

distributions in (2.8)−(2.10) are given in Section 5.

3. Propriety of the Posterior Distribution

Let θ = (θ1, . . . ,θN ) denote the collection of all piecewise constant functions

for s = 1, . . . , N . Let K = (K1, . . . ,KN ) denote the number of change-points

for all sites s = 1, . . . , N . We denote by T = (T (s), s = 1, . . . , N) with T (s) =

(T
(s)
1 , . . . , T

(s)
Ks

), to be all the change-point times, and β = (β(s), s = 1, . . . , N) to

denote the collection of all slope parameters with β(s) = (β
(s)
1 , . . . , β

(s)
Ks+1). Each
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θs ≡ (β(s),Ks,T
(s)), and therefore, we have θ ≡ (β,K,T ). All observed data

is denoted by the vector Y = (Y (s), s = 1, . . . , N) with Y (s) = (Ys,1, . . . , Ys,n)
T .

We also fix the hyperparameters α0 and λ involved in the elicitation of G0 for

the moment. The collection of all unknown parameters to be inferred is given by

(θ,α,σ), or equivalently, (β,K,T ,α,σ). The priors on β and α are improper

according to (2.7) and (2.9). Thus, the propriety of the posterior π(θ,α,σ |Y )

has to be established before inference can be made from it.

Theorem 1. Fix α0 and λ. If the minimum number of observations in each

time segment, w, is at least 3, then the posterior π(θ,α,σ |Y ), resulting from

the prior specifications in (2.7) and (2.9)−(2.10), is proper.

The proof is provided in Appendix A.

Remark 1. By setting w ≥ 3, we provide an upper bound for the number of

change-points for each site s: Ks ≤ k∗ ≤ [(n− 1)/3] − 1 in (2.5). Concur-

rently, we also ensure at least three observations in each time segment between

change-points. Since the priors on β
(s)
l and α

(s)
l are improper, at least one extra

observation in each time interval ensures that the marginal distribution (after

integrating out α
(s)
l and β

(s)
l ) is still finite. The technical details are presented

in Appendix A.

Remark 2. By extending the proof in Appendix A, Theorem 1 is easily estab-

lished for the posterior of (θ,α,σ, α0, λ) when the priors π1 on α0 and π2 on λ

are proper as in (2.8). An improper prior for the precision parameter, α0, results

in an improper posterior; this is also shown in Appendix A.

4. Bayesian Inference

The validity of the Gibbs updating scheme for θs based on the elicited im-

proper prior components in G0 as well as for α is established in Theorem 2 in

Appendix A. The detailed description of the updating steps for the Bayesian

computation is given in Appendix B. In this section, we focus on the posterior

analysis for model parameters and clustering configuration. Suppose that we

have B Gibbs samples, (θ(b),α(b),σ(b), α
(b)
0 , λ(b)), for b = 1, . . . , B after conver-

gence is established. Marginal posterior inference can be carried out for each of

these components. For example, to infer θs(t) for a particular site s and time

point t, we extract all θs(t) components from each (θ(b),α(b),σ(b), α
(b)
0 , λ(b)), for

b = 1, . . . , B. The B realizations of θs(t) are then used to compute the posterior

mean, variance and credible interval. A similar procedure also works for d, the

number of distinct clusters, where we can obtain marginal probabilities of d over

non-negative integers up to N .
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The posterior samples provide the frequency distribution of a number of

change-points and all possible combinations of time segments between change-

points for each site s. Thus, we can obtain the marginal probability distribution

for each T (s) so that T (s) along with Ks is estimated using its posterior mode

for each site s. Furthermore, the magnitude of changes can be measured by

the difference of two adjacent slopes around the change-point, defined as ∆
(s)
l =

β
(s)
l+1 − β

(s)
l , l = 1, . . . ,Ks for site s. Under the same patterns of change-points,

larger value of ∆
(s)
l indicates a clear change-point. The associated credible set

of ∆
(s)
l provides the amount of uncertainty in such change. On the other hand,

the posterior samples also provide the frequency distribution of change-points for

each site, which is used to compute the empirical distribution of change-points,

say, pE(t).

A challenging inference problem is to obtain results for the clustering ten-

dencies, for example the “average” clusters from the posterior samples. Since

clustering configuration is changing at each Gibbs iteration, posterior analysis

(obtaining summary quantity) for clustering configuration is not straightforward.

We are considering a distance measure based on how many times each pair of

sites belongs to the same cluster and use it for clustering: For every pair of sites

(s1, s2) in {1, . . . , N}, define distb(s1, s2) = 1 if s1 and s2 belong to the same

cluster in the bth iteration and 0, otherwise, for b = 1, . . . , B. Subsequently, we

construct the average distance measure between the sites s1 and s2 using

dist(s1, s2) = 1−
B∑
b=1

distb(s1, s2)

B
.

Based on dist, an agglomerative clustering algorithm is performed with d̂, the

posterior mode of the number of distinct clusters as the threshold for the maxi-

mum number of clusters in the algorithm. The clustering configuration from this

procedure is matched with our expected scenario. However, posterior estimates

of change-points of curves in each cluster of the averaged cluster configuration are

not necessarily the same since posterior estimates of change-points are obtained

by marginal posterior distribution for each curve.

The proposed model is developed to detect change-points of multiple cancer

curves simultaneously, and consequently to allow curve clustering based on loca-

tions and magnitudes of change-points. Thus, we consider the following measures

for model assessment and comparison.

1. A measure for comparing change-points: For the simulation data, we know

the true locations of change-points. We define an accuracy rate Ra to assess

how good is the change-points detection. Let Rm(s, b) for the bth iteration be
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[ Ks∑
l=1

I(T
(s)
l ∈ D(b)

s )
]
− (card(D(b)

s )−Ks)
+,

where x+ = x if x > 0, and 0 otherwise, D
(b)
s is the set of detected change-

points for the sth site in the bth posterior sample, and card(D
(b)
s ) is the

cardinality of the set D
(b)
s . The maximum value of Rm(s, b) is Ks iff D

(b)
s =

{T (s)
1 , . . . , T

(s)
Ks

}, the set of true change-points. For all other choices of D
(b)
s ,

we have integer-valued Rm(s, b) < Ks. This measure penalizes a set D
(b)
s that

is either too large or too small. The accuracy rate, Ra, is taken as the average

of the Rm(s, b)s,

Ra = aves aveb

[
Rm(s, b)

Ks

]
.

Here Ra closes to 1 indicates a better capability of detecting the change-points.

2. A measure for comparing a pair of clustering of sites: Consider a 2× 2 cross-

classification table to measure deviation between two cluster configurations,

C and C∗, say. Entries of the table are {nij}, 1 ≤ i, j ≤ 2. n11 is the number

of pairs of sites, out of all n++ =
(
N
2

)
pairs, that are in the same cluster in

C as well as C∗. n22 is the number of pairs of sites that are not in the same

cluster in C as well as C∗. n12 is the number of pairs that are in the same

cluster in C but not in C∗. Similarly, n21 is the number of pairs that are

not in the same cluster in C but in the same cluster in C∗. If two cluster

configurations C and C∗ are the same, we have n11 = n+1 and n22 = n+2.

The interpretation of n+1 is that it is the number of pairs which are in the

same cluster in C∗, whereas the interpretation of n+2 is that it is the number

of pairs that are not in the same cluster in C∗. Thus, the latter quantities

n+1 and n+2 are dependent on C∗ only and not on C.

We consider two measures, sensitivity S1 = n11/n+1 and specificity S2 =

n22/n+2. The interpretation of S1 is that it is the proportion of pairs that are

also in the same cluster in C given that they are in the same cluster in C∗.

Similarly, S2 is the proportion of pairs that are also not in the same cluster

in C given that they are not in the same cluster in C∗. S1 and S2 take values

between 0 and 1, the ideal value of (S1, S2) being (1, 1). Also note that for a

cluster C ⊂ C∗ (that is, every partition of C is in some partition of C∗), the

number of clusters in C is much larger than that of C∗. In this case, n12 = 0

yielding S2 = 1 but S1 ≤ 1. On the other hand, when C∗ ⊂ C, we have

S1 = 1 and S2 ≤ 1. Thus, deviations from the point (1, 1) or from the lines

y = 1 and x = 1 give an idea about the nature of deviations of the clustering

C from the clustering C∗.

We have determined the “central” cluster based on dist. Thus, (S1, S2) can

be used to measure deviations between a Gibbs cluster configuration and a
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“center” (or true for simulation studies) cluster configuration. Suppose that

from the Gibbs output, we have B cluster configurations, C1, . . . , CB, of sites

s = 1, . . . , N . The dist method will give a “central” cluster, say C̄. Then,

for the bth Gibbs cluster configuration, we can calculate (S1(b), S2(b)) with

C = Cb and C∗ = C̄. A plot of (S1(b), S2(b)) will indicate how dispersed

the bth Gibbs cluster is with respect to the central cluster configuration C̄:

If (S1(b), S2(b)) is concentrated close to (1, 1), this indicates that deviations

of Cb from C̄ is not much. Points (S1(b), S2(b)) far from (1, 1) indicate two

different types of deviations based on their proximity to the lines x = 1 or

y = 1. Proximity to the line x = 1 indicates that among those pairs that

are in the same cluster in C̄, more pairs are in the same cluster in Cb as

well, whereas proximity to y = 1 indicates that among those pairs not in the

same cluster in C̄, more pairs are not in the same cluster in Cb as well. For

simulation studies, C̄ can be taken to be the true cluster configuration since

the true clustering is known.

In the 2 × 2 cross-classification table, there are two degrees of freedom. The

quantities n+1 and n+2 are fixed for the true (or central) cluster configuration,

so we need two free parameters, say n11 and n22, to determine all entries in

the table completely. Thus, the scatter plot of {(S1(b), S2(b)), b = 1, . . . , B}
gives a complete picture of variability. As a numerical measure for variability,

we consider

SS =
1

B

B∑
b=1

(2− S1(b)− S2(b)) (4.1)

with smaller SS indicating better performance.

3. Predictive measure: For the predictive analysis, Y ∗
s,t, is sampled from the

model given model parameters at each Gibbs iteration. The B values of Y ∗
s,t

are then used to construct the 95% credible predictive interval.

5. Analysis of Cancer Curves over States

In this section we introduce an alternative approach based on the penal-

ized likelihood and compare the proposed method with the penalized likelihood

approach using simulated data and cancer mortality curve data.

5.1. Alternative two-stage approach

There are several joinpoint models that can detect change-points in a sin-

gle curve. Thus, to cluster curves based on change-points, one needs to apply

clustering methods after fitting each curve. It is not clear how to apply avail-

able clustering methods such as a k-mean clustering method when the number

of change-points and location of change-points are different for each curve, and
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a two-stage approach may not accommodate variability among curves. One way

to overcome the different dimensionalities is to use a likelihood based approach.

For comparison purpose, we propose a penalized likelihood based approach to

detect change-points and cluster curves.

Penalized likelihood approach: For each site s, fix the number of change-

points, Ks, and the location of the change-points T (s) = (T
(s)
1 , . . . , T

(s)
Ks

). Let

α
(s)
l and β

(s)
l be, respectively, the intercept and slope of the regression line in

the lth time segment, l = 1, . . . , (Ks + 1). The errors ϵs,t follow the normal

distribution N(0, σ2
s). Take ϑs = {(α(s)

l , β
(s)
l ), l = 1, . . . , (Ks + 1), σ2

s} to be all

the unknown parameters. Denote by ϑ̂s the maximum likelihood estimate of ϑs

under the normal N(0, σ2
s) model. Consider the penalized log-likelihood function

(BIC) given by

Hs(Ks,T
(s)) = −2 log ℓ(Ys | ϑ̂s ) + (2Ks + 3)log(n) (5.1)

= n log(σ̂2
s) + (2Ks + 3)log(n) + const. terms,

since there are 2Ks+3 parameters consisting of α
(s)
l and β

(s)
l for l = 1, . . . ,Ks+1,

and the variance parameter σ2
s . Change-points and parameters are estimated

based on minimizing the BIC criteria in (5.1) as the first stage of a two-stage

procedure.

In the second stage, clustering is obtained based on a modification of the

functions Hs(Ks,T
(s)) in (5.1). For sites s1 and s2, we get the penalized likeli-

hood measures Hs1(Ks1 ,T
(s1)) and Hs2(Ks2 ,T

(s2)). The goal is to see whether

s1 and s2 can be grouped based on similar locations of change-points and slopes.

We consider the combined penalized log-likelihood criteria:

Hc(Kc,T
(c)) = −2 log ℓ(Ys1 | ϑ̂s1,c )− 2 log ℓ(Ys2 | ϑ̂s2,c ) + (3Kc + 5)log(n)

+const. terms,

where the slope components of ϑs1,c and ϑs2,c are common to both s1 and s2 but

the intercept and the variance parameters are different. We propose dissimilarity

measure between s1 and s2 as

d(s1, s2) = infKc,T(c)

[
Hc(Kc,T

(c))−Hs1(Kc,T
(c))−Hs2(Kc,T

(c))
]
.

If we view −2 × loglikelihood as a cost function, it is intuitively clear that the

cost of not combining is always smaller than the cost of combining because MLEs

are obtained over larger sets. The expression

−2 (log ℓ(Ys1 | ϑ̂s1,c ) + log ℓ(Ys2 | ϑ̂s2,c )− log ℓ(Ys1 | ϑ̂s1 )− log ℓ(Ys2 | ϑ̂s2 ))
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is, therefore, always non-negative, and 0 only when the cost of combining is as

good as the cost of not combining. In this case, it is possible that d(s1, s2) < 0

due to the addition of the penalty term on the number of parameters, and so

we choose d(s1, s2) = 0 as a rule whenever its value is less than 0. In all other

cases, d(s1, s2) is typically positive. Once the dissimilarity measures are obtained

for all combinations of pairs (s1, s2), we can apply an agglomerative clustering

algorithm to obtain a ‘center’ cluster configuration for subsequent analysis. The

penalized likelihood approach is applied to the curve for each site s separately

in the first stage. Since change-points and parameters are estimated based on

minimizing the BIC before the clustering procedure, Ra does not change even if

we set different number of clusters in the agglomerative algorithm. The Ra value

that we obtain is optimal in the sense that further agglomerative clustering may

reduce (or increase) the number of change-points of sites with weak signals when

grouped together with other sites with stronger signals. Also, Ra is the averaged

value over sites s only since this approach does not produce posterior samples

of clusters for variability assessment. Similarly, for SS, the summation in (4.1)

involves one term only since there is no summation over b.

5.2. Simulation study

In this section, we apply the proposed method and the penalized likeli-

hood approach to the simulated data and compare their performances. We

simulated data with n = 38 time points for N = 49 sites according to the

model in (2.1), which is the same structure as that of U.S. states in the can-

cer mortality data. We partitioned the sites into d = 6 clusters, Cr, r =

1, . . . , 6, with each s ∈ Cr having common values for (β(s),Ks,T
(s)), hence de-

noted by (β(r),Kr,T
(r)). The piecewise constant function θs was taken to be

θs(t) = β
(r)
l for t ∈ [T

(r)
l−1, T

(r)
l ), for l = 1, . . . ,Kr + 1. The following choices

were made corresponding to each Cr: For r = 1, C1 contained 9 sites (|C1| =
9), with K1 = 4 change-points. We took T (1) = (1979, 1986, 1993, 2000) and

β(1) = (0.06,−0.05, 0.04,−0.04, 0.05). For r = 2, |C2| = 9, K2 = 2, T (2) =

(1976, 1989), and β(2) = (0.05,−0.07, 0.06). For r = 3, |C3| = 8, K3 = 3,

T (3) = (1976, 1986, 1997), and β(3) = (0.07,−0.08, 0.07,−0.06). For r = 4,

|C4| = 7, K4 = 1, T (4) = (1986), and β(4) = (0.05,−0.02). For r = 5, |C5| = 7,

K5 = 2, T (5) = (1980, 1995), and β(5) = (0.04, 0.01,−0.03). Finally, for r = 6,

|C6| = 9, K6 = 1, T (6) = (1989), and β(6) = (0.02,−0.01). Seven scenarios were

made depending on the choices of σ2
s . For the first four cases, we generated σ2

s ,

s = 1, . . . , N , i.i.d. from uniform distributions with the ranges (0.003, 0.009),

(0.009, 0.015), (0.015, 0.021), and (0.003, 0.021). The first range (case 1) is simi-

lar to the lung cancer mortality data in log scale that we are analyzing. For the

last three cases, we generated σ2
s from Gamma distribution with shape and scale
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Figure 3. Mean curves (solid lines) for simulated six clusters with data (grey
dots) generated under case 1. Data curves (grey dots) within a cluster are
plotted together in each panel.

parameters, (0.5, 0.012), (0.25, 0.024), and (0.2, 0.09) so that the σ2
s were gener-

ated from a skewed distribution. Figure 3 shows the mean curves of six clusters

from the above description of clustering and parameter specification with the

data generated from the case 1.

The minimum number of time points in each time segment, w, was set as

w = 7. Theorem 1 since w ≥ 3. Values of hyper-parameters for the priors of

σ2
s , α0 and λ were set to make diffused/dispersed priors and the same values were

used for the data analysis as well; the specific values are given in the next section.

Three Gibbs chains were started from three different settings perturbed from the

true setting. We randomly assigned sites into the clusters while we fixed the

number of clusters and the number of sites in each cluster. Also, the number of

change-points for each site was set to zero at the beginning of the Gibbs chains.

The assessment of convergence was carried out based on the methodology of

Gelman and Rubin and convergence was achieved after 5,000 iterations. We ran

1,000 iterations and used them for posterior inference. The total running time

of 6,000 iterations for each chain was approximately 4 hours.

The results are summarized in Tables 1, 2 and Figure 4 for the simulated

data. SSt is the value of SS calculated based on the Gibbs cluster configura-

tions and the true clustering configuration for the proposed approach. For the

penalized likelihood approach, SSt was calculated based on the resulting cluster-

ing configuration from the penalized likelihood approach and the true clustering

configuration.
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Table 1. Comparison of performances for the proposed and penalized like-
lihood methods based on simulated data under seven different levels of
σ2
s ’s: Uniform distributions on (0.003, 0.009), (0.009, 0.015), (0.015, 0.021),

(0.003, 0.021), respectively and Gamma distributions with (shape, scale)
(0.5, 0.012), (0.25, 0.024), (0.2, 0.09), respectively. SSt is the SS measure
using true cluster configuration. The first two columns are for the proposed
method and the last four columns are for the penalized likelihood method.
P5, P6 and P7 indicate that the clustering configuration was chosen by
setting the number of clusters as 5, 6 and 7, respectively, for the penalized
likelihood method.

Case Ra SSt P : Ra P5 : SSt P6 : SSt P7 : SSt

1 0.886 0.027 0.250 0.049 0.000 0.056
2 0.700 0.073 0.117 0.108 0.052 0.103
3 0.542 0.129 0.145 0.156 0.228 0.307
4 0.929 0.005 0.017 0.049 0.000 0.045
5 0.974 0.030 0.420 0.113 0.082 0.191
6 0.962 0.044 0.384 0.097 0.048 0.161
7 0.955 0.086 0.262 0.302 0.252 0.340

In the simulation settings the mean level of σ2
s increases while the variability

among the σ2
s is the same from Cases 1 to 3 with the uniform distributions. Case

4 has larger variability among the σ2
s while the mean level is the same as in Case

2. On the other hand, from Cases 5 to 7 for Gamma distributions, the variability

among the σ2
s increases.

In Table 1 we expect that the capability of detecting change-points and

clustering decreases as we have larger σ2
s ; overall, we see that the values of Ra

decrease and the values of SSt increase for both the proposed and penalized

likelihood methods from Cases 1 to 3, and from Cases 5 to 7 (The Ra and SSt for

the proposed method were calculated by averaging over Gibbs samples while they

were not for the penalized likelihood method). The proposed method performs

better for the detection of change-points as the magnitude of Ra is closer to 1 in

each case compared to the penalized likelihood method. The magnitudes of SSt

are comparable for both approaches when the level of σ2
s is smaller whereas SSt

is smaller (closer to 0) for the proposed method when the level of σ2
s increases.

The differences in Ra and SSt between the approaches is more pronounced when

the σ2
ss are generated from a skewed distribution, which could be the situation

with data.

Regarding the performance of change-points detection, the penalized like-

lihood approach detects change-points for each curve separately. Thus, it is

difficult to detect the change-points correctly for curves with larger σ2
s . The pro-

posed method detects the change-points by borrowing information from other
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sites within a cluster, so that it benefits from sites with smaller σ2
s within the

cluster.

For the Cases 1 and 4, the values of SSt from the penalized likelihood ap-

proach using the true number of clusters are zero (P6 column in the Table 1),

which means perfect cluster configuration. Meanwhile, the SSt for the proposed

Bayesian approach are very small but not zero. This is due to the uncertainty in

the Gibbs samples. Indeed, SSt based on the centered clustering configuration

obtained by the Gibbs samples and the true clustering configuration are also zero

for Cases 1 and 4. Thus, the approaches are comparable. However, we do not

know the true number of clusters in practice. When the number of clusters is

misspecified (P5 or P6), the values of SSt for the penalized likelihood method

are greater than those for the proposed method.

Cases 1 and 4 show the best performance on the clustering configuration for

both approaches. The range for the uniform distribution of Case 4 covers the

range for the uniform distribution of Case 1, which implies that some of the σ2
s

are as small as those in Case 1. This result could be explained by observing that

each cluster in their true clustering configuration has the sites with smaller σ2
s ,

since the σ2
s were uniformly generated and those sites with smaller σ2

s (strong

signals) were dominating the clustering results.

The degree of uncertainty of clustering configuration for the simulation study

are shown by the posterior probabilities of the number of clusters, d, in Table

2 as well as the plots of (Sensitivity, Specificity)= (S1, S2) in Figure 4. Table 2

shows the posterior probabilities of the number of clusters are highly concentrated

on d = 6, the true number of clusters. Although this looks too extreme, the

clustering configuration can still vary given correctly estimated d and this can

be seen in the plots in Figure 4. The (S1, S2) plots Cases 1, 3, 5, and 7 are

given. We can see clearly that, when the noise level (σ2
s) increases, there is more

variability. One sees that the penalized likelihood method is sensitive to the

assumed number of clusters. While it produces the best result with correctly

specified number of clusters, the proposed method gives better result than that

of the penalized likelihood method with misspecified number of clusters.

In summary, we find the proposed method more robust with respect to higher

noise levels as well as different types of noise distribution compared to the two-

stage penalized likelihood approach. Further, the non-parametric Bayesian ap-

proach is able to assess the variability of the clustering configurations from a

reference configuration based on the SSt and SSc criteria developed in (4.1).

5.3. Cancer curves data

We applied the proposed model to the logarithm of cancer mortality curves

from 48 U.S. states and Washington D.C. According to Figure 1, we specified the



694 SARAT C. DASS, CHAE YOUNG LIM, TAPABRATA MAITI AND ZHEN ZHANG

Table 2. Posterior probabilities of the number of clusters d for the simulation
study.

Case p(d = 4) p(d = 5) p(d = 6) p(d = 7) p(d = 8)
1 0.0000 0.0000 0.9997 0.0003 0.0000
2 0.0000 0.0000 0.9997 0.0003 0.0000
3 0.0000 0.9300 0.0697 0.0003 0.0000
4 0.0000 0.0000 0.9997 0.0003 0.0000
5 0.0000 0.0000 0.9997 0.0003 0.0000
6 0.0000 0.0000 0.9993 0.0007 0.0000
7 0.0000 0.0000 0.9953 0.0047 0.0000

Figure 4. (S1, S2) plot of clustering configuration from each Gibbs sample
versus the true clustering configuration for simulated data. S1 is Sensitivity
and S2 is Specificity. The numbers imposed show (S1, S2) of clustering
configuration under the penalized likelihood approach for d, the number
of clusters, fixed at that value, versus the true clustering configuration. The
filled dot indicates (S1, S2) for central clustering configuration from Gibbs
samples versus the true clustering configuration.
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Table 3. Posterior probabilities of number of clusters d for fitted model.

P (d = 2) P (d = 3) P (d = 4) P (d = 5) P (d = 6) P (d = 7)
0.0000 0.0615 0.9193 0.0193 0.0000 0.0000

minimum number of time points in each time interval as w = 7. The resulting

maximum number of change-points was k∗ = 4. The hyper-parameters were

specified as follows: for the inverse Gamma prior on σ2
s , we took aσ = aτ = 2,

bσ = bτ = 100, so that the variance was infinite; for the Gamma prior on α0 and

λ, we took aα = aλ = 2, bα = bλ = 1, 000, so that the priors are well dispersed

(mean = 2× 103 and variance = 2× 106). The dispersion parameter α0 controls

the number of clusters and λ controls the number of change-points. From Figure

1, it is reasonable to assume an informative prior which centers around 1 or 2 for

λ.

We ran four Gibbs chains. Convergence was established after 15,000 itera-

tions and we took 1,000 samples from each chain after 15,000 iterations so that

4,000 samples were used for further posterior analysis. The number of clusters

of states based on the highest posterior probability was found to be d = 4; see

Table 3 for posterior probabilities. The corresponding dendrograms of clustering

results is shown in Figure 5. The posterior inference for parameters and summary

statistics is shown in Table 6. The posterior estimates are tremendously different

from the prior means, which indicates that the diffuse priors did not affect the

posterior behavior. The dendrogram also clearly shows that the four clusters are

achieved by the Model.

Cluster (a) had one change-point at year 1990, except for one state. The

log-rates for these states decreased a little after increasing until 1990. Cluster

(b) also had one change-point, but at year 1988, and the log-rates were steady

after increasing until 1988. Cluster (c) represents states with two change-points

detected at years 1981 and 1992; these states had log-rates increasing slower after

1981 and dropping after 1992. Cluster (d) had one change-point; the log-rates

were decreasing after increasing until 1991, but with decreasing rate larger than

that of Cluster (a).

The change rates, and magnitude of change at each detected location for

each cluster with 95% credible intervals are summarized in Table 4. State-by-

state change-point analysis can also be done. For example, the marginal posterior

probabilities corresponding to zero, one, and two change-points for four states are

given in Table 5. The marginal posterior probability of having one change-point

was the highest for all four states. Table 5 also provides the marginal posterior

probabilities of the locations of the change-points. The posterior estimates of the

other parameters, α0 and λ, are given in Table 6. Figures 9−10 show membership
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Figure 5. Clustering result based on the dissimilarity measure from the
posterior samples.

of each cluster with 95% predictive intervals along with the data curves and the

posterior estimate of σ2
s .

We cannot obtain Ra or SSt for these data since we do not know the true

change-points and clustering configuration. However, we can obtain SSc and

compare the result with the penalized likelihood approach. Figure 6 shows

(S1, S2) plotted for the data. We plotted (S1, S2) values between a clustering

configuration from each posterior sample and the central clustering configura-

tion.

For the comparison, we also plotted (S1, S2) to compare the central clustering

configuration from our proposed method and the clustering configuration of the
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Table 4. Summary in terms of posterior means (95% credible intervals) of
slopes βd

l , l = 1, . . . ,Kd+1 and differences of adjacent slopes ∆d
l = βd

l+1−βd
l ,

l = 1, . . . ,Kd for cluster obtained by Model 1. Kr is the number of change-
points for each cluster. Cluster estimates are averaging over states with
representative pattern of change-points.

cluster Kd β̂d
1 β̂d

2 β̂d
3 ∆̂d

1 ∆̂d
2

(a) 1 0.0281 −0.0020 - −0.0301 -

(0.0267, 0.0291) (−0.0035,−0.0006) (−0.0317,−0.0283)

(b) 1 0.0356 0.0002 - −0.0354 -

(0.0341, 0.0369) (−0.0010, 0.0014) (−0.0371,−0.0337)

(c) 2 0.0307 0.0164 −0.0077 −0.0144 −0.0241

(0.0289, 0.0326) (0.0145, 0.0183) (−0.0090,−0.0058) (−0.0170,−0.0119) (−0.0261,−0.0220)

(d) 1 0.0197 −0.0131 - −0.0328 -

(0.0186, 0.0211) (−0.0146,−0.0113) (−0.0343,−0.0313)

Figure 6. (S1, S2) plot for real data: clustering configuration for each poste-
rior sample versus the central clustering configuration. The plotted numbers
indicate (S1, S2) for the clustering configuration under penalized likelihood
approach with the number representing the number of clusters d.

penalized likelihood approach with different numbers of clusters (d = 3, . . . , 8).

These are overlaid in Figure 6. SSc from the proposed method was 0.2951

while SSc from the penalized likelihood approach were 0.9415, 0.7993, 0.698,

0.7259, 0.7602, and 0.7831 corresponding to d = 3, . . . , 8, respectively. Note

that SSc from the proposed method is smaller than those corresponding to each

d = 3, 4, . . . , 8, indicating that if we expect the clustering configuration from

the penalized likelihood approach is to be similar to the central clustering con-

figuration obtained by the proposed model, (S1, S2) for the penalized likelihood

approach should be close to (1,1), but that is not the case.

6. Discussion
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Table 5. Marginal posterior probabilities of a change-point for four example
states.

Change-Points Florida Arizona Missouri Indiana
No Change-Points 0 0 0 0

T1 = 1992 0.0068 0.0065 0.0025 0.0008
T1 = 1991 0.717 0.6718 0.0228 0.0143
T1 = 1990 0.276 0.265 0.5125 0.4803
T1 = 1989 0.0003 0.0013 0.3248 0.3335
T1 = 1988 0 0.0003 0.0223 0.033
T1 = 1987 0 0 0 0.002

Two Change-Points 0 0.0553 0.1153 0.1363

Table 6. Summary in terms of posterior means (95% credible intervals) of
parameters α0 and λ.

α0 λ
2.0247 1.4025

(0.4568, 3.8889) (1.0311, 1.8047)

Figure 7. States in cluster (a). We omit the description since it is the same
as Figure 9.

We proposed a change-point model that works for multiple curves and con-

current clustering of curves based on their change-points. Clustering is estab-

lished by introducing a Dirichlet process prior on the space of step functions over

time. The model was applied to analyze state-wise log scale age-adjusted cancer

mortality rates to find local change-points and clusters that have similar changes.

For the analysis of lung cancer mortality rates, we found that state-level and
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Figure 8. States in cluster (b). We omit the description since it is the same
as Figure 9.

Figure 9. States in cluster (c). Points are cancer mortality data in log scale
and the dotted lines along with the data are the 95% predictive intervals.
The σ2 value is the posterior estimate. Vertical dotted lines are change-
points locations.

national level age-adjusted lung cancer mortality rates showed a clear change-

point around the late 1980s to early 1990s. Some states like Florida and Arizona

followed similar patterns as the national level rates, while some states like Mis-

souri and Indiana showed different patterns from the national level rates (see

Figure 1). States in Clusters (a) and (b) had smaller rates of change after the
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Figure 10. States in cluster (d). We omit the description since it is the same
as Figure 9.

change-point compared to Cluster (d) and the national level (see Table 4). We

can see that lung cancer mortality rates have not changed much since 1990s for

these states, while the national level seems significantly decreased.
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Appendix A: Propriety of the Posterior and Validity of the Gibbs

Updating Scheme

Let 1m (0m) be an m-by-1 matrix with all entries 1 (0), and denote by

Im an m-by-m identity matrix. We have Y = (Y 1, . . . ,Y N )T , with Y s =

(Ys,1, . . . , Ys,n)
T , α = (α(1)T , . . . ,α(N)T )T with α(s) = (α

(s)
1 , . . . , α

(s)
Ks+1)

T , and

β = (β(1)T , . . . ,β(N)T )T with β(s) = (β
(s)
1 , . . . , β

(s)
Ks+1)

T . Take X
(s)
0 to be the

n-by-Ks + 1 design matrix that corresponds to α(s), and X
(s)
1 to be the design
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matrix for β(s). For all s ∈ Cr, θs ≡ (β(s),Ks,T
(s)) is common, hence denoted

by θ(r) ≡ (β(r),Kr,T
(r)). Take X

(s)
0 = X0,r and X

(s)
1 = X1,r for s ∈ Cr.

Proof of Theorem 1. Let S ≡ {1, . . . , N} be the set of all N sites. Denote

a partition of S by c = ∪d
r=1Cr, and take P to be the set of all partitions of S.

A randomly generated distribution F from DP (α0G0) admits the Sethuraman

representation (Sethuraman (1994)). By integrating out the random measure

F , the equivalence between the DP prior (for any general space Θ) and the

distribution it induces on P is well known. Moreover, the probability distribution

on P has the explicit form

π(c) =
Γ(α0)

Γ(α0 +N)
αd
0

d∏
r=1

(|Cr| − 1)!, (A.1)

where |Cr| is the number of elements in Cr.

To show the propriety of the posterior of (θ,α,σ), we need to show∑
c∈P

∫
Θd

∫
σ

∫
α
f(Y |θ, c,α,σ)π(α | c)π(σ)π(c) dαdσG0(dθ) < ∞, (A.2)

where

f(Y |θ,α, c,σ) =
d∏

r=1

∏
s∈Cr

1

(2πσ2
s)

n
2

exp

{
− 1

2σ2
s

∆T
s ∆s

}
(A.3)

with ∆s = Y s − X0,rα
(s) − X1,rβ

(r). Then, it is enough to show for each r =

1, . . . , d,

M r(Kr,T
(r), Cr) =

∏
s∈Cr

∫
σ2
s

∫
β(r)

∫
α(s)

f(Y s |α(s),β(r), σ2
s , c,Kr, T

(r))π(α(s) | c)

dα(s)π(β(r) | c)dβ(r)π(σ2
s)dσ

2
s < ∞, (A.4)

for every realization of K,T , c. This is so since π(K | c), π(T | c), and π(c) are

discrete distributions over finite possible realizations and (A.2) is obtained by

finite sums with respect to K,T , c.

We integrate with respect to α(s) for each fixed s ∈ Cr:∫
α(s)

f(Y s |α(s),β(r), σ2
s , c,Kr, T

(r))π(α(s) | c) dα(s)

=
|XT

0,rX0,r|−1/2

(2πσ2
s)

(n−Kr−1)/2
exp

{
− 1

2σ2
s

ZT
s PX0,rZs

}
, (A.5)

where Zs = Y s − X1,rβ
(r) and PX0,r = In − X0,r

(
XT

0,rX0,r

)−1
XT

0,r. Here PX0,r
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has rank n− (Kr + 1). Consider the integration of β(r):∫
β(r)

∫
α(s)

f(Y s |α(s),β(r), σ2
s , c,Kr, T

(r))π(α(s) | c) dα(s)π(β(r) | c) dβ(r)

=

∫
β(r)

|XT
0,rX0,r|−1/2

(2πσ2
s)

(n−Kr−1)/2
exp

{
− 1

2σ2
s

ZT
s PX0,rZs

}
π(β(r) | c) dβ(r)

=
|XT

0,rX0,r|−1/2|XT
1,rPX0,rX1,r|−1/2

(2πσ2
s)

(n−2(Kr−1))/2
exp {−Qs,r}

≤
|XT

0,rX0,r|−1/2|XT
1,rPX0,rX1,r|−1/2

(2πσ2
s)

(n−2(Kr−1))/2
, (A.6)

whereQs,r = (1/2σ2
s)Y

T
s

(
PX0,r − PX0,rX1,r(X

T
1,rPX0,rX1,r)

−1XT
1,rPX0,r

)
Y s. The

second equality holds since XT
1,rPX0,rX1,r is a non-singular matrix by assuming

the rank of X1,r is less than the rank of PX0,r , or Kr + 1 ≤ n − (Kr + 1).

This holds since w ≥ 3. The last inequality follows from Qs,r ≥ 0, since

PX0,r − PX0,rX1,r(X
T
1,rPX0,rX1,r)

−1XT
1,rPX0,r is a projection matrix.

Finally, we have

M r(Kr,T
(r), Cr)

≤
∏
s∈Cr

∫
σ2
s

|XT
0,rX0,r|−1/2|XT

1,rPX0,rX1,r|−1/2

(2πσ2
s)

(n−2(Kr−1))/2
π(σ2

s)dσ
2
s

=
|XT

0,rX0,r|−1/2|XT
1,rPX0,rX1,r|−1/2

(2π)(n−2(Kr−1))/2

Γ(aσ + (n− 2(Kr − 1))/2)

Γ(aσ)
b(n−2(Kr−1))/2
σ

<∞, (A.7)

which completes the proof.

To validate the Gibbs updating scheme for θs, we introduce expressions for

various conditional densities to be used for the proof. Note that π(θ | c, Y ) can

be written as

π(θ | c, Y ) =
d∏

r=1

∏
s∈Cr

ℓs(Y s |θ(r))G0(dθ(r))∫
Θ
∏

s∈Cr
ℓs(Y s |θ(r))G0(dθ(r))

, (A.8)

where ℓs(Y s |θ(r)) ∝
∫∞
0 f(Y |θ(r), σ

2
s)π(σ

2
s)dσ

2
s and θ(r) is a change-point func-

tion for the rth cluster. Note that θs ≡ θ(r) if s ∈ Cr. Let θ−s = (θ1,θ2, . . . ,θs−1,

θs+1, . . . ,θN ) to be the collection of all θ-components except θs. Let c−s be the

partition of S \{s} determined by θ−s; the identical components of θ−s uniquely

determine the partition of c−s. Suppose that c−s = ∪N∗
r=1Er. For a partition c,

π(c |θ−s, Y ) can be obtained from the fact that π(c |θ−s, Y ) ∝ π(c,θ−s |Y )
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with θ−s and c−s treated as fixed. Thus, π(c |θ−s, Y ) = K1(θ−s, c−s,Y )

K2(c,θ−s,Y ), where K2(c,θ−s,Y ) has the expression

K2(c,θ−s,Y )

=
( N∗∏

r=1

∏
j∈Er

ℓj(Y j |θ(r))G0(dθ(r))
)

︸ ︷︷ ︸
(∗)

(∫
Θ

ℓs(Y s |θs)G0(dθs)
)
π(c | c−s) (A.9)

if c = {s} ∪ c−s, and

K2(c,θ−s,Y ) (A.10)

=
( N∗∏

r=1
r ̸=r0

∏
j∈Er

ℓj(Y j |θj)G0(dθ(r))
)( ∏

j∈Er0∪{s}

ℓj(Y j |θ(r0)
)G0(dθ(r0)

)
)
π(c | c−s)

if c = (E1, E2, . . . , Er0 ∪ {s}, . . . , EN∗) for r0 = 1, . . . , N∗; in the above,

K1(θ−s, c−s,Y ) =
(∑

c
K2(c,θ−s,Y )

)−1

is the normalizing constant with sum ranging over the appropriate (N∗ + 1)

partitions of c, and π(c | c−s) is the conditional probability of the partition c

given partition c−s for S \ {s}.

Theorem 2. Let G0 be a prior (either proper or improper) on Θ for which the

posterior is proper. Then,

π(θs |θ−s, Y ) =
q0G

∗
0(dθs) +

∑N∗

r=1 qr δθ(r)

q0 +
∑N∗

r=1 qr
(A.11)

is a valid mixture distribution with mixing weights q0, q1, . . . , qN∗, where

G∗
0(dθs) =

ℓs(Y s |θs)G0(dθs)∫
Θ ℓs(Y s |θs)G0(dθs)

(A.12)

is the posterior distribution of θs given that a new cluster is formed by site s,

q0 =

[∫
Θ

ℓs(Y s |θs)G0(dθs)

]
π(c | c−s) and qr = ℓs(Y s |θ(r))π(c | c−s),

(A.13)

respectively, for c = {s} ∪ c−s and c = (E1, E2, . . . , Er ∪ {s}, . . . , EN∗) for r =

1, . . . , N∗.



704 SARAT C. DASS, CHAE YOUNG LIM, TAPABRATA MAITI AND ZHEN ZHANG

Proof. We have π(θs |θ−s, Y ) = π(θs | c,θ−s, Y )π(c |θ−s, Y ). If c = {s} ∪
c−s, it follows that

π(θs | c,θ−s, Y ) =
ℓs(Y s |θs)G0(dθs)∫
Θ ℓs(Y s |θs)G0(dθs)

by (A.8) and independence. Also, π(c |θ−s, Y ) = K1(θ−s, c−s,Y )K2(c,θ−s,Y ),
where the first term (*) on the right hand side of (A.9) depends only on θ−s and
hence is fixed. If c = (E1, E2, . . . , Er∪{s}, . . . , EN∗), we can write K2(c,θ−s,Y )
as

K2(c,θ−s,Y ) =
( N∗∏

r=1

∏
j∈Er

ℓj(Y j |θ(r))G0(dθ(r))
)

︸ ︷︷ ︸
(A)

ℓs(Y s |θ(r))π(c | c−s),

where (A) is identical to the first term (*) in (A.9) of K2(c,θ−s,Y ). Also,
π(θs | c,θ−s, Y ) = δθr

where δθ is the point mass at θ. Summing these expres-

sions and normalizing gives the form of the distribution of π(θs |θ−s,Y ). We
have suppressed the subscript s in q0 for simplicity.

Choice of improper prior on α0 in Remark 2: When an improper prior
is used for α0, it can be shown that the resulting marginal distribution for Y ,
m(Y ), is improper. Let π(c |α0) ≡ π(c) in (A.1) and π∗ be the improper prior
on α0. The impropriety of π∗ results from

∫ ϵ
0 π∗(α0) dα0 = ∞ for a sufficiently

small ϵ,
∫∞
M π∗(α0) dα0 = ∞ for a large M . In case α0 → 0, π(c) → 1 for

c = S. Thus, m(Y |α0) ≡
∑

c π(Y | c)π(c) ≥ π(Y |S)π(S) → k1 as α0 → 0
and m(Y ) =

∫∞
0 m(Y |α0)π

∗(α0) dα0 = ∞. Similarly, if α0 → ∞, π(c) → 1
for the singleton partition sets, c0 say. Then m(Y |α0) ≡

∑
c π(Y | c)π(c) ≥

π(Y | c0)π(c0) → k2 as α0 → ∞, resulting in m(Y ) = ∞.

Appendix B: Gibbs Updating Steps

(1) Update θs: The posterior of θs conditional on θ−s is

π(θs |θ−s, Y , u) =
qs,0G

∗
0(dθs) +

∑N∗

r=1 qs,r δθ(r)

qs,0 +
∑N∗

r=1 qs,r
, (B.1)

where qs,0, qs,r, and G∗
0(dθs) are given in (A.12) and (A.13). The conditional

distribution π(c | c−s) based on (A.1) is π(c | c−s) = α0/(α0 + N − 1) if c =
{s} ∪ c−s and π(c | c−s) = Nr/(α0 + N − 1), with Nr denoting the number of
elements in Er, where c−s = ∪N∗

j=1Ej . Thus, we have

qs,0 = α0

k∗∑
k=0

∑
(n1,...,nk+1)

exp [H(n1, . . . , nk+1)]
n0!

n1! · · ·nk+1!

(
1

k + 1

)n0

p(k),

(B.2)
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where

H(n1, . . . , nk+1) = log

{∫
RKs+1

∫ ∞

0
f(Y s |β(s), σ2

s)π(σ
2
s) dσ

2
sdβ

(s)

}
=

n− (2Ks + 2)

2
log

(
bσ
2π

)
+ log Γ

(
n∗

2

)
− log Γ(aσ)−

1

2
log
∣∣∣X(s)T

0 X
(s)
0

∣∣∣
+
Ks + 1

2
log n∗ − 1

2
log
∣∣∣X(s)T

1 ΣsX
(s)
1

∣∣∣
−n∗

2
log
(
1 + (Y s − us1n)

TV ∗(Y s − us1n)
)
,

with n∗ = 2aσ + n− 2Ks − 2 and

V ∗ =
1

2
bσPX0,s(In −X

(s)
1 (X

(s)T
1 PX0,sX

(s)
1 )−1X

(s)T
1 PX0,s).

Expression (B.1) explicitly demonstrates the clustering capability of the func-

tional DP prior. The current value of θs can be selected to be one of the distinct

θ(r) functions with probability
∑N∗

r=1 qs,r/(qs,0 +
∑N∗

r=1 qs,r), this positive proba-

bility being the reason for possible clustering of sites in terms of θs. Expression

(B.1) also allows for a new θs to be generated from the posterior distribution

G∗
0. For a new θs, we generate α(s) accordingly from the posterior of α(s) given

the change-points structure of θs. Similarly, when θs is assigned to one of ex-

isting θ(r), we update α(s) accordingly from the posterior distribution given the

change-points structure of θ(r).

(2) Update σ: The update of σ2
s is carried out once θs is obtained via (B.1).

Regardless of whether θs is a new value or an existing θ(r), for each site s =

1, . . . , N , the conditional posterior distribution of σ2
s given other parameters is

π(σ2
s | · · · ) = igamma(a, b),

with a = n/2 + aσ and b = ((1/2)(Y s − X
(s)
0 α(s) − X

(s)
1 β(s))T (Y s − X

(s)
0 α(s)

−X
(s)
1 β(s)) + b−1

σ )−1.

Here, θ uniquely determines the collection of parameters (β,K,T ). Since

θ contains several identical components, it follows that the corresponding com-

ponents of (β,K,T ) are identical to each other. We present the updating steps

for the d distinct components of (β,K,T ): (β(r),Kr,T
(r)) for r = 1, . . . , d. Let

∪d
r=1Cr be the partition of {1, . . . , N} at the current update of the Gibbs sampler

(thus, d is the number of distinct clusters).

(3) Update (β(r),Kr,T
(r)): We first update Kr from the posterior marginal

of Kr, and then update T (r) |Kr, and finally β(r) |T (r), Kr from their respec-

tive conditional distributions. The posterior marginal probability of Kr = k is

proportional to
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p(k)
∑

(n1,...,nk+1)

ν(n1, . . . , nk+1), (B.3)

with

ν(n1, . . . , nk+1) = exp{H̃(n1, . . . , nk+1)}
Γ(n0 + 1)∏k+1
l=1 Γ(nl + 1)

(
1

k + 1

)n0

, (B.4)

where

H̃(n1, . . . , nk+1) = log

{∫
Rk+1

∏
s∈Cr

f(Y s |β(r), σ2
s) dβ

(r)

}

= −(n−(k + 1))|Cr|−(k + 1))

2
log(2π)−n−k−1

2

∑
s∈Cr

log σ2
s−

|Cr|
2

log
∣∣XT

0,rX0,r

∣∣
−1

2
log
∣∣XT

1,rPX0,rX1,r

∣∣− k + 1

2
log(

∑
s∈Cr

σ−2
s )− 1

2

∑
s∈Cr

σ−2
s Y T

s PX0,rY s

+
1

2

(∑
s∈Cr

σ−2
s XT

1,rPX0,rY s

)T(∑
s∈Cr

σ−2
s XT

1,rPX0,rX1,r

)−1(∑
s∈Cr

σ−2
s XT

1,rPX0,rY s

)
.

The summation in (B.3) is over all non-negative integers n1, n2, . . . , nk+1

such that
∑k+1

l=1 nl = n0 ≡ n− 1− (k+1)w. Obtaining the posterior probability

of Kr = k requires evaluation of (B.4) for each value of k ≥ 0. This could

potentially require a significant amount of computational time and drastically

reduce the efficiency of the Gibbs chain, but this did not occur in our application

due to the closed-form expression of H̃ using the flat prior π0.

To update T (r) given Kr = k, note that this is equivalent to updating

(n1, . . . , nk+1) with probabilities p(n1, . . . , nk+1) ∝ v(n1, n2, . . . , nk+1). This is

carried out by exhaustively listing all such combinations and numerically com-

puting the corresponding probabilities. The update of β(r) given T (r) andKr = k

is done based on the conditional distribution N (µr,Σr) with

Σr =
(
XT

1,rPX0,rX1,r

)−1

(∑
s∈Cr

σ−2
s

)−1

(B.5)

and

µr = Σr

(
XT

1,rPX0,r

∑
s∈Cr

σ−2
s Y s

)
(B.6)

with the k + 1 components of β(r) generated independently of each other from

their respective component densities.



CLUSTERING CURVES BASED ON CHANGE POINT ANALYSIS 707

(4) Update λ: λ is updated using

π(λ | · · · ) ∝ π2(λ)

N∏
s=1

p(Ks) ∝ λa∗λ−1e−λ/bλ

(
∑k∗

l=0
λl

l! )
N
, (B.7)

with a∗λ = aλ +
∑N∗

r=1N
∗
r kr, where kr is the number of change-points corre-

sponding to θ(r) in cluster Cr, and N∗
r is the number of sites in cluster Cr for

r = 1, . . . , N∗.

(5) Update α0: For updating α0 with π1(α0) ∝ αaα−1
0 e−α0/bα , we utilize the

two-step procedure of Escobar and West (1998): at the bth iteration: (1) draw

κ from the Beta distribution beta
(
α
(b−1)
0 + 1, N

)
, and (2), draw α

(b)
0 from the

mixture density of two Gamma distributions

πκgamma(aα+N∗, (
1

bα
−log(κ))−1)+(1− πκ)gamma(aα+N∗−1, (

1

bα
−log(κ))−1),

where N∗ is the latest number of clusters and the membership probability is

πκ =
aα +N∗ − 1

N(1/bα − log(κ))
.

(6) Update α(s): The update of α(s), given other parameters, is based on the

conditional distribution N (µα,Σα) with

Σα = σ2
s

(
XT

0,rX0,r

)−1
and µα = Σασ−2

s XT
0,rY s.
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