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Abstract: Markov chain Monte Carlo (MCMC) simulations are commonly employed

for estimating features of a target distribution, particularly for Bayesian inference.

A fundamental challenge is determining when these simulations should stop. We

consider a sequential stopping rule that terminates the simulation when the width

of a confidence interval is sufficiently small relative to the size of the target param-

eter. Specifically, we propose relative magnitude and relative standard deviation

stopping rules in the context of MCMC. In each setting, we develop conditions to

ensure the simulation will terminate with probability one and the resulting confi-

dence intervals will have the proper coverage probability. Our results are applicable

in such MCMC estimation settings as expectation, quantile, or simultaneous mul-

tivariate estimation. We investigate the finite sample properties through a variety

of examples, and provide some recommendations to practitioners.
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1. Introduction

Markov chain Monte Carlo (MCMC) methods allow exploration of intractable

probability distributions by constructing a Markov chain whose stationary dis-

tribution is the desired distribution. A major challenge for practitioners is de-

termining how long to run an MCMC simulation. Many experiments employ a

procedure that terminates after n iterations, where n is determined heuristically.

While some simulations are so complex that this is the only practical approach,

this is not so for most experiments.

Alternatively, some practitioners use convergence diagnostics to determine

if n is sufficiently large (for a review see Cowles and Carlin (1996)). Although

practical, these methods are mute about the quality of the resulting estimates

(Flegal, Haran, and Jones (2008)) and they can introduce bias directly into the

estimates (Cowles, Roberts, and Rosenthal (1999)).

We advocate terminating a simulation when, for the first time, a confidence

interval width for a desired quantity is sufficiently small. We refer to such a

procedure as a sequential fixed-width stopping rule, and note that the total

simulation effort will be random.

http://dx.doi.org/10.5705/ss.2013.209


656 JAMES M. FLEGAL AND LEI GONG

Fixed-width methods are especially desirable because they are theoretically

justified and constrained by few assumptions. The simplest fixed-width rule, first

studied in MCMC by Jones et al. (2006), stops the simulation when the width

of a confidence interval based on an ergodic average is less than a user-specified

value, say ϵ. Flegal, Haran, and Jones (2008) and Jones et al. (2006) show this

stopping rule is superior to using convergence diagnostics as a stopping criteria.

In this paper, we introduce relative fixed-width stopping rules that elimi-

nate the need to specify an absolute value for ϵ. Specifically, the simulation is

terminated the first time the width of a confidence interval is sufficiently small

relative to the size of a target parameter. We consider two measures of size,

magnitude and standard deviation. Further, we illustrate the utility of these

rules for simultaneous estimation of multiple parameters.

We need some notation. Let π denote a probability distribution having

support X ⊆ Rd, d ≥ 1, about which we wish to make inference, typically based

on parameters of π. For example, if g : X → R, we may need to calculate

µg := Eπ[g(X)] =

∫
X
g(x)π(dx) ,

or if W ∼ π, then we might require quantiles of the distribution FV of V = h(W ),

where h : X → R:
ξq := F−1

V (q) = inf{v : FV (v) ≥ q} .

We take θ ∈ R as an unknown target parameter of interest with respect to π.

Then, given a probability distribution π, we want to estimate θ.

Frequently π is such that MCMC is the only viable technique for estimating

θ. The basic MCMC method entails constructing a time-homogeneous Harris

ergodic Markov chain X =
{
X(0), X(1), . . .

}
on state space X with σ-algebra

B = B(X) and invariant distribution π. The popularity of MCMC methods result

from the ease with which X can be simulated (Robert and Casella (2004)).

Suppose we simulate X for n iterations. Let Zn be an estimator of θ from

the observed chain, with unknown Monte Carlo error, Zn − θ. We can obtain

its approximate sampling distribution if a Markov chain central limit theorem

(CLT) holds:
√
n (Zn − θ)

d→ N(0, σ2
θ) (1.1)

as n → ∞ where σ2
θ ∈ (0,∞).

If σ̂2
n is an estimator of σ2

θ , an approximate (1− δ)100% confidence interval

for θ has width

wδ =
2zδ/2σ̂n√

n
(1.2)
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where zδ/2 is a critical value from the standard Normal. The width at (1.2)

allows analysts to report the uncertainty in their estimates and users to assess

the practical reliability.

We use wδ to construct sequential fixed-width stopping rules. If an i.i.d.

sample from π is available, take λ2
θ as the asymptotic variance in the CLT asso-

ciated with θ. Due to the correlation present in a Markov chain σ2
θ ̸= λ2

θ, except

in trivial cases. For estimation of µg, λ
2
θ = Var [g(X)]. For estimation of ξq, we

have λ2
θ = q(1− q)/ (fV (ξq))

2 where fV is the density associated with FV .

Our work advocates stopping the simulation the first time wδ is sufficiently

small. We consider three stopping rules: (i) an absolute precision rule that

terminates when wδ < ϵ, (ii) a relative magnitude rule that terminates when

wδ < ϵ |θ|, and (iii) a relative standard deviation rule that terminates when wδ <

ϵλθ. Glynn and Whitt (1992) established conditions for the asymptotic validity

of (i) and (ii). In this paper, we extend these results to establish asymptotic

validity of the stopping rule (iii).

Flegal, Haran, and Jones (2008), Flegal and Jones (2010) and Jones et al.

(2006) have previously investigated (i) for MCMC expectation estimation. We

are not aware of any prior use of fixed-width methods for quantile estimation, or

any use of (ii) or (iii) as a stopping rule in MCMC. The rule (iii) has significant

promise in Bayesian applications since the simulation stops when an estimate of

θ is sufficiently accurate relative to an associated posterior standard deviation.

Another benefit of (iii) is that it is easy to implement in multivariate settings

since ϵ can remain constant.

For asymptotic validity, we require a functional central limit theorem (FCLT)

for the Monte Carlo error; Markov chains frequently enjoy a FCLT under identical

conditions as those that ensure a CLT. We also require that σ̂2
n → σ2

θ almost

surely as n → ∞. Many commonly used MCMC estimators of σ2
θ can satisfy

this condition, see e.g. Doss et al. (2014), Flegal and Jones (2010), Hobert et al.

(2002), and Jones et al. (2006).

We investigate the finite sample properties of relative fixed-width stopping

rules through three examples. The first considers an independence Metropolis

sampler to explore an exponential random variable; the second considers explor-

ing a mixture of bivariate Normal distributions with Metropolis Hastings and

Gibbs samplers. For these examples, we use true parameter values to illustrate

the utility of our stopping rules. We also consider a Bayesian version of a lo-

gistic regression to model the presence or absence of the freshwater eel Anguilla

australis.

For Bayesian practitioners, we advocate the stopping rule (iii) for its ease of

implementation. In multivariate settings, one can terminate the first time the

length of a confidence interval is sufficiently small for each parameter of interest.
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Our examples indicate that, setting ϵ = 0.02 provides excellent results in a wide

variety of univariate and multivariate settings.

The rest of this paper is organized as follows. Section 2 formally introduces

relative fixed-width stopping rules and establishes asymptotic validity. Section 3

investigates fixed-width stopping procedures when estimating expectations and

quantiles. Section 4 studies the finite sample properties in numerical examples,

and concludes with a discussion that provides some recommendations to practi-

tioners.

2. Sequential Fixed-Width Procedures

In this section, we obtain conditions that ensure asymptotic validity of fixed-

width procedures. The primary assumptions are that the limiting process satisfy

a FCLT and σ̂2
n → σ2

θ w.p.1 as n → ∞. Section 3 outlines checkable sufficient

conditions for the most common MCMC settings, estimating expectations and

quantiles.

To estimate a parameter θ ∈ R, we assume there exists an R-valued stochas-

tic process {Zn : n ≥ 1}, the estimation process, for which Zn → θ in prob-

ability. Asymptotic validity requires the estimation process satisfies a FCLT

as follows. For ease of exposition, we consider an R-valued stochastic process

Z = {Z(t) : t ≥ 0} for which Z(t) → θ in probability as t → ∞. Let D(0,∞) de-

note the space of right-continuous R-valued functions with left limits on the open

interval (0,∞). We assume that Z has sample paths in D(0,∞) and consider

the family of scaled processes in D(0,∞) for ϵ > 0

Zϵ(t) = ϵ−1/2

(
Z
( t
ϵ

)
− θ

)
, where t > 0.

A FCLT holds if there exists a constant σθ > 0 such that as ϵ → 0

Zϵ(t)
d→ σθB(t)

t
,

in D(0,∞), where B(t) denotes a standard Brownian motion process {B(t) :

t ≥ 0}. In many situations a FCLT holds under the same conditions as those

required for an ordinary CLT.

Let C[n] =
(
Zn − zδ/2σ̂n/

√
n , Zn + zδ/2σ̂n/

√
n
)
. If a CLT at (1.1) holds

and σ̂n is weakly consistent for σθ, then C[n] achieves the nominal coverage level

as the sample size n → ∞.

Consider a sequential procedure that terminates at the time the length of a

confidence interval drops below a prescribed level ϵ:

T̃ (ϵ) = inf

{
n ≥ 0 :

2zδ/2σ̂n√
n

≤ ϵ

}
.
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Here T̃ (ϵ) can be too small if σ̂n is poorly behaved (Glynn and Whitt (1992)).

Instead, suppose p(n) is a positive function that decreases monotonically such

that p(n) = o(n−1/2) as n → ∞ and let n∗ be the desired minimum simulation

effort (a reasonable default is p(n) = ϵI(n ≤ n∗) + n−1). Then an absolute

precision stopping rule terminates the simulation at

T1(ϵ) = inf

{
n ≥ 0 :

2zδ/2σ̂n√
n

+ p(n) ≤ ϵ

}
.

Theorem 1 in Glynn and Whitt (1992) leads to the asymptotic validity of

the sequential stopping rule T1(ϵ), the desired coverage probability is obtained

in an asymptotic sense as ϵ → 0.

Proposition 1. Suppose a FCLT for the Monte Carlo error holds. If σ̂n →
σθ w.p.1 as n → ∞, then as ϵ → 0 the simulation will terminate w.p.1 and

Pr (θ ∈ C[T1(ϵ)]) → 1− δ.

Remark 1. Glynn and Whitt (1992) show that the weak consistency of σ̂n is

not enough to ensure asymptotic validity .

The stopping rule T1(ϵ) has previously been used for estimating expectations

in MCMC (Flegal and Jones (2010); Flegal, Haran, and Jones (2008); Jones et al.

(2006)). We will show that the rule works well for MCMC estimation of quantiles.

Using Zn as an estimator of θ allows the relative magnitude stopping time

T2(ϵ) = inf

{
n ≥ 0 :

2zδ/2σ̂n√
n

+ p(n) ≤ ϵ |Zn|
}

.

For large n, T2(ϵ) behaves like T1(ϵ|θ|). The asymptotic validity of T2(ϵ) is a

direct consequence of Theorem 3 in Glynn and Whitt (1992).

Proposition 2. Suppose a FCLT for the Monte Carlo error holds and |θ| > 0.

If Zn → θ w.p.1 and σ̂n → σθ w.p.1 as n → ∞, then as ϵ → 0 the simulation

will terminate w.p.1 and Pr (θ ∈ C[T2(ϵ)]) → 1− δ .

While T2(ϵ) has some support in the operations research literature, it makes

little intuitive sense in Bayesian settings. Specifically, if θ = 0 then T2(ϵ) is

theoretically invalid and poorly behaved in finite simulations, and T2(ϵ) can be

problematic even when θ is not equal to zero.

We propose a stopping rule that terminates the simulation when the length

of a confidence interval is less than the ϵth fraction of the magnitude of λθ, the

posterior standard deviation of θ. Let λ̂n be an estimator of λθ and consider the

stopping time

T3(ϵ) = inf

{
n ≥ 0 :

2zδ/2σ̂n√
n

+ p(n) ≤ ϵλ̂n

}
.



660 JAMES M. FLEGAL AND LEI GONG

For large n, T3(ϵ) behaves like T1(ϵλθ). The next result establishes the asymptotic

validity of T3(ϵ); it is proved in Appendix A.

Theorem 1. Suppose a FCLT for the Monte Carlo error holds and λθ > 0. If

λ̂n → λθ w.p.1 and σ̂n → σθ w.p.1 as n → ∞, then as ϵ → 0 the simulation will

terminate w.p.1 and Pr (θ ∈ C[T3(ϵ)]) → 1− δ .

The additional condition required for Theorem 1 is a strongly consistent

estimator of λθ. For expectations, an estimator is readily available via the Markov

chain SLLN; for quantiles, we discuss a viable estimator in the next section.

The benefit of the stopping rule T3(ϵ) is twofold: one only needs to specify

ϵ; when estimating multiple parameters a single ϵ suffices to obtain estimates

whose uncertainties are comparable relative to their standard deviations. In

multivariate settings, one could address the issue of multiplicity by adjusting

the critical value appropriately. We illustrate this procedure via examples in

Section 4, and show the resulting simultaneous confidence regions obtain at least

the nominal coverage probability.

Remark 2. Asymptotic validity of relative stopping rules can be established if

a FCLT is replaced by a more general R-valued stochastic process (Glynn and

Whitt (1992)). The generalization enables consideration of θ that follow non-

Normal asymptotic distributions.

Remark 3. A more general relative stopping rule that terminates when wδ < ϵνθ
can be established for any νθ such that |νθ| > 0 provided there exists an estimator

ν̂n → νθ w.p.1. Thus, one could consider relative stopping rules setting νθ as the

interquartile range, the length of a Bayesian credible region, and so on.

3. Applications

This section demonstrates that fixed-width stopping rules are appropriate

for MCMC estimation of expectations and quantiles. Raftery and Lewis (1992)

propose a heuristic approach to terminating an MCMC simulation when the

primary interest is quantile estimation, but Brooks and Roberts (1999) suggest

caution in its use when quantiles themselves are not of interest.

We need some more notation to describe sufficient mixing conditions for

a Markov chain CLT and consistent estimation of the asymptotic variance. See

Meyn and Tweedie (2009) and Roberts and Rosenthal (2004) for more on Markov

chain theory.

Let X be a Harris ergodic Markov chain on state space X with σ-algebra B =

B(X) and invariant distribution π. Denote the n-step Markov kernel associated

with X as Pn(x, dy) for n ∈ N, so if A ∈ B(X) and k ∈ {0, 1, 2, . . .}, Pn(x,A) =
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Pr(Xk+n ∈ A|Xk = x). Let ∥·∥ denote the total variation norm. LetM : X 7→ R+

and γ : N 7→ R+ be decreasing such that

∥Pn(x, ·)− π(·)∥ ≤ M(x)γ(n) . (3.1)

Polynomial ergodicity of order m where m ≥ 0 means (3.1) holds with EπM < ∞
and γ(n) = n−m for all X0 = x. Geometrical ergodicity means (3.1) holds with

γ(n) = tn for some 0 < t < 1 for all X0 = x. Uniform ergodicity means (3.1)

holds with M bounded and γ(n) = tn for some 0 < t < 1.

Establishing (3.1) directly can be challenging, but some constructive tech-

niques are available (Jarner and Roberts (2002); Meyn and Tweedie (2009)).

Most literature on MCMC algorithms focuses on establishing geometric and uni-

form ergodicity, see e.g. Hobert (2011), Jones and Hobert (2001), Johnson, Jones,

and Neath (2011), Mengersen and Tweedie (1996), Roberts and Tweedie (1996),

and Tierney (1994). Less has been said concerning polynomial ergodicity, but see

Douc et al. (2004), Fort and Moulines (2000, 2003), Jarner and Roberts (2002,

2007) and Jarner and Tweedie (2003).

3.1. Expectations

For g : X → R, consider estimation of

µg := Eπ[g(X)] =

∫
X
g(x)π(dx) .

Estimating µg is natural by appealing to a Markov chain SLLN, a special case

of the Birkhoff Ergodic Theorem (Fristedt and Gray (1997)). Specifically, if

Eπ|g| < ∞ then w.p.1

Zn := ḡn :=
1

n

n−1∑
i=0

g(X(i)) → µg as n → ∞ .

Hence the SLLN yields strongly consistent estimators of µg and λ2
θ = Var [g(X)]

(provided Eπg
2 < ∞).

We can obtain an approximate sampling distribution for the Monte Carlo

error via a Markov chain CLT if

√
n(ḡn − µg)

d→ N(0, σ2
g) (3.2)

as n → ∞ where σ2
g ∈ (0,∞). Conditions that ensure (3.2) can be found in

Chan and Geyer (1994), Jones (2004), Meyn and Tweedie (2009), Roberts and

Rosenthal (2004), and Tierney (1994). For example, if X is geometrically ergodic

and Eπ|g|2+ϵ < ∞ for some ϵ > 0, then (3.2) holds. Moreover, Markov chains

frequently enjoy a FCLT under the same conditions (Jones et al. (2006); Oodaira

and Yoshihara (1972); Ibragimov (1962)).
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There are many strongly consistent variance estimation techniques applica-

ble for σ2
g in MCMC settings including batch means (Flegal and Jones (2010);

Jones et al. (2006)), spectral variance techniques (Flegal and Jones (2010)) and

regenerative simulation (Hobert et al. (2002); Mykland, Tierney, and Yu (1995)).

We consider only non-overlapping batch means (BM) because it is easy to imple-

ment and available in many software packages, e.g. the mcmcse package available

on CRAN.

In BM the output is broken into an batches where each batch is bn iterations

in length. Suppose the algorithm is run for a total of n = anbn iterations and let

Ȳj :=
1

bn

jbn∑
i=(j−1)bn+1

g(Xi) for j = 1, . . . , an ,

and take

σ̂2
n =

bn
an − 1

an∑
j=1

(Ȳj − ḡn)
2 . (3.3)

Jones et al. (2006) established necessary conditions for σ̂2
n → σ2

g with prob-

ability 1 as n → ∞ if the batch size and the number of batches are allowed to

increase as the overall length of the simulation increases. Setting bn = ⌊nτ⌋ and

an = ⌊n/bn⌋, the regularity conditions require that X be geometrically ergodic,

Eπ|g|2+ϵ1+ϵ2 < ∞ for some ϵ1 > 0, ϵ2 > 0 and (1 + ϵ1/2)
−1 < τ < 1. A common

choice of bn = ⌊
√
n⌋ and an = ⌊n/bn⌋ has been shown to work well in applications

(Jones et al. (2006); Flegal and Jones (2010); Flegal, Haran, and Jones (2008)).

Remark 4. Most sampling plans require storing the entire Markov chain to

allow for recalculations as the batch size increases with n. If storage is a concern,

one could consider increasing the batch size of the form bn ∈ {2, 4, 8, ..., 2k, ...} in

an effort to reduce memory usage. One can establish strong consistency for the

BM variance estimator with such a sampling plan using results in Jones et al.

(2006) and Bednorz and Latuszyński (2007).

3.2. Quantiles

It is common to estimate univariate quantiles associated with π, especially

in Bayesian applications. With W ∼ π and V = h(W ), we consider estimation

of the quantiles associated with the univariate distribution of V . If FV is the

distribution function of V , our goal is to obtain

ξq := F−1
V (q) = inf{v : FV (v) ≥ q} .

We suppose that FV (x) is absolutely continuous and has continuous density func-

tion fV (x) such that 0 < fV (ξq) < ∞.
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Here is the current state of understanding of the MCMC estimation of quan-

tiles (for details see Doss et al. (2014)). Let

Zn := ξ̂n,q = Yn(j), where j − 1 < nq ≤ j , (3.4)

where Yn(j) denotes the jth order statistic of {Y0, . . . , Yn−1} = {h(X0), . . .,

h(Xn−1), }. If X is Harris recurrent, then ξ̂n,q → ξq w.p.1 as n → ∞ (Doss

et al. (2014)).

Under stronger mixing conditions on X, one can obtain a Markov chain CLT.

Let

σ2(y) := Varπ [I(Y0 ≤ y)] + 2

∞∑
k=1

Covπ [I(Y0 ≤ y), I(Yk ≤ y)] .

If X is polynomially ergodic of order m > 1 and σ2(ξq) > 0, then as n → ∞
√
n(ξ̂n,q − ξq)

d→ N(0, γ2(ξq)) , (3.5)

where γ2(ξq) = σ2(ξq)/[fV (ξq)]
2 (Doss et al. (2014)). A FCLT holds for uniformly

ergodic chains via sufficient conditions in Sen (1972) that can be verified with

results in Jones (2004). As a direction of future work, it is likely a FCLT holds

under polynomial ergodicity, following Doss et al. (2014) and Sen (1972).

Estimation of the variance from the asymptotic Normal distribution at (3.5)

is broken into two parts. First, plug in ξ̂n,q for ξq and separately consider esti-

mating fV (ξ̂n,q) and σ2(ξ̂n,q). Estimate fV (ξ̂n,q) using a kernel density approach

with a gaussian kernel to get f̂V (ξ̂n,q). There are well-known conditions guaran-

teeing strongly consistent estimation of the density at a point (see e.g. Kim and

Lee (2005); Yu (1993)).

We will use BM for estimating σ2(ξ̂n,q). If we have n = anbn iterations, take,

for k = 0, . . . , an − 1, Ūk(ξ̂n,q) := b−1
n

∑bn−1
i=0 I(Ykbn+i ≤ ξ̂n,q). The BM estimate

of σ2(ξ̂n,q) is

σ̂2
BM (ξ̂n,q) =

bn
an − 1

an−1∑
k=0

(
Ūk(ξ̂n,q)− Ūn(ξ̂n,q)

)2
.

Combining f̂V (ξ̂n,q) and σ̂2
BM (ξ̂n,q), we estimate γ2(ξq) with

γ̂2(ξ̂n,q) :=
σ̂2
BM (ξ̂n,q)

[f̂V (ξ̂n,q)]2
.

This approach is implemented in the R package mcmcse which is used to perform

the computations in our examples.

The relative standard deviation fixed-width stopping rule of Theorem 1 re-

quires estimation of

λθ =

√
q(1− q)

fV (ξq)
.
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We use the same kernel density estimate resulting in

λ̂n =

√
q(1− q)

f̂V (ξ̂n,q)
.

4. Numerical Studies

This section investigates the finite sample properties of fixed-width stopping

rules through a variety of simulations. In each example, we independently repeat

the MCMC simulation to evaluate the resulting finite sample confidence intervals.

In the first two examples, true values are readily available. In the third, the truth

was estimated using an independent long run of the MCMC sampler. Overall,

the empirical coverage probabilities obtained via fixed-width stopping rules are

close to the nominal level.

Each simulation considered both expectations and quantiles with a common

methodology. For a single replication, the same MCMC draws were used in ap-

plying the three stopping rules. We set p(n) = ϵI(n < n∗)+n−1 and estimated σ2
θ

via BM methods with bn = ⌊
√
n⌋ calculated with the mcmcse package. Standard

errors for the empirical coverage probabilities were
√

p̂(1− p̂)/r, where r is the

number of replications.

4.1. Exponential distribution

Consider the exponential target f(x) = e−xI(x > 0). Here E[X] = 1 and

F−1(q) = log
{
(1− q)−1

}
, which we use to evaluate finite sample confidence

intervals obtained via fixed-width methods. We sampled from f(x) using an

independence Metropolis sampler with an Exp(1/2) proposal, noting the chain

is geometrically ergodic (Jones and Hobert (2001)).

We estimated of E[X] using each combination of Ti(ϵ) for i ∈ {1, 2, 3} and

ϵ ∈ {0.10, 0.05, 0.02}. The chain was started from 1 and run for a minimum of

n∗ = 1, 000 iterations. If the stopping criteria was not met, an additional 500

iterations were added to the chain before checking again. The simulation was

repeated for 2,000 replications to evaluate the resulting coverage probabilities.

Table 1 summarizes the mean and standard deviation of the number of it-

erations at termination along with the resulting coverage probabilities. All the

coverage probabilities are close to the 0.90 nominal level suggesting all three

stopping rules are preforming well.

Consider estimation of the median, ξ.5, using the same simulation settings.

Table 1 summarizes the results from 2,000 replications. The results are close

to the 0.90 nominal level, though slightly lower than those for estimating the

mean. Here we have ξ.5 = 0.693 and
√

0.5(1− 0.5)/e−ξ.5 = 1, hence for fixed ϵ

we expect T1(ϵ) and T3(ϵ) to be similar and T2(ϵ) to be larger.
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Table 1. Summary of coverage probabilities for estimation of E[X] and ξ.5
based on 2,000 replications and 0.90 nominal level.

Length (SD) E[X] Length (SD) ξ.5
T1(0.10) 2.44E3 (4.9E2) 0.8840 2.70E3 (5.9E2) 0.8580
T1(0.05) 8.89E3 (1.2E3) 0.8940 1.01E4 (1.5E3) 0.8805
T1(0.02) 5.36E4 (4.7E3) 0.8875 6.17E4 (5.4E3) 0.8775
T2(0.10) 2.44E3 (4.8E2) 0.8895 5.40E3 (9.4E2) 0.8800
T2(0.05) 8.90E3 (1.2E3) 0.8910 2.07E4 (2.4E3) 0.8820
T2(0.02) 5.35E4 (4.7E3) 0.8870 1.29E5 (9.1E3) 0.8830
T3(0.10) 2.45E3 (4.7E2) 0.8885 2.79E3 (5.2E2) 0.8650
T3(0.05) 8.90E3 (1.2E3) 0.8880 1.03E4 (1.3E3) 0.8820
T3(0.02) 5.35E4 (4.6E3) 0.8895 6.23E4 (5.2E3) 0.8770

Table 2. Summary of coverage probabilities for estimation of Φ based on
2,000 replications. Individual confidence intervals have a 0.9655 nominal
level, resulting in a 0.90 nominal level confidence region.

Length (SD) E[X] ξ.1 ξ.9 Region
T1(0.10) 2.88E4 (3.9E3) 0.963 0.989 0.963 0.930
T1(0.05) 1.07E5 (9.7E3) 0.965 0.979 0.962 0.923
T1(0.02) 6.53E5 (3.3E4) 0.965 0.967 0.968 0.917
T2(0.10) 6.71E4 (5.9E3) 0.969 0.979 0.964 0.925
T2(0.05) 2.29E5 (1.4E4) 0.966 0.974 0.963 0.920
T2(0.02) 1.29E6 (5.0E4) 0.964 0.963 0.970 0.915
T3(0.10) 1.00E4 (0) 0.962 0.991 0.955 0.927
T3(0.05) 2.31E4 (2.9E3) 0.963 0.983 0.958 0.921
T3(0.02) 1.30E5 (9.1E3) 0.961 0.970 0.965 0.914

Consider estimating the mean and an 80% Bayesian credible region simulta-

neously, which we denote as Φ = (E[X], ξ.1, ξ.9). Due to increased computation

time, each chain was run for a minimum of n∗ = 10, 000 iterations with an addi-

tional 5,000 added between checks. The simulation was terminated the first time

the length of a confidence interval was sufficiently small for each parameter in Φ.

To adjust for multiplicity, we applied a Bonferonni approach. Setting individual

confidence intervals to have a coverage probability of 0.901/3 = 0.9655, resulting

in a simultaneous confidence region with coverage probability of at least 0.90.

The simulation was repeated for 2,000 replications with each combination of

Ti(ϵ) for i ∈ {1, 2, 3} and ϵ ∈ {0.10, 0.05, 0.02}. Table 2 summarizes the results.

We can see the individual coverage probabilities improve as ϵ decreases, especially

in the case of ξ.1. For ϵ = 0.02, all the individual coverage probabilities are close to

the nominal level of 0.9655. The observed confidence region coverage probabilities

are above the 0.90 nominal level; this is unsurprising due to correlation between

parameters in Φ.
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4.2. Mixture of bivariate normals

Consider a mixture of bivariate Normals X = [X1, X2]
T = pY1 + (1− p)Y2,

where

Y1=

[
Y11
Y12

]
∼N2

([
µ11

µ12

]
,

[
σ2
11 0

0 σ2
12

])
and Y2=

[
Y21
Y22

]
∼N2

([
µ21

µ22

]
,

[
σ2
21 0

0 σ2
22

])
.

In this example, we take p = 0.25, µ11 = 1, µ12 = 10, µ21 = 2.5, µ22 = 25,

σ11 = 0.5, σ12 = 5, σ21 = 0.7 and σ22 = 7.

We first sampled from f(X) with two different component-wise Metropo-

lis random walk algorithms, one with Uniform proposals and another with

Normal proposals. For the Uniform proposals, we applied a Unif(−3, 3) and

Unif(−30, 30) random walk for the X1 and X2 dimensions, respectively. For the

Normal proposals, we applied a N(0, 32) and N(0, 302) random walk for the X1

and X2 dimensions, respectively. It can be shown that these chains are geomet-

rically ergodic (Jarner and Hansen (2000)).

Consider estimation of Φ = (E[X], ξ.1, ξ.9) using fixed-width stopping rules

Ti(ϵ) for i ∈ {1, 2, 3} and ϵ ∈ {0.10, 0.05, 0.02}. We ran the chain for a minimum

of n∗ = 5, 000 iterations and added 1,000 iterations between checking the stopping

criteria. This simulation was repeated for 1,000 independent replications.

Table 3 summarizes the mean and standard deviation of the number of itera-

tions at termination along with empirical coverage probabilities from the Uniform

and Normal proposals. For both samplers, the coverage probabilities improved

as ϵ decreased and were close to the 0.95 nominal level once ϵ = 0.02. It appears

the Metropolis random walk with Normal proposals was mixing faster since the

overall simulation effort was substantially lower than that of the Uniform propos-

als. This difference in simulation effort illustrates the importance of specifying a

good proposal distribution in MCMC simulations.

Consider a Gibbs sampler using the full conditional densities,

fX1|X2
(x1|x2) = PX2Y11 + (1− PX2)Y21 and

fX2|X1
(x2|x1) = PX1Y12 + (1− PX1)Y22 ,

where

PX2 =

(
1 +

(1− p)σ12
pσ22

exp

{
1

2

((
x2 − µ12

σ12

)2

−
(
x2 − µ22

σ22

)2
)})−1

,

PX1 =

(
1 +

(1− p)σ11
pσ21

exp

{
1

2

((
x1 − µ11

σ11

)2

−
(
x1 − µ21

σ21

)2
)})−1

.
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Table 3. Summary of coverage probabilities for estimations of Φ using a
Metropolis random walk with Uniform and Normal proposals based on 1,000
replications and a 0.95 nominal level.

Uniform Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 14,658 (3.4E3) 0.930 0.932 0.917 0.936 0.945 0.937
T1(0.05) 59,869 (9.1E3) 0.934 0.922 0.939 0.940 0.934 0.953
T1(0.02) 391,566 (3.1E4) 0.956 0.944 0.945 0.956 0.948 0.953
T2(0.10) 20,897 (5.0E3) 0.929 0.933 0.911 0.931 0.936 0.938
T2(0.05) 85,401 (1.2E4) 0.950 0.926 0.934 0.929 0.925 0.942
T2(0.02) 556,821 (3.9E4) 0.953 0.946 0.954 0.950 0.938 0.956
T3(0.10) 8,827 (1.0E3) 0.926 0.928 0.899 0.920 0.922 0.920
T3(0.05) 35,733 (2.9E3) 0.924 0.938 0.931 0.934 0.928 0.937
T3(0.02) 233,312 (1.3E4) 0.954 0.955 0.959 0.948 0.958 0.956

Normal Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 8,028 (1.5E3) 0.946 0.939 0.939 0.934 0.943 0.937
T1(0.05) 29,844 (3.7E3) 0.927 0.936 0.948 0.917 0.932 0.953
T1(0.02) 186,061 (1.3E4) 0.952 0.936 0.952 0.943 0.946 0.938
T2(0.10) 11,307 (2.1E3) 0.949 0.933 0.940 0.940 0.944 0.943
T2(0.05) 42,338 (4.6E3) 0.911 0.943 0.956 0.937 0.934 0.951
T2(0.02) 261,741 (1.6E4) 0.940 0.938 0.956 0.949 0.938 0.945
T3(0.10) 5,114 (3.2E2) 0.944 0.950 0.933 0.936 0.936 0.924
T3(0.05) 17,654 (1.8E3) 0.922 0.930 0.943 0.925 0.921 0.939
T3(0.02) 112,626 (7.6E3) 0.933 0.946 0.941 0.941 0.930 0.940

HereX1|X2 = x2 andX2|X1 = x1 are easy to sample from since they are mixtures

of Normal random variables.

Table 4 summarizes the results for the Gibbs sampler. The coverage proba-

bilities do not improve uniformly as ϵ decreases. However, they are all close to the

nominal 0.95 level using significantly fewer total iterations, suggesting that the

Gibbs sampler mixes better than either of the Metropolis random walk samplers.

We performed additional simulations via i.i.d. sampling (not shown). The

resulting empirical coverage probabilities were similar to these using the Gibbs

sampler, albeit with slightly fewer iterations.

4.3. Bayesian logistic regression

The Anguilla eel data provided in the dismo R package (see e.g. Elith, Leath-

wick, and Hastie (2008); Hijmans et al. (2010)) consists of 1,000 observations from

a New Zealand survey of site-level presence or absence for the short-finned eel

(Anguilla australis). We selected six out of twelve covariates as in Leathwick

et al. (2008). Five were continuous variables: SegSumT, DSDist, USNative, DS-

MaxSlope and DSSlope; Method was a categorical variable with levels Electric,
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Table 4. Summary of coverage probabilities for estimations of Φ using a
Gibbs sampler based on 1,000 replications and a 0.95 nominal level.

Gibbs Length (SD) E[X1] ξ.1,X1 ξ.9,X1 E[X2] ξ.1,X2 ξ.9,X2

T1(0.10) 1,930 (3.7E2) 0.941 0.940 0.937 0.954 0.958 0.927
T1(0.05) 5,727 (8.7E2) 0.946 0.958 0.941 0.942 0.945 0.940
T1(0.02) 31,170 (2.8E3) 0.935 0.945 0.961 0.937 0.937 0.944
T2(0.10) 2,465 (5.4E2) 0.935 0.939 0.939 0.954 0.950 0.937
T2(0.05) 7,865 (1.1E3) 0.950 0.959 0.943 0.955 0.954 0.952
T2(0.02) 43,756 (3.6E3) 0.933 0.936 0.959 0.936 0.959 0.946
T3(0.10) 1,182 (3.9E2) 0.929 0.936 0.942 0.936 0.936 0.924
T3(0.05) 3,786 (6.2E2) 0.956 0.951 0.944 0.940 0.940 0.935
T3(0.02) 20,289 (2.0E3) 0.945 0.947 0.954 0.940 0.943 0.952

Spo, Trap, Net, and Mixture.

Let xi be the regression vector of covariates for the ith observation of length

k, and βββ = (β0, . . . , β9) be the vector regression coefficients. For the ith obser-

vation, suppose Yi = 1 denotes presence and Yi = 0 denotes absence of Anguilla

australis. The Bayesian logistic regression model is given by

Yi ∼ Bernoulli(pi) ,

pi ∼
exp(xTi βββ)

1 + exp(xTi βββ)
and,

βββ ∼ N(000, σ2
βIk) ,

where Ik is the k × k identity matrix. For the analysis, σ2
β = 100 was chosen to

represent a diffuse prior distribution on βββ (Boone, Merrick, and Krachey (2014)).

We used the MCMClogit function in the MCMCpack package to sample from the

target Markov chain.

Suppose interest is in estimating the posterior mean along with an 80%

Bayesian credible interval for each regression coefficient in the model. True values

are unknown. We ran 1,000 independent chains for 1E6 iterations to obtain an

accurate estimate, which we treat as the truth (Table 5).

Consider estimating Φj =
(
βj , ξ

(j)
.1 , ξ

(j)
.9

)
, j = 0, . . . , 9, using fixed-width

stopping rules Ti(ϵ) for i ∈ {1, 2, 3}. We specified an ϵ for T1(ϵ) for each Φj with

respect to its magnitude. We chose three simulation settings such that ϵϵϵ1 = (1,

0.01, 0.001, 0.1, 0.1, 0.1, 0.1, 0.1, 0.01, 0.01), 0.5ϵϵϵ1, and 0.2ϵϵϵ1.

We specified an ϵ for T1(ϵ) for each Φj . In this case, we chose three simulation

settings such that ϵϵϵ2 = (0.1, 0.1, 1, 0.1, 1, 0.1, 0.1, 0.1, 0.1, 1), 0.5ϵϵϵ2, and 0.2ϵϵϵ2.

For both T1(ϵ) and T2(ϵ), it is overwhelmingly tedious to specify appropriate

ϵ vectors when the number of parameters is large. For the stopping rule T3(ϵ)
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Table 5. Summary of estimated true values with standard errors for the
Bayesian logistic regression example.

Variable βj ξ
(j)
.1 ξ

(j)
.9

Intercept -10.463 (2.7E-5) -12.224 (3.9E-4) -8.730 (3.7E-4)
SegSumT 0.657 (1.5E-5) 0.559 (2.1E-5) 0.757 (2.2E-5)
DSDist -4.02E-3 (3.3E-7) -6.15E-3 (4.9E-7) -1.93E-3 (4.4E-7)
USNative -1.170 (7.1E-5) -1.625 (9.9E-5) -0.718 (1.0E-4)
MethodMixture -0.468 (6.8E-5) -0.910 (9.8E-5) -0.028 (9.8E-5)
MethodNet -1.525 (8.2E-5) -2.026 (1.2E-4) -1.035 (1.1E-4)
MethodSpo -1.831 (1.3E-4) -2.623 (2.2E-4) -1.798 (1.4E-4)
MethodTrap -2.594 (1.1E-4) -3.285 (1.8E-4) -1.937 (1.3E-4)
DSMaxSlope -0.170 (1.1E-5) -0.244 (1.7E-5) -0.099 (1.5E-5)
USSlope -0.052 (3.7E-6) -0.076 (5.5E-6) -0.028 (5.1E-6)

we used a single ϵ for the 30-dimensional target parameter vector. Specifically,

we chose three simulation settings such that ϵ3 ∈ {0.10, 0.05, 0.02}.
For the two larger ϵ settings, we set n∗ = 10, 000 and added 1,000 itera-

tions between checks. For the smallest ϵ setting, we set n∗ = 1E5 and added

10,000 iterations between checks due to increased computational demands. Each

simulation setting was independently repeated 1,000 times.

Table 6 summarizes the empirical coverage probabilities. Here the coverage

probabilities for each stopping rule increase toward the nominal level of 0.95

as ϵ decreases, suggesting that all the stopping rules perform well. For high-

dimensional settings such as this, T3(ϵ) is advantageous since a practitioner can

specify a single ϵ value.

To adjust for multiplicity, we again applied a Bonferonni approach. We

set individual confidence intervals to have a nominal level of 0.801/10 = 0.9779

resulting in simultaneous confidence region with nominal level of at least 0.80.

We only considered estimating the posterior mean of the 10-dimensional vector

βββ using T3(ϵ) with ϵ ∈ {0.20, 0.10, 0.05, 0.02}. The minimum simulation effort

was n∗ = 1E5 iterations with an additional 1,000 added between checks. Again,

for the smallest ϵ setting, we set n∗ = 1E6 with an additional 10,000 added

between checks. The simulation was terminated the first time T3(ϵ) was met and

independently repeated 1,000 times.

Table 7 summarizes the simulation results. We can see that, as ϵ decreases,

all the individual coverage probabilities are close to the nominal level of 0.9779,

and the observed confidence region coverage probabilities approach the nomi-

nal level of 0.80. The last was bit surprising in how close to the nominal 0.80

level this was given possible correlation among parameters. We investigated the

correlation between pairs of target parameters and found that most pairs had

low correlation, except for strong correlation between Intercept and SegSumT
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Table 6. Summary of coverage probabilities for Bayesian logistic regression
example with 1,000 independent replicates. The coverage probabilities have
a 0.95 nominal level.

T1(ϵϵϵ1) T1(0.5ϵϵϵ1) T1(0.2ϵϵϵ1)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.936 0.933 0.912 0.937 0.942 0.942 0.946 0.946 0.930
SegSumT 0.932 0.922 0.916 0.942 0.941 0.934 0.953 0.944 0.936
DSDist 0.987 0.969 0.979 0.976 0.969 0.960 0.956 0.954 0.952
USNative 0.927 0.929 0.917 0.939 0.933 0.943 0.948 0.939 0.944
MethodMixture 0.930 0.928 0.920 0.946 0.948 0.938 0.935 0.953 0.940
MethodNet 0.946 0.922 0.936 0.941 0.948 0.932 0.943 0.939 0.935
MethodSpo 0.913 0.913 0.927 0.931 0.929 0.931 0.943 0.942 0.926
MethodTrap 0.928 0.906 0.937 0.938 0.930 0.927 0.941 0.947 0.947
DSMaxSlope 0.932 0.930 0.921 0.942 0.943 0.945 0.953 0.958 0.951
USSlope 0.921 0.928 0.935 0.951 0.927 0.954 0.957 0.952 0.962
Length (SD) 19,521 (3.8E3) 76,894 (9.5E3) 492,910 (3.4E4)

T2(ϵϵϵ2) T2(0.5ϵϵϵ2) T2(0.2ϵϵϵ2)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.928 0.938 0.915 0.950 0.948 0.947 0.945 0.949 0.938
SegSumT 0.923 0.916 0.937 0.953 0.955 0.948 0.944 0.947 0.947
DSDist 0.985 0.968 0.975 0.970 0.958 0.958 0.956 0.955 0.947
USNative 0.921 0.936 0.921 0.946 0.933 0.945 0.940 0.956 0.941
MethodMixture 0.941 0.938 0.933 0.942 0.945 0.916 0.935 0.933 0.942
MethodNet 0.942 0.920 0.922 0.940 0.942 0.939 0.942 0.944 0.935
MethodSpo 0.919 0.901 0.924 0.936 0.923 0.937 0.947 0.956 0.947
MethodTrap 0.935 0.910 0.936 0.939 0.939 0.931 0.941 0.933 0.941
DSMaxSlope 0.937 0.942 0.916 0.948 0.942 0.950 0.942 0.954 0.955
USSlope 0.935 0.933 0.930 0.949 0.936 0.941 0.949 0.944 0.943
Length (SD) 37,667 (3.5E4) 151,276 (8.9E4) 1,161,400 (2.6E5)

T3(0.10) T3(0.05) T3(0.02)

Variable βj ξ
(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9 βj ξ

(j)
.1 ξ

(j)
.9

Intercept 0.932 0.944 0.929 0.943 0.950 0.943 0.943 0.954 0.934
SegSumT 0.932 0.935 0.941 0.942 0.934 0.946 0.942 0.934 0.946
DSDist 0.981 0.969 0.969 0.968 0.966 0.955 0.957 0.954 0.950
USNative 0.939 0.942 0.923 0.941 0.948 0.954 0.942 0.943 0.940
MethodMixture 0.939 0.928 0.920 0.947 0.943 0.933 0.927 0.947 0.928
MethodNet 0.929 0.922 0.931 0.939 0.939 0.934 0.930 0.938 0.939
MethodSpo 0.915 0.902 0.925 0.924 0.933 0.926 0.948 0.946 0.935
MethodTrap 0.930 0.909 0.920 0.941 0.937 0.933 0.939 0.935 0.948
DSMaxSlope 0.941 0.932 0.930 0.940 0.950 0.943 0.958 0.955 0.951
USSlope 0.939 0.928 0.940 0.953 0.937 0.955 0.954 0.957 0.958
Length (SD) 24,404 (1.4E3) 78,886 (4.2E3) 439,260 (1.7E4)
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Table 7. Summary of coverage probabilities for βββ based on T3(ϵ) with 1,000
replicates. The coverage probabilities have a 0.9779 nominal level, resulting
in a 0.80 nominal level confidence region.

T3(0.20) T3(0.10) T3(0.05) T3(0.02)
Variable βj βj βj βj

Intercept 0.959 0.975 0.976 0.973
SegSumT 0.960 0.971 0.979 0.974
DSDist 0.995 0.989 0.993 0.979
USNative 0.948 0.978 0.970 0.973
MethodMixture 0.950 0.973 0.967 0.968
MethodNet 0.962 0.962 0.976 0.973
MethodSpo 0.946 0.954 0.968 0.979
MethodTrap 0.950 0.960 0.970 0.978
DSMaxSlope 0.966 0.971 0.977 0.974
USSlope 0.964 0.965 0.973 0.982
Region 0.693 0.763 0.792 0.805
Length (SD) 10,082(2.7E2) 29,729(1.8E3) 100,261(5.2E3) 583,488(1.9E4)

and moderate correlation between USNative and USSlope. Given the lack of

correlation, the confidence region coverages are encouraging.

4.4. Discussion

We advocate use of a relative standard deviation stopping rule since it is easy

to implement and applicable in multivariate settings without a priori knowledge

of the target parameter size. The rule terminates an MCMC simulation when

estimates of target parameters are sufficiently accurate relative to their associated

posterior standard deviations, with estimates approximately ϵ−1 more accurate

than their posterior standard deviations. Using ϵ = 0.02 has provided excellent

results in the wide variety of examples considered here. A smaller ϵ may be

appropriate when the accuracy of estimation is critical.

When estimating multiple quantities simultaneously, we controlled the width

of each of the marginal confidence intervals. Alternatively, one could consider

multiple quantities jointly by controlling the volume of confidence region, a sub-

ject of ongoing research. In this setting, one should be able to establish asymp-

totic validity for a relative fixed-volume approach using techniques presented here

and in Glynn and Whitt (1992).

In any MCMC simulation, a key component is choosing a Markov chain that

mixes well while sufficiently exploring the state space. Moreover, the computa-

tional effort to achieve a given accuracy depends on the sampling scheme. We

have offered limited guidance in this direction. In this regard, see Brooks et al.

(2010) and the references therein.
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Our examples considered only BM to estimate the asymptotic variance from

a CLT. Improving the variance estimation step might be possible using such al-

ternative methods as overlapping batch means, spectral variance, or subsampling

bootstrap methods (Flegal and Jones (2010); Flegal (2012); Doss et al. (2014))

that are currently available in the mcmcse package.
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Appendix A. Proof of Theorem 1

The proof follows techniques introduced in Glynn and Whitt (1992). Define

z = zδ/2 and recall that T3(ϵ) → ∞ w.p.1 as ϵ → 0. Since σ̂n → σθ w.p.1 as

n → ∞, we have σ̂T3(ϵ) → σθ w.p.1 as ϵ → 0; since λ̂n → λθ w.p.1 as n → ∞, we

have λ̂T3(ϵ) → λθ w.p.1 as ϵ → 0.

Take V (n) = 2zσ̂n/
√
n + p(n), where p(n) = o(n−1/2). Then T3(ϵ) can be

written as T3(ϵ) = inf
{
n ≥ 0 : V (n) ≤ ϵλ̂n

}
. As σ2

θ ∈ (0,∞), it is easy to verify

that

n1/2V (n) → 2zσθ > 0 w.p.1 as n → ∞. (A.1)

By definition of T3(ϵ), V (T3(ϵ)−1) > ϵλ̂T3(ϵ)−1 and V (T3(ϵ)) ≤ ϵλ̂T3(ϵ). Using

(A.1) we have

lim
ϵ→0

sup ϵT3(ϵ)
1/2 ≤ lim

ϵ→0
sup

T3(ϵ)
1/2V (T3(ϵ)− 1)

λ̂T3(ϵ)−1

=
2zσθ
λθ

w.p.1.

Similarly,

lim
ϵ→0

inf ϵT3(ϵ)
1/2 ≥ lim

ϵ→0
inf

T3(ϵ)
1/2V (T3(ϵ))

λ̂T3(ϵ)

=
2zσθ
λθ

w.p.1.

Thus, we have

lim
ϵ→0

ϵT3(ϵ)
1/2 =

2zσθ
λθ

w.p.1. (A.2)

Using (A.2) with properties of σ̂T3(ϵ) and λ̂T3(ϵ), we have

lim
ϵ→0

ϵ−1T3(ϵ)
−1/22zσ̂T3(ϵ)

λ̂T3(ϵ)

= 1 w.p.1. (A.3)
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Let β = 2zσθ/λθ and set τϵ(t) = T3(ϵ)ϵ
2β−2t for t ≥ 0. Note that τϵ → e

as ϵ → 0 w.p.1 pointwise, where e(t) = t. Then it follows from the FCLT and a

standard random-time-change argument (p. 151 Billingsley (1999)) that

Zϵ2β−2(τϵ(1))
d→ σθB(e(1))

e(1)
= σθB(1) as ϵ → 0 , (A.4)

where Zϵ2β−2(τϵ(1)) = βϵ−1
(
ZT3(ϵ) − θ

)
. Slutsky’s theorem with (A.3) and (A.4)

yield T3(ϵ)
1/2/σ̂T3(ϵ)

(
ZT3(ϵ) − θ

) d→ B(1) as ϵ → 0. Finally, we have

Pr (θ ∈ C[T3(ϵ)]) = Pr

(
ZT3(ϵ) − θ ∈

(
−

zσ̂T3(ϵ)

T3(ϵ)1/2
,

zσ̂T3(ϵ)

T3(ϵ)1/2

))
= Pr

(
T3(ϵ)

1/2

σ̂T3(ϵ)
(ZT3(ϵ) − θ)) ∈ (−z, z)

)
→ 1− δ as ϵ → 0.
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