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Abstract: The paper is devoted to the study of a parametric deformation model of

independent and identically random variables. We construct an efficient and easy-

to-compute recursive estimate of the parameter. Our stochastic estimator is similar

to the Robbins-Monro procedure where the contrast function is the Wasserstein dis-

tance. We then propose a recursive estimator similar to that of Parzen-Rosenblatt

kernel density estimator in order to estimate the density of the random variables.

This estimate takes into account the previous estimation of the parameter of the

model. Finally, we illustrate the performance of our estimation procedure on sim-

ulations for the Box-Cox transformation and the arcsinh transformation.
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1. Introduction

In many situations, random variables are observed only through their image

by a deformation. Hence, finding themean behaviour of a data sample is a difficult

task since the usual notion of Euclidean mean is too rough when the information

conveyed by the data possesses an inner geometry far from Euclidean. Indeed,

such deformations on the data as translations, scale location models, or more

general warping procedures prevent the use of the usual methods in data analysis.

Deformations may result from variations that are not directly correlated to

the studied phenomenon. This situation occurs often in biology, for example,

when considering gene expression data obtained from microarray technologies to

measure genome-wide expression levels of genes in a given organism, as described

in Bolstad et al. (2003). A natural way to handle this phenomenon is to remove

the variations in order to align the measured densities, but this is difficult to

implement since the densities are unknown. In bioinformatics and computational

biology, a method to reduce this kind of variability is known as normalization

(see Gallón, Loubes, and Maza (2013) and references therein). In epidemiology,

removing variations is important in medical studies where one observes age-at-

death of several cohorts. Indeed, the individuals of the cohort enjoy different life
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conditions which means that time-variation is likely to exist between the cohort

densities and hazard rates due to the effects of the different biotopes on aging.

Synchronization of the different observations is a crucial point.

Variations on the observations are often due to transformations that have

been conducted by the statisticians themselves. In econometric science, transfor-

mations have been used to aid interpretability as well as to improve statistical

performance of some indicators. An important contribution to this methodology

was made by Box and Cox in Box and Cox (1964) who proposed a parametric

power family of transformations that nested the logarithm and the level. Es-

timation in this framework is achieved in Linton, Sperlich, and Van Keilegom

(2008).

In this work, we concentrate on the case where the data and their transfor-

mation are observed in a sequence model defined, for all n ≥ 0, by

Xn = φθ(εn) (1.1)

where, for all t ∈ R, the family of parametric functions (φt) is known and (εn) is

a sequence of independent and identically distributed random variables. Our ap-

proach to estimating θ is associated with a stochastic recursive algorithm similar

to that of Robbins-Monro described in Robbins and Monro (1951) and Robbins

and Siegmund (1971).

Assume that one can find a function ϕ (called a contrast function) free of

the parameter θ, such that ϕ(θ) = 0. Then, it is possible to estimate θ by the

Robbins-Monro algorithm

θ̂n+1 = θ̂n + γnTn+1, (1.2)

where (γn) is a positive sequence of real numbers decreasing to zero and (Tn) is a

sequence of random variables such that E[Tn+1|Fn] = ϕ(θ̂n), where Fn stands for

the σ-algebra of the events occurring up to time n. Under standard conditions

on the function ϕ and on the sequence (γn), it is well-known (see Duflo (1997)

and Kushner and Yin (2003)) that θ̂n tends to θ almost surely. The asymptotic

normality of θ̂n together with the quadratic strong law can be found in Hall and

Heyde (1980). A randomly truncated version of the Robbins-Monro algorithm

is given in Chen, Lei, and Gao (1988), Lelong (2008), whereas we can find in

Bercu and Fraysse (2012) an application of the Robbins-Monro algorithm in

semiparametric regression models. In our framework, if we assume that φt is

inversible, then one can consider

Zn(t) = φ−1
t (Xn) .

Hence, a natural registration criterion is to minimize with respect to t the

quadratic distance between Zn(t) and εn,
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M(t) = E
[
|Zn(t)− εn|2

]
.

It is then obvious that the parameter θ is a global minimum of M and one can

implement a Robbins-Monro procedure for the contrast function M ′, which is

the differential of the L2 function M .

The second part of the paper concerns the estimation of the density f of the

random variables (εn). More precisely, we focus our attention on the Parzen-

Rosenblatt estimator of f described for instance in Parzen (1962) or Rosenblatt

(1956) . Under reasonable conditions on the function f , Parzen established in

Parzen (1962) the pointwise convergence in probability and the asymptotic nor-

mality of the estimator without the parameter θ. In Silverman (1978), Silverman

obtained uniform consistency properties of the estimator. Contributions to the

L1-integrated risk have been obtained by Devroye in Devroye (1988), whereas

Hall has studied the L2-integrated risk in Hall (1982) and Hall (1984). We pro-

pose to make use of a recursive Parzen-Rosenblatt estimator of f that takes into

account the previous estimate of θ. It is given, for all x ∈ R, by

f̂n(x) =
1

n

n∑
i=1

Wi(x) (1.3)

with

Wi(x) =
1

hi
K
(x− Zi(θ̂i−1)

hi

)
,

where the kernel K is a chosen probability density function and the bandwidth

(hi) is a sequence of positive real numbers decreasing to zero. The main difficulty

arising here is that we have to deal with the term Zi(θ̂i−1) inside the kernel K.

We proceed as follows. Section 2 is devoted to the description of the model.

Section 3 deals with the estimation of θ ; we establish the almost sure convergence

of θ̂n as well as its asymptotic normality. In Section 4, under standard regularity

assumptions on the kernel K, we prove the almost sure pointwise and quadratic

convergences of f̂n(x) to f(x). Section 5 contains some numerical experiments

on the well-known Box-Cox transformation and on the arcsinh transformation

illustrating the performances of our parametric estimation procedure. The proofs

of the parametric results are given is Section 6, while those concerning the non-

parametric results are in Section 7.

2. Description of the Model and the Criterion

Suppose that we observe independent and identically distributed random

variables εn and a deformation Xn of εn defined, for all n ≥ 0, by

Xn = φθ(εn),



634 PHILIPPE FRAYSSE, HELENE LESCORNEL AND JEAN-MICHEL LOUBES

where θ ∈ Θ ⊂ R. Throughout, we denote by ε and X random variables sharing

the same distribution as εn and Xn, respectively.

Assume that for all t ∈ R, the family of parametric functions (φt) is known

but that the parameter θ is unknown. This situation corresponds to the case

where the warping operator can be modeled by a parametric shape. Estimating

the parameter is the key to understanding the amount of deformation in the

chosen deformation class. This model has been widely used in the regression

case, see for instance in Gamboa, Loubes, and Maza (2007). Assume also that,

for all t ∈ R, φt is invertible on an interval to be made precise in the next section.

Then, one can consider the random variable

Zn(t) = φ−1
t (Xn) = φ−1

t (φθ(εn)) . (2.1)

We denote by Z(t) a random variable sharing the same distribution as Zn(t). In

order to estimate θ, we choose to evaluate the L2 distance between ε and Z(t),

M(t) = E
[
|Z(t)− ε|2

]
. (2.2)

If F−1 is the quantile function associated with ε, we can write

M(t) = E
[∣∣φ−1

t (φθ(ε))− ε
∣∣2] = ∫ 1

0

(
φ−1
t ◦ φθ ◦ F−1(x)− F−1(x)

)2
dx.

Indeed (see for instance Van der Vaart (2000) p.305), if Y is a random variable

with distribution function G, then for U ∼ U[0;1], Y ∼ G−1 (U).

If we assume that φt is increasing for all t, then one has an expression for

the quantile function associated with Z(t): F−1
Z(t) = φ−1

t ◦ φθ ◦ F−1, and so

M(t) =

∫ 1

0

(
F−1
Z(t)(x)− F−1(x)

)2
dx.

This quantity corresponds to the Wasserstein distance between the laws of

Z(t) and ε, defined and studied for instance in Cuesta and Matrán (1989) in the

general case. Using Wasserstein metrics to align distributions is rather natural

since it corresponds to the transportation cost between two probability laws. It

is also a proper criterion for studying similarities between point distributions (see

for instance Munk and Czado (1998)), and is already used for density registration

in Agullo et al. (2014) or Gallón, Loubes, and Maza (2013) in a non-sequential

way.

Here, considering the L2 distance between the starting point and the regis-

tered point is equivalent to investigating the Wasserstein distance between their

laws.
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As M(θ) = 0 and the function M defined by (2.2) is non-negative, it is clear

that M admits at least a global minimum at θ which allows us a characterization

of the parameter of interest.

3. Estimation of the Parameter θ

We focus attention on the estimation of the parameter θ ∈ Θ with Θ an

interval of R. We require some assumptions.

For all t∈Θ, φt is invertible, increasing from I1 to I2, some subsets of R. (A1)

For all x∈I2, φ−1
t (x) is continuously differentiable with respect to t∈Θ,

with derivative ∂φ−1
t (x).

(A2)

For all t ∈ Θ, φ−1
t ◦ φθ ∈ L2 (ε) . (A3)

For all compact B in Θ, E
[
sup
t∈B

∣∣∂φ−1
t ◦ φθ (ε)

∣∣4 ] < +∞. (A4)

From (A1), the distribution function of X is FX = F ◦ φ−1
θ whereas that of

Z(t) is F ◦ φ−1
θ ◦ φt.

Lemma 1. If (A1) to (A4) hold, then M is continuously differentiable on Θ.

Using Lemma 1, the differential M ′ of M is, for all t ∈ Θ,

M ′(t) =− 2

∫ 1

0
∂φ−1

t ◦ φθ ◦ F−1(x)
(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)
dx

=− 2E
[
∂φ−1

t (X)
(
ε− φ−1

t (X)
)]

. (3.1)

It is then clear thatM ′(θ) = 0. Then, we can assume that there exists {a, b} ∈ Θ2

with a < b and θ ∈ ]a; b[ ⊂ Θ such that, for all t ∈ [a; b],

(t− θ)M ′(t) > 0. (A5)

We can now implement our Robbins-Monro procedure. Let π[a;b] be the projec-

tion on the compact set [a; b] defined for all x ∈ [a; b] by

π[a;b](x) = xI{a≤x≤b} + aI{x≤a} + bI{x≥b}.

Let (γn) be a decreasing sequence of positive real numbers satisfying

∞∑
n=1

γn = +∞ and

∞∑
n=1

γ2n < +∞. (3.2)
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We estimate the parameter θ via the projected Robbins-Monro algorithm

θ̂n+1 = π[a;b]

(
θ̂n − γn+1Tn+1

)
, (3.3)

where the deterministic initial value θ̂0 ∈ [a; b] and the random variable Tn+1 is

Tn+1 = −2∂φ−1

θ̂n
(Xn+1)

(
εn+1 − φ−1

θ̂n
(Xn+1)

)
. (3.4)

Theorem 1. Assume (A1) to (A5), with θ ∈ ]a; b[ where a < b. Then, θ̂n
converges almost surely to θ.

To control the rate of convergence of θ̂n, we need slightly stronger condition

of regularity on the deformation functions.

For all x ∈ I2, φ−1
t (x) is twice differentiable with respect to t ∈ Θ

and, for all compact B in Θ, E
[
supt∈B

∣∣∂2φ−1
t ◦ φθ (ε)

∣∣2] < +∞.
(A6)

Lemma 2. If (A1) to (A6) hold, then M is twice continuously differentiable on

Θ.

We compute the second differential of M ′′ of M for all t ∈ Θ as

M ′′(t) = 2

∫ 1

0

[
∂φ−1

t ◦ φθ ◦ F−1(x)
]2

dx

−2

∫ 1

0
∂2φ−1

t ◦ φθ ◦ F−1(x)
(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)
dx (3.5)

so

M ′′(t) = 2E
[(
∂φ−1

t (X)
)2]− 2E

[
∂2φ−1

t (X)
(
ε− φ−1

t (X)
)]

. (3.6)

For the sake of clarity, we make use of γn = 1/n for the following theorem.

Theorem 2. Assume (A1) to (A6), with θ ∈ ]a; b[ where a < b. Suppose

M ′′(θ) > 1/2 and that there exists α > 4 such that for all compact B in Θ,

E
[
sup
t∈B

|∂φ−1
t ◦ φθ(ε)|α

]
< +∞.

Then, as n → ∞,
√
n
(
θ̂n − θ

) L−→ δ0. (3.7)

If for all t ∈ [a; b],

M ′′(t) ≥ 1

2
, (A7)
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then for all n ≥ 0,

E
[ (

θ̂n − θ
)2 ]

≤
(
θ̂0 − θ

)2 exp (C1π
2/6
)

n+ 1
, (3.8)

where

C1 = 4E
[
sup
t∈[a;b]

|∂φ−1
t ◦ φθ(ε)|4

]
. (3.9)

Proof. Proofs are in Section 6.

Remark 1. One can observe that

M ′′(θ) = 2

∫ 1

0

[
∂φ−1

θ ◦ φθ ◦ F−1(x)
]2

dx = 2E
[(
∂φ−1

θ (X)
)2]

.

Hence M ′′(θ) > 0 holds in the general case. Moreover, replacing M by λM

where λ is real and positive does not change any results. Then, the condition

M ′′(t) ≥ 1/2 can be verified with little modifications.

Remark 2. If one replaces the algorithm (3.3) by its “excited” version

θ̃n+1 = π[a;b]

(
θ̃n − γn+1T̃n+1

)
, (3.10)

where the initial deterministic value θ̃0 ∈ [a; b] and

T̃n+1 = −2∂φ−1

θ̃n
(Xn+1)

(
εn+1 − φ−1

θ̃n
(Xn+1)

)
+ Vn+1 (3.11)

with (Vn) a sequence of independent and identically distributed simulated random

variables with mean 0 and variance σ2 > 0, then Theorem 1 and Theorem 2 are

still true for θ̃n with (3.7) replaced by

√
n
(
θ̃n − θ

) L−→ N
(
0,

σ2

2M ′′(θ)− 1

)
. (3.12)

4. Estimation of the Density

In this section, we suppose that the random variable ε has a density f and

focus on the non-parametric estimation of this density. A natural way to estimate

f is to consider the recursive Parzen-Rosenblatt estimator

f̃n(x) =
1

n

n∑
i=1

1

hi
K

(
x− εi
hi

)
, (4.1)

where K is a standard kernel function. While f̃n is a good approximation of f

for large values of n, it may not be for small values of n. To improve matters,
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we consider the prior estimation of θ to construct a Parzen-Rosenblatt estimator

of f which is of length 2n. We need more assumptions for this. Let ∂ be the

differential operator with respect to t, and d the differential operator with respect

to x.

f is bounded, twice continuously differentiable on I1, with bounded

derivatives.
(AD1)

For all t ∈ Θ, φt is three times continuously differentiable on I1. (AD2)

φ−1
θ is three times continuously differentiable on I2, with bounded

derivatives.
(AD3)

dφ, d2φ, d3φ are bounded. (AD4)

Denote by K a positive kernel which is a symmetric, integrable and bounded

function, such that∫
R
K(u)du = 1, lim

|x|→+∞
|x|K(x) = 0, and

∫
R
u2K(u)du < +∞.

Then consider the recursive estimate

f̂n(x) =
1

n

n∑
i=1

1

hi
K
(x− Zi(θ̂i−1)

hi

)
, (4.2)

where θ̂i−1 is given by (3.3), and where the bandwidths hn are positive, decrease

to zero, and such that nhn tends to infinity when n goes to infinity. For simplicity,

we make use of hn = 1/nα with 0 < α < 1.

Theorem 3. Assume (A1) to (A5) with θ ∈ ]a; b[ where a < b and (AD1) to

(AD4). Then for all x ∈ I1,

f̂n(x)
n→∞−−−→ f(x) a.s.. (4.3)

It follows from Theorem 3 that for small values of n, the averaged estimator

f̄n =
1

2

(
f̃n + f̂n

)
,

where f̃n and f̂n are given by (4.1) and (4.2), performs better than f̃n or f̂n.

For the convergence in quadratic mean of f̂n(x) to f(x), we need another as-

sumption.

φ is twice continuously differentiable on Θ× I1 and ∂φt(x),

∂dφt(x) are bounded with respect to t.
(AD5)
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Theorem 4. Assume (A1) to (A7) with θ ∈ ]a; b[ where a < b and (AD1) to

(AD5). Then, for all x ∈ I1,

E
[∣∣∣f̂n(x)− f(x)

∣∣∣2] n→∞−−−→ 0. (4.4)

Proof. Proofs are postponed in Section 7.

5. Simulations

This section is devoted to the numerical illustration of the asymptotic prop-

erties of our estimator θ̂n defined by (3.3). For the model (1.1) when φθ is not

invertible with respect to θ, it is not possible to use a direct expression for the

estimator and our procedure is useful for estimating θ. We focus on two trans-

formations that are used in econometrics : the Box-Cox transformation φ1
t and

the arcsinh transformation φ2
t . Here, for all x ∈ R+

∗ ,

φ1
t (x) =


xt − 1

t
if t ̸= 0,

log(x) if t = 0

(5.1)

and, for all x ∈ R,

φ2
t (x) =


1

t
sinh−1(tx) if t ̸= 0,

x if t = 0.
(5.2)

Throughout this section, we suppose that θ > 0, and take θ ∈ ]a; b[ with a = 1/10

and b = 2. Then, the Box-Cox transform φ1
t is invertible from ]1;+∞[ to R+

∗
and the arcsinh transformation is invertible from R to R, with

∀x ∈ R+
∗ ,

(
φ1
t

)−1
(x) = (1 + tx)1/t , (5.3)

∀x ∈ R,
(
φ2
t

)−1
(x) =

1

t
sinh(tx). (5.4)

Then, for all t ∈ [a; b],
(
φ1
t

)−1
(x) and

(
φ2
t

)−1
(x)

∀x ∈ R+
∗ , ∂

(
φ1
t

)−1
(x) =

1

t

(
x

1 + tx
− 1

t
log(1 + tx)

)
(1 + tx)1/t , (5.5)

∀x ∈ R, ∂
(
φ2
t

)−1
(x) = −1

t

(
1

t
sinh(tx)− x cosh(tx)

)
. (5.6)

Denote by M1, respectively M2, the function M given by (2.2) associated with

φ1
t and φ2

t . For the simulations, we chose θ = 1. The functions M1 and M2 are
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Figure 1. The functions M1 and M2

represented in Figure 1. One can see that θ is effectively a global minimum of M1

and M2. For the estimation of θ in both models, we took
(
ε1n
)
as independent

uniform on [1; 2] and
(
ε2n
)
independent uniform on [0; 1]. We simulated random

variables X1
n and X2

n according to Xi
n = φi

θ

(
εin
)
, for i = 1, 2. Then, for i = 1, 2

and for the choice of step γn = 1/n, we computed

θ̂in+1 = π[a;b]

(
θ̂in − γnT

i
n+1

)
,

where

T i
n+1 = −2∂

(
φi
θ̂in

)−1
(Xi

n+1)

(
εin+1 −

(
φi
θ̂in

)−1
(Xi

n+1)

)
,

and with (φi
θ̂in
)−1 given by (5.3) and (5.4) and ∂(φi

θ̂in
)−1 given by (5.5) and (5.6).

The values of θ̂in were computed until n = 1, 000. We represent on the left-
hand side (respectively on the right-hand side) of Figure 2 the difference between
θ̂1n and θ (respectively θ̂2n and θ) for 1 ≤ n ≤ 1, 000. In particular, we found
|θ̂11,000 − θ| = 0.00239 and |θ̂21,000 − θ| = 0.0042, showing that our procedure
performs well for both models.

On the left-hand side of Figure 3, one has represented the degenerated
asymptotic normality given by (3.7) for the data generated according for φ1

θ.

For that, we made 200 realizations of
√
2, 000

(
θ̂12,000 − θ

)
. We also considered

the excited version (3.10) of algorithm (3.3) for the first deformation φ1
θ,

θ̃1n+1 = π[a;b]

(
θ̃1n − γnT̃

1
n+1

)
,

with

T̃ 1
n+1 = −2∂

(
φ1
θ̂1n

)−1
(X1

n+1)

(
ε1n+1 −

(
φ1
θ̂1n

)−1
(X1

n+1)

)
+ Vn+1,

where Vn were independent N (0, 1/2). For the degenerated asymptotic normal-

ity, we made 200 realizations of
√
2, 000

(
θ̃12,000 − θ

)
to illustrate the asymptotic
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Figure 2. Difference θ̂1n − θ and θ̂2n − θ.

Figure 3. Asymptotic normalities of
√
n
(
θ̂1n − θ

)
and

√
n
(
θ̃1n − θ

)
.

normality given by (3.12). This numerical result is represented on the right-hand

side of Figure 3. In theses cases, to verify the condition M ′′ (θ) > 1/2, one has

to modify the criterion M as described in Remark 1, with λ = 10.

6. Proofs of the Parametric Results

6.1. Proof of Lemma 1

From (A4), for all compact B in Θ,

E
[
sup
t∈B

∣∣∂φ−1
t ◦ φθ (ε)

∣∣2 ] < +∞.

Consequently,

E
[
sup
t∈B

∣∣∂φ−1
t ◦ φθ (ε)

∣∣2 ] = ∫ 1

0
sup
t∈B

∣∣∂φ−1
t ◦ φθ

(
F−1(x)

)∣∣2 dx < +∞. (6.1)
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Now, it follows from (A2) that for all x ∈ I2,

∂
[(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)2]

= −2∂φ−1
t

(
φθ ◦ F−1(x)

) (
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)

(6.2)

is a continuous function with respect to t. In addition, if B is a compact set

containing θ, from (A2) and the Mean Value Theorem there exists a constant

CB > 0 such that

sup
t∈B

∣∣F−1(x)− φ−1
t ◦ φθ

(
F−1(x)

)∣∣ ≤ CB sup
t∈B

∣∣∂φ−1
t ◦ φθ

(
F−1(x)

)∣∣ . (6.3)

Hence, we deduce from (6.2) and the previous inequality that

sup
t∈B

∣∣∣∂ [(F−1(x)− φ−1
t ◦ φθ ◦ F−1(x)

)2]∣∣∣ ≤ 2CB sup
t∈B

∣∣∂φ−1
t ◦ φθ

(
F−1(x)

)∣∣2
which implies by (6.1) that

sup
t∈B

∣∣∣∂ [(F−1(x)− φ−1
t ◦ φθ ◦ F−1(x)

)2]∣∣∣
is integrable with respect to x. Finally, M is continuously differentiable on Θ

and for all t ∈ Θ,

M ′(t) =

∫ 1

0
−2∂φ−1

t

(
φθ ◦ F−1(x)

) (
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)
dx.

6.2. Proof of Lemma 2

From (A6),

−2∂φ−1
t

(
φθ ◦ F−1(x)

) (
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)

(6.4)

is continuously differentiable with respect to t. In addition, we have

∂
[
∂φ−1

t

(
φθ ◦ F−1(x)

) (
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)]

=−
[
∂φ−1

t ◦ φθ ◦ F−1(x)
]2
+∂2φ−1

t ◦ φθ ◦ F−1(x)
(
F−1(x)−φ−1

t ◦ φθ ◦ F−1(x)
)
.

It follows from (6.3) that for every compact set B containing t and θ,

|∂2φ−1
t ◦ φθ ◦ F−1(x)

(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)
|

6 CB sup
t∈B

∣∣∂2φ−1
t ◦ φθ ◦ F−1(x)

∣∣ sup
t∈B

∣∣∂φ−1
t ◦ φθ ◦ F−1(x)

∣∣ .
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Then, from (A6), (6.1) and the Cauchy-Schwartz inequality,

∂2φ−1
t ◦ φθ ◦ F−1(x)

(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)

is integrable with respect to x. Hence, we have∫ 1

0
sup
t∈B

∣∣∂ [∂φ−1
t

(
φθ ◦ F−1(x)

) (
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)]∣∣ dx < +∞,

which enables us to conclude that M is twice continuously differentiable on Θ

and for all t ∈ Θ,

M ′′(t) = 2

∫ 1

0

[
∂φ−1

t ◦ φθ ◦ F−1(x)
]2

dx

−2

∫ 1

0
∂2φ−1

t ◦ φθ ◦ F−1(x)
(
F−1(x)− φ−1

t ◦ φθ ◦ F−1(x)
)
dx.

6.3. Proof of Theorem 1.

Denote by Fn the σ-algebra of the events occurring up to time n, Fn =

σ(ε0, . . . , εn). We calculate the first two conditional moments of Tn given by

(3.4). One has

E[Tn+1|Fn] = −2E
[
∂φ−1

θ̂n
(Xn+1)

(
εn+1 − φ−1

θ̂n
(Xn+1)

)
|Fn

]
,

= −2E
[
∂φ−1

θ̂n
◦ φθ(εn+1)

(
εn+1 − φ−1

θ̂n
◦ φθ(εn+1)

)
|Fn

]
.

Moreover, as εn+1 is independent of Fn and θ̂n ∈ Fn, one can deduce from (3.1)

that

−2E
[
∂φ−1

θ̂n
◦ φθ(εn+1)

(
εn+1 − φ−1

θ̂n
◦ φθ(εn+1)

)
|Fn

]
= −2

∫ 1

0
∂φ−1

θ̂n
◦ φθ ◦ F−1(x)

(
F−1(x)− φ−1

θ̂n
◦ φθ ◦ F−1(x)

)
dx

=M ′(θ̂n) a.s.,

which immediately leads to

E[Tn+1|Fn] = M ′(θ̂n) a.s.. (6.5)

As well,

E
[
T 2
n+1|Fn

]
= 4E

[
∂φ−1

θ̂n
(Xn+1)

2
(
εn+1 − φ−1

θ̂n
(Xn+1)

)2
|Fn

]
,

= 4E
[
∂φ−1

θ̂n
(Xn+1)

2
(
φ−1
θ (Xn+1)− φ−1

θ̂n
(Xn+1)

)2
|Fn

]
. (6.6)
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It follows from the Mean Value Theorem that

|φ−1
θ (Xn+1)− φ−1

θ̂n
(Xn+1) | ≤ sup

t∈[a;b]
|∂φ−1

t (Xn+1)| × |θ̂n − θ|. (6.7)

Consequently, (6.6) and (6.7) lead to

E
[
T 2
n+1|Fn

]
≤ 4

(
θ̂n − θ

)2
E
[
sup
t∈[a;b]

|∂φ−1
t (X)|4

]
. (6.8)

Hence, there exists a positive constant C1 given by (3.9) such that

E
[
T 2
n+1|Fn

]
≤ C1

(
θ̂n − θ

)2
a.s.. (6.9)

Furthermore, for all n ≥ 0, let Vn =
(
θ̂n − θ

)2
. We have

Vn+1 =
(
θ̂n+1 − θ

)2
=
(
π[a;b]

(
θ̂n − γn+1Tn+1

)
− θ
)2

=
(
π[a;b]

(
θ̂n − γn+1Tn+1

)
− π[a;b](θ)

)2
as we have assumed that θ belongs to ]a; b[. Since π[a;b] is a Lipschitz function

with Lipschitz constant 1, we obtain that

Vn+1 ≤
(
θ̂n − γn+1Tn+1 − θ

)2
≤ Vn + γ2n+1T

2
n+1 − 2γn+1Tn+1(θ̂n − θ).

Hence, it follows from (6.5) together with (6.9) that

E[Vn+1|Fn] ≤ Vn(1 + C1γ
2
n+1)− 2γn+1(θ̂n − θ)M ′(θ̂n) a.s.. (6.10)

In addition, as θ̂n ∈ [a; b], (A5) implies that (θ̂n−θ)M ′(θ̂n) > 0. Then, we deduce

from (6.10) together with Robbins-Siegmund Theorem, see Duflo Duflo (1997)

page 18, that the sequence (Vn) converges a.s. to a finite random variable V and

∞∑
n=1

γn+1(θ̂n − θ)M ′(θ̂n) < +∞ a.s.. (6.11)

Assume by contradiction that V ̸= 0 a.s. Then, one can find two constants c

and d such that 0 < c < d < 2max (|a|, |b|) , and for n large enough, the event
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{c < |θ̂n − θ| < d} is not negligible. However, on this annulus, one can also find

some constant e > 0 such that (θ̂n − θ)M ′(θ̂n) ≥ e which, by (6.11), implies that

∞∑
n=1

γn < +∞.

This contradicts (3.2).

6.4. Proof of Theorem 2.

Our goal is to apply Theorem 2.1 of Kushner and Yin Kushner and Yin

(2003) page 330. First of all, as γn = 1/n, the conditions on the decreasing

step is satisfied. Moreover, θ̂n converges almost surely to θ. Consequently, the

local assumptions of Theorem 2.1 of Kushner and Yin (2003) are satisfied. In

addition, it follows from (6.5) that E [Tn+1|Fn] = M ′(θ̂n) a.s. and M is two times

continuously differentiable. Hence, M(θ) = 0, M ′(θ) = 0 and M ′′(θ) > 1/2. It

follows from (6.9) and the almost sure convergence of θ̂n to θ that

lim
n→∞

E
[
T 2
n+1|Fn

]
= 0 a.s..

Finally, Theorem 4.1 of Kushner and Yin (2003) page 341 ensures that the se-

quence (Wn) given by

Wn =
√
n(θ̂n − θ)

is tight. Then, from Theorem 2.1 of Kushner and Yin (2003),

√
n(θ̂n − θ)

L−→ δ0.

Taking expectation on both sides of (6.10) leads, for all n ≥ 0, to

vn+1 ≤ vn(1 + C1γ
2
n+1)− 2γn+1E

[
(θ̂n − θ)M ′(θ̂n)

]
, (6.12)

where

vn = E
[(

θ̂n − θ
)2]

.

In addition, as M ′(θ) = 0,

M ′(θ̂n) = (θ̂n − θ)

∫ 1

0
M ′′(θ + x(θ̂n − θ))dx a.s.. (6.13)

From (6.12) and (6.13),

vn+1 ≤ vn(1 + C1γ
2
n+1)− 2γn+1E

[
(θ̂n − θ)2

∫ 1

0
M ′′(θ + x(θ̂n − θ))dx

]
. (6.14)
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As θ ∈ ]a; b[ and θ̂n ∈ [a; b], θ + x(θ̂n − θ) ∈ [a; b] for all x ∈ [0; 1]. Then, since

M ′′(t) ≥ 1/2 for all t ∈ [a; b], we can write∫ 1

0
M ′′(θ + x(θ̂n − θ))dx ≥ 1

2
.

From (6.14), for all n ≥ 0,

vn+1 ≤ vn(1 + C1γ
2
n+1 − γn+1). (6.15)

Moreover, the inequality 1− x ≤ exp(−x) implies that

vn+1 ≤ vn exp
(
C1γ

2
n+1 − γn+1

)
. (6.16)

An immediate recurrence in (6.16) leads to

vn ≤ v0

n∏
k=1

exp
(
C1γ

2
k − γk

)
≤ v0 exp

(
C1

n∑
k=1

γ2k −
n∑

k=1

γk

)

≤ v0 exp

(
C1

+∞∑
k=1

γ2k −
n∑

k=1

γk

)
. (6.17)

As γk = 1/k, it follows from (6.17) with

+∞∑
k=1

γ2k =
π2

6
,

n∑
k=1

γk ≥ log(n+ 1)

that, for all n ≥ 0,

vn ≤ v0
exp

(
C1π

2/6
)

n+ 1
.

This finishes the proof of Theorem 2.

7. Proofs of the Nonparametric Results

With f the density of ε, let f t be the density of Z (t). As the distribution of

Z(t) is F ◦ φ−1
θ ◦ φt, for all x ∈ I1,

f t(x) = f
(
φ−1
θ ◦ φt(x)

)
d
[
φ−1
θ ◦ φt

]
(x).
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Here fθ = f . We have

f t(x) = f
(
φ−1
θ ◦ φt(x)

)
d
[
φ−1
θ ◦ φt

]
(x)

= f
(
φ−1
θ ◦ φt(x)

)
dφt(x)d

[
φ−1
θ

]
(φt(x)) .

Hence, (AD1), (AD2) and (AD3) imply that f t is twice continuously differen-

tiable with respect to x. Moreover, for all x ∈ I1,

df t(x) = f
(
φ−1
θ ◦ φt(x)

)
d2
[
φ−1
θ ◦ φt

]
(x) + f ′ (φ−1

θ ◦ φt(x)
) (

d
[
φ−1
θ ◦ φt

]
(x)
)2

,

d2f t(x) = f
(
φ−1
θ ◦ φt(x)

)
d3
[
φ−1
θ ◦ φt

]
(x)

+3f ′ (φ−1
θ ◦ φt(x)

)
d
[
φ−1
θ ◦ φt

]
(x)d2

[
φ−1
θ ◦ φt

]
(x)

+f ′′ (φ−1
θ ◦ φt(x)

) (
d
[
φ−1
θ ◦ φt

]
(x)
)3

.

Hence, from (AD1) to (AD4), f t(x), df t(x) and d2f t(x) are bounded on Θ× I1.

Now (AD5) implies that f t(x) is also continuously differentiable with respect to

(t, x), and we have for all t ∈ Θ and for all x ∈ I1,

∂f t(x) = f
(
φ−1
θ ◦ φt(x)

)
∂d
[
φ−1
θ ◦ φt

]
(x) + f ′ (φ−1

θ ◦ φt(x)
)

d
[
φ−1
θ ◦ φt

]
(x)∂

[
φ−1
θ ◦ φt

]
(x),

where

∂
[
φ−1
θ ◦ φt

]
(x) = ∂φt(x)d

[
φ−1
θ

]
(φt(x)) ,

∂d
[
φ−1
θ ◦ φt

]
(x) = ∂dφt(x)d

[
φ−1
θ

]
(φt(x)) + ∂φt(x)dφt(x)d

2
[
φ−1
θ

]
(φt(x)) .

Hence, under (AD4) and (AD5)

sup
t∈Θ

∣∣∂f t(x)
∣∣ < +∞. (7.1)

7.1. Proof of Theorem 3

With Fn = σ{ε0, . . . , εn}, θ̂n−1 is measurable with respect to Fn−1. Let for

all x ∈ I1,

Wn(x) =
1

hn
K

(
x− Zn(θ̂n−1)

hn

)
.

Then, we have the decomposition, for all x ∈ I1, nf̂n(x) = Mn(x)+Nn(x), where

Mn(x) =
n∑

i=1

E [Wi(x)|Fi−1] , (7.2)

Nn(x) =

n∑
i=1

(Wi(x)− E [Wi(x)|Fi−1]) . (7.3)
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For a fixed θ̂n−1, f
θ̂n−1 is the density of Zn(θ̂n−1), so, with v = (x− u)/hi, we

have

E [Wi(x)|Fi−1] =

∫
R

1

hi
K

(
x− u

hi

)
f θ̂i−1(u)du

=

∫
R
K(v)f θ̂i−1(x− hiv)dv.

Hence,

E [Wi(x)|Fi−1]− f θ̂i−1(x) =

∫
R

(
f θ̂i−1(x− vhi)− f θ̂i−1(x)

)
K(v)dv.

As f t is twice continuously differentiable, for all t ∈ Θ, there exists a real zi =
x− vhiy, with 0 < y < 1, such that

f t(x− vhi)− f t(x) = −vhidf
t(x) +

(vhi)
2

2
d2f t(zi). (7.4)

Using the parity of K and preliminary remarks on d2f t, we obtain that∫
R

(
f t(x− vhi)− f t(x)

)
K(v)dv =

∫
R

(vhi)
2

2
d2f t(zi)K(v)dv

which implies that

sup
t∈Θ

∣∣∣∣∫
R

(
f t(x− vhi)− f t(x)

)
K(v)dv

∣∣∣∣ 6 h2i
2

sup
t∈Θ,z∈I1

∣∣d2f t(z)
∣∣ ∫

R
v2K(v)dv.

Consequently, there exists C2 > 0 such that∣∣∣E [Wi(x)|Fi−1]− f θ̂i−1(x)
∣∣∣ 6 C2h

2
i . (7.5)

Since f t is a continuous function with respect to t, and θ̂n converges to θ almost
surely, we have for all x ∈ I1,

f θ̂n−1(x)
i→∞−−−→ f(x) a.s.. (7.6)

Consequently, Cesaro’s Theorem and (7.5) imply that

1

n
Mn(x)

n→∞−−−→ f(x) a.s.. (7.7)

Since K is bounded, (Nn(x)) is a square integrable martingale whose predictable
quadratic variation is given by

< N(x) >n =
n∑

i=1

E
[
N2

i (x)|Fi−1

]
−N2

i−1(x)

=

n∑
i=1

E
[
W 2

i (x)|Fi−1

]
− E2 [Wi(x)|Fi−1] .
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We have

E
[
W 2

i (x)|Fi−1

]
=

1

hi

∫
K2(v)f θ̂i−1(x− hiv)dv.

However, (7.4), together with the regularity of f t(x) and the parity of K, implies
that

sup
t∈Θ

∣∣∣∣∫
R

1

hi

(
f t(x− vhi)− f t(x)

)
K2(v)dv

∣∣∣∣ 6 hi
2

sup
t∈Θ,z∈I1

∣∣d2f t(z)
∣∣ ∫

R
v2K2(v)dv.

Consequently, there exists C3 > 0 such that∣∣∣∣E [W 2
i (x)|Fi−1

]
− ν2

hi
f θ̂i−1(x)

∣∣∣∣ 6 C3hi, (7.8)

where ν2 =
∫
RK2(u)du. It follows from (7.6) and the Toeplitz Lemma that

lim
n→∞

1∑n
i=1 h

−1
i

n∑
i=1

1

hi
f θ̂i−1(x) = f(x) a.s..

From the elementary equivalence

n∑
i=1

1

hi
∼ n1+α

α+ 1
,

lim
n→∞

1

n1+α

n∑
i=1

ν2

hi
f θ̂i−1(x) =

ν2

α+ 1
f(x) a.s..

Now (7.8) leads to

lim
n→∞

1

n1+α

n∑
i=1

E
[
W 2

i (x)|Fi−1

]
=

ν2

α+ 1
f(x) a.s., (7.9)

while (7.5), together with (7.6) and Cesaro’s Theorem, implies that

lim
n→∞

1

n

n∑
i=1

E2 [Wi(x)|Fi−1] = f2(x). (7.10)

Then, as α > 0, we can conclude from (7.9) and (7.10) that

lim
n→∞

< N(x) >n

n1+α
=

ν2

α+ 1
f(x) a.s..

We obtain from the strong law of large numbers for martingales given e.g. by The-

orem 1.3.15 of Duflo (1997) that for any γ > 0, (Nn(x))
2 = o

(
n1+α (log(n))1+γ

)
a.s., which ensures that for all x ∈ I1,

1

n
Nn(x)

n→∞−−−→ 0 a.s.. (7.11)
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Combining (7.7) and (7.11), one obtains that for all x ∈ I1,

f̂n(x)
n→∞−−−→ f(x) a.s. (7.12)

ending the proof of Theorem 3.

7.2. Proof of Theorem 4

We show that, for all x ∈ I1,

E
[∣∣∣f̂n (x)− f(x)

∣∣∣2] n→∞−−−→ 0.

It follows from the bias-variance decomposition that

E
[∣∣∣f̂n (x)− f(x)

∣∣∣2] = Bn(x) + Vn(x), (7.13)

where

Bn(x) =
∣∣∣E [f̂n (x)]− f(x)

∣∣∣2 , (7.14)

Vn(x) = E
[∣∣∣f̂n (x)− E

[
f̂n(x)

]∣∣∣2] . (7.15)

We can write

E
[
f̂n (x)

]
− f(x) =

1

n

n∑
i=1

E
[
Wi(x)− f(x)

]
=

1

n

n∑
i=1

E
[
E [Wi(x)|Fi−1]− f(x)

]
.

In addition, (7.5) implies that

E
[∣∣∣E [Wn(x)|Fn−1]− f θ̂n−1(x)

∣∣∣] n→∞−−−→ 0. (7.16)

It follows from the boundeness of f θ̂n−1(x) and (7.6), together with the Domi-

nated Convergence Theorem, that

E
[∣∣∣f θ̂n−1(x)− f(x)

∣∣∣] n→∞−−−→ 0. (7.17)

Hence, we deduce from (7.16) and (7.17) that

E
[
E [Wi(x)|Fn−1]− f(x)

] n→∞−−−→ 0,

which implies by Cesaro’s Theorem that∣∣∣E [f̂n (x)]− f(x)
∣∣∣ n→∞−−−→ 0
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leading to

Bn(x)
n→∞−−−→ 0. (7.18)

Now we focus on the variance term Vn(x). For all 1 ≤ i ≤ n and all x ∈ I1, let

Ui(x) = Wi(x)− E [Wi(x)] . (7.19)

We have the decomposition

Vn(x) =
1

n2

n∑
i=1

E
[
Ui(x)

2
]
+

2

n2

n∑
i=1,i<j

E [Ui(x)Uj(x)] . (7.20)

If i < j, E [Ui(x)Uj(x)|Fj−1] = Ui(x)E [Uj(x)|Fj−1] . In addition, (7.5) implies

that ∣∣∣E [Uj(x)|Fj−1]− f θ̂j−1(x) + E
[
f θ̂j−1(x)

]∣∣∣ ≤ 2C2h
2
j .

Hence,

−2C2h
2
j |Ui(x)| ≤ E [Ui(x)Uj(x)|Fj−1]− Ui(x)f

θ̂j−1(x) + Ui(x)E
[
f θ̂j−1(x)

]
≤ 2C2h

2
j |Ui(x)| .

Thus, taking expectation in the previous inequality leads to

−2C2h
2
jE [|Ui(x)|] ≤ E [Ui(x)Uj(x)]− E

[
Ui(x)f

θ̂j−1(x)
]
+ E [Ui(x)]E

[
f θ̂j−1(x)

]
≤ 2C2h

2
jE [|Ui(x)|] .

Finally, we obtain that

|E [Ui(x)Uj(x)]| ≤
∣∣∣E [Ui(x)f

θ̂j−1(x)
]
−E [Ui(x)]E

[
f θ̂j−1(x)

]∣∣∣+2C2h
2
jE [|Ui(x)|].

(7.21)

Since

E
[
Ui(x)f

θ̂j−1(x)
]
− E [Ui(x)]E

[
f θ̂j−1(x)

]
= E

[
Ui(x)

(
f θ̂j−1(x)− f(x)

)]
+
(
f(x)− E

[
f θ̂j−1(x)

])
E [Ui(x)] , (7.22)

(7.21), (7.22), together with the Cauchy-Schwartz inequality implies that

E [|Ui(x)Uj(x)|] ≤ 2
√

E [Ui(x)2]

(√
E
[(

f θ̂j−1(x)− f(x)
)2]

+ C2h
2
j

)
. (7.23)

The definition (7.19) of Ui(x) also leads to E
[
U2
i (x)

]
≤ E

[
W 2

i (x)
]
which implies,

by (7.8), that

E
[
U2
i (x)

]
≤ ν2

hi
E
[
f θ̂i−1(x)

]
+ C3hi. (7.24)
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Let C be a constant which does not depend on n. Now, (3.8) implies that, for

all n ≥ 0,

E
[(

θ̂n − θ
)2]

≤ C

n
. (7.25)

Then, using the regularity of f , we obtain that, for all x ∈ I1,∣∣f t (x)− f (x)
∣∣ ≤ sup

t∈Θ

∣∣∂f t(x)
∣∣ |t− θ| .

Hence, (7.1) and (7.25) lead to√
E
[∣∣∣f θ̂n−1(x)− f(x)

∣∣∣2] ≤ C√
n
. (7.26)

In all, (7.23), (7.24), and (7.26) imply that

E [|Ui(x)Uj(x)|] ≤ 2

√ν2

hi
E
[
f θ̂i−1(x)

]
+ C3hi

( C√
j
+ C2h

2
j

)
. (7.27)

Using the boundedness of f t(x), we obtain that

E [|Ui(x)Uj(x)|] 6 C

(
1√
jhi

+
h2j√
hi

)
. (7.28)

Moreover, if hn = 1/nα,

n∑
i=1,i<j

1√
jhi

=

n∑
j=2

1

j1/2

j−1∑
i=1

iα/2 ≤
n∑

j=2

jα/2+1

j1/2
≤ n(3+α)/2,

n∑
i=1,i<j

h2j√
hi

=

n∑
j=2

h2j

j−1∑
i=1

iα/2 ≤
n∑

j=2

jα/2+1

j2α
≤ n2−3α/4.

From these calculations and from (7.28),

1

n2

n∑
i=1,i<j

E [|Ui(x)Uj(x)|] ≤ C
(
n(−1+α)/2 + n−3α/4

)
, (7.29)

which tends to 0 as n goes to infinity, as 0 < α < 1. With (7.24) and the

boundeness of f t, we have

1

n2

n∑
i=1

E
[
U2
i (x)

]
≤ C

1

n2

n∑
i=1

1

hi
≤ C

nα+1

n2
≤ Cn−1+α, (7.30)
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which tends to 0 as n goes to infinity, as α < 1. Hence, (7.20), (7.29), and (7.30)

let us conclude that, for all x ∈ I1,

Vn(x)
n→∞−−−→ 0. (7.31)

With (7.13), (7.18), and (7.31), we finish the proof of Theorem 4.
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