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Abstract: We prove Hill’s (1975) tail index estimator is asymptotically normal

when the employed data are generated by a stationary parametric time series

{xt(θ
0) : t ∈ Z} and θ0 is an unknown k × 1 vector. We assume xt(θ

0) is un-

observable but θ0 is estimable with estimator θ̂n and sample size n ≥ 1, and that

the filtered series xt(θ̂n) is observed and used to estimate the tail index. Natural

applications include regression residuals, GARCH filters, and weighted sums based

on an optimization problem like optimal portfolio selection. Our main result sub-

stantially extends Resnick and Stărică’s (1997) theory for estimated AR i.i.d. errors

and Ling and Peng’s (2004) theory for estimated ARMA i.i.d. errors to a wide range

of filtered time series since we do not require xt(θ
0) to be i.i.d., nor generated by a

linear process with geometric dependence. We assume xt(θ
0) is β-mixing with pos-

sibly hyperbolic dependence, covering ARMA-GARCH filters, ARMA filters with

heteroscedastic errors of unknown form, nonlinear filters like threshold autoregres-

sions, and filters based on mis-specified models, as well as i.i.d. errors in an ARMA

model. Finally, as opposed to Resnick and Stărică (1997) and Ling and Peng (2004)

we do not require θ̂n to be super-
√
n-convergent when xt(θ

0) has an infinite vari-

ance. We allow a far greater variety of plug-ins, including those that are slower

than
√
n, such as QML-type estimators for GARCH models.

Key words and phrases: GARCH filter, regression residuals, tail index estimation,

weak dependence.

1. Introduction

In this paper we establish the asymptotic normality of Hill’s (1975) seminal

tail index estimator for a stationary ergodic, filtered process {xt(θ0) : −∞ <

t <∞}. We assume xt(θ) maps

xt : Θ → R and Θ is a compact subset of Rk for finite k ≥ 1,

and xt(θ) is thrice continuously differentiable with a continuous distribution for

each θ.

We assume θ0 is an unknown unique point in Θ, and that xt(θ
0) is not

observed, but that θ0 is estimable and xt(θ̂n) is observable, where θ̂n is a plug-in

estimator of θ0 and n ≥ 1 is the sample size. We therefore use xt(θ̂n) to estimate

the tail index of xt := xt(θ
0).

http://dx.doi.org/10.5705/ss.2012.212
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If xt is observed then the reader can refer to Hsing (1991) and Hill (2010,
2011a) for what appears to be the most general limit theory for Hill’s (1975)
estimator in terms of allowed dependence and non-stationarity. See also Ilić
(2012) for an extension to the missing data case. We assume xt is not observed
and θ0 must be estimated.

The dominant example is the use of regression model residuals for tail index
estimation, including use of a GARCH model to control for conditional het-
eroskedasticity. This offers an advantage for stationary ARMA processes since
the observed series and the i.i.d. errors xt have the same tail index, and the Hill
(1975) estimator is more efficient if residuals are used for computation provided
they are based on an estimator that is super-n1/2-convergent when E[x2t ] = ∞
(Resnick and Stărică (1997)).

It is standard practice in macroeconomics and finance to use pre-filtering to
control for heteroskedasticity, while GARCH-type feedback implies heavy tails
(e.g., Basrak, Davis, and Mikosch (2002), Liu (2006), Cline (2007)). GARCH fil-
ters are particularly relevant for tests of volatility spillover in financial markets,
and knowing whether the GARCH error is heavy tailed has major repercussions
on the test approach and estimator used (for theory and references see Hill and
Aguilar (2013) and Aguilar and Hill (2014). As another example, GARCH filters
require a parameter estimator and if the GARCH error has an infinite fourth
moment then QML has a slow convergence rate (Hall and Yao (2003)), while
robust non-Gaussian QML estimators in Berkes and Horvath (2004) and Zhu
and Ling (2011) and robust Gaussian QML in Hill (2014a) converge faster and
may have better small sample properties. Further, in finance the return xt on an
optimal portfolio involves a weighted sum of asset returns

∑k
i=1 θ

0
i yi,t with un-

known but estimable weights θ0, and yi,t is the i
th asset return. Typically returns

yi,t are dependent, conditionally heteroscedastic, asymmetrically distributed or
generated by a nonlinear process, and heavy tailed (cf., Embrechts, Klüppleberg,
and Mikosch (1997)).

We assume xt has support [0,∞) and has, for each t, a common regularly
varying distribution tail with tail index κ > 0:

P (xt > a) = a−κL(a), where a > 0 and L(a) is slowly varying. (1.1)

If {yt} is the process of interest then xt simply represents a tail-specific version:
|yt|, −ytI(yt < 0) or ytI(yt > 0). See Resnick (1987) for a compendium treatment
of regular variation. Let x(i) be the order statistics of the sample {xt}nt=1: x(1) ≥
x(2) ≥ · · · ≥ x(n), and let {mn : n ∈ N} be an intermediate order sequence:
1 ≤ mn < n, mn → ∞ as n → ∞ and mn/n → 0. Hill’s (1975) estimator is the
inverse of the mean log peak-over-threshold

κ̂mn(θ) =

(
1

mn

mn∑
i=1

ln

(
x(i)(θ)

x(mn+1)(θ)

))−1

and write κ̂mn := κ̂mn(θ
0).
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Thus, κ̂mn(θ) may estimate the left or right index of some yt, or the tail index

of |yt|.
We prove

m1/2
n

(
κ̂−1
mn

(θ̂n)− κ−1
)

σmn

d→ N(0, 1),

with the mean-squared-error [mse] σ2mn
:= E(m

1/2
n (κ̂−1

mn
− κ−1))2, as long as xt

is absolutely regular (i.e. β-mixing) with summable coefficients, and the slowly

varying tail component L(a) satisfies a second order property. See Theorem 1

in Section 2. We also require the plug-in θ̂n to converge to θ0 sufficiently fast.

This is intuitive since m
1/2
n is the rate of convergence of κ̂−1

mn
under general con-

ditions of memory and heterogeneity (Hill (2010)): if θ̂n
p→ θ0 slightly faster

than m
1/2
n then θ̂n will not affect κ̂−1

mn
(θ̂n) asymptotically. In particular we re-

quire m
1/2
n ln(n)(θ̂n − θ0)

p→ 0. The latter is easy to satisfy since the number of

tail observations mn is chosen by the analyst, while setting m
1/2
n ln(n) = o(n1/2)

implies sub-n1/2-convergent estimators θ̂n are allowed. This is important since

some QML-type estimators for GARCH are sub-n1/2-convergent if the error has

an infinite fourth moment (Hall and Yao (2003), Hill (2014a)); and nonparamet-

ric estimators based on kernel smoothing, GMM estimators with nearly weak

instruments, and estimators with in-fill asymptotics may be sub-n1/2-convergent

in general (see Antoine and Renault (2012)).

The mse σ2mn
of κ̂−1

mn
is the proper scale for κ̂−1

mn
(θ̂n): by assuming θ̂n

p→ θ0

faster than m
1/2
n it is as though θ0 were known. The same result in the i.i.d.

case for linear filters is derived in Resnick and Stărică (1997) and Ling and Peng

(2004) since they assume θ̂n is super-n1/2-convergent and, rather trivially, mn

must be o(n). Consult Hill (2010) for a non-parametric estimator of σ2mn
for a

broad class of dependent processes that covers the present environment. If xt is

i.i.d., or is stochastic volatility, or in general exhibits a sufficient degree of serial

extremal orthogonality, then σ2mn
→ κ−2 (Hall (1982), Hill (2011b), Hill and

Shneyerov (2013)). Nevertheless, a non-parametric estimator of σ2mn
may lead to

better small sample inference since the filtered series {xt(θ̂n)}nt=1 may be serially

dependent even when xt is independent (cf., Hill and Shneyerov (2013)). See

the simulation study in Section 4. The omitted case where θ̂n
p→ θ0 not faster

than m
1/2
n is certainly possible but requires handling how θ̂n is computed and

therefore impacts κ̂−1
mn

(θ̂n) asymptotically.

In terms of stationarity and dependence, greater generality is certainly pos-

sible. This includes short range dependent mixing and mixingale-like properties,

like near epoch dependence assigned only to extreme values (e.g., Hsing (1991),

Hill (2009, 2010, 2011a)), and long range dependence for linear processes with
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i.i.d. errors (Beran, Das, and Schnell (2012)) or stochastic volatility (Hill (2011b),

Kulik and Soulier (2011)). In order to assess how θ̂n impacts κ̂mn(θ̂n), however,

we exploit a first order expansion around θ0 that requires a Gaussian uniform

central limit theorem for a tail empirical process on a compact neighborhood of

θ0. While the setting here is not the most general, we aim for compactness by

using an elegant result due to Doukhan, Massart, and Rio (1995) for a stationary

weakly dependent β-mixing process, the conditions of which are easily satisfied

if xt(θ) is continuous with a continuous bounded distribution. A more general

pointwise limit theory for α-mixing processes without reference to mixing coeffi-

cient decay can be found in Peligrad (1996), for example. This, however, requires

an additional latticed correlation property that is difficult to verify in practice

(cf., Bradley (1993)). A limit theory for a simple tail empirical process of a long

range dependent stochastic volatility process is given in Kulik and Soulier (2011).

They show by application that Hill’s (1975) estimator is still asymptotically nor-

mal. In order to extend that result here, however, we would need a more general

weak limit theory in view of the mapping xt : Θ → R that occurs in the tail

empirical process.

Although tail exponents are frequently computed from regression model

residuals, there are few results in the literature to justify the presumed asymp-

totic properties that typically ignore plug-in sampling error. Resnick and Stărică

(1997), however, develop a Hill-estimator theory for estimated AR errors and

Ling and Peng (2004) extend their results to an ARMA filter under fewer as-

sumptions. In both cases the true unobserved errors are assumed i.i.d., and the

plug-in is assumed to be super-n1/2-convergent when E[x2t ] = ∞, e.g., OLS and

LAD (Davis, Knight, and Liu (1992)). Each result limits the type of filter, de-

pendence, and plug-in allowed, and each presumes we know the true model. For

example, we cannot use a GARCH filter estimated by QML or QML-type estima-

tors in Hill (2014a), Berkes and Horvath (2004), and Zhu and Ling (2011) since

these estimators are not super-n1/2-convergent in any case. We also cannot use

a mis-specified model, for example an AR model, when the true model is ARMA

with an i.i.d. error, since the regression error is then dependent. Similarly we

cannot use an ARMA filter if the error is non-i.i.d. as with an heteroscedastic

error of unknown form, or a GARCH(1,1) error that is intrinsically heavy tailed

(Mikosch and Stărică (2000)). The theory presented here allows for dependent

data, nonlinear filters, regression models with non-i.i.d. errors, mis-specified mod-

els, and sub-n1/2-convergent plug-in estimators.

Hill-estimator asymptotics are grounded on a tail empirical process that

arises from the use of an intermediate order statistic x(mn+1)(θ), cf., Hsing (1991).

An asymptotic theory for any tail index estimator based on such order statistics

follows similarly. Examples include Pickands (1975) and Dekkers, Einmahl, and

de Haan (1989), but there are many more.
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In Section 2 we present the main result, and examples follow in Section 3.
Section 4 contains a simulation study. Proofs are in the Supplementary Material,
Hill (2014c).

Throughout, [z] denotes the integer part of z ∈ R.

2. Estimation

We state all assumptions and then present the main result. Drop θ0 every-
where, e.g., xt = xt(θ

0) and κ̂mn = κ̂mn(θ
0). The first and second derivatives of

xt(θ) are

gt(θ) = [gi,t(θ)] :=
∂

∂θ
xt (θ) ∈ Rk and ht(θ) = [hi,j,t(θ)] :=

∂2

∂θ∂θ′
xt (θ) ∈ Rk×k.

Derivatives at a point are written (∂/∂θ)xt(θ̃) = (∂/∂θ)xt (θ) |θ̃ and (∂/∂θ)xt =
(∂/∂θ)xt (θ) |θ0 . Let || · || denote the Euclidean norm of a vector or matrix, and
|| · ||2 the L2-norm.

2.1. Assumptions and main result

Assumption 1 (Smoothness and Moments).
a. Let {ℑt}t∈Z be a sequence of σ-fields that do not depend on θ and define

F := σ(∪t∈Zℑt). xt(θ) lies on a complete probability measure space (Ω,F , P )
and is ℑt-measurable. Borel functions of xt(θ) satisfy Pollard (1984, Appendix
C)’s permissibility criteria.

b. xt(θ) is stationary, ergodic, and thrice continuously differentiable with ℑt-
measurable stationary and ergodic derivatives gt(θ) and ht(θ).

c. Each wt (θ) ∈ {xt (θ), gi,t (θ), hi,j,t(θ)} is governed by a non-degenerate distri-
bution that is absolutely continuous with respect to Lebesgue measure, with uni-
formly bounded derivatives: supθ∈Θ supa∈R ||(∂/∂θ)P (wt (θ) ≤ a)|| < ∞ and
supθ∈Θ supa∈R{(∂/∂a)P (wt (θ) ≤ a)} < ∞. Further E[supθ∈Θ |wt(θ)|ι] < ∞
for some tiny ι > 0.

d. infθ∈Θ xt(θ) ≥ δ a.s. for some δ > 0.

Remark 1. Assumption 1.a ensures probabilities and expectations of majorants
of functions of xt (θ) are well defined, in which case it is understood that we use
outer probabilities and expectations. Cf., Dudley (1978).

Remark 2. Differentiability permits standard expansions around θ0. The
bound infθ∈Θ xt(θ) ≥ δ > 0 a.s. ensures gi,t(θ)/xt(θ) is uniformly Lι -bounded
for tiny ι > 0, and is trivially satisfied for tail index estimation simply by letting
xt(θ) denote xt(θ)+δ for any chosen δ > 0, if necessary. The Lι-boundedness
of gi,t(θ)/xt(θ) is useful in a first order expansion of 1/mn

∑mn
i=1 ln(x(i)(θ̂n))

around θ0.
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We assume xt(θ), for all θ in some neighborhood of θ0, has a distribution

tail that satisfies first and second order regular variation properties. The need to

impose higher order regular variation is treated in depth in Haeusler and Teugels

(1985), Goldie and Smith (1987), and de Haan and Stadtmuller (1996). The

second order property we use is slow variation with remainder, in particular the

condition (SR1) in Goldie and Smith (1987). See also Hsing (1991) and Hill

(2010). Otherwise we do not restrict the tails of xt(θ) outside a neighborhood of

θ0.

Let the sequence {cn(θ)} of positive real mappings cn : Θ → (0,∞) satisfy

the following for any intermediate order sequence {mn}:

P (xt(θ) ≥ cn(θ)) =
mn

n
. (2.1)

The existence of cn(θ) for any θ is assured by distribution smoothness. Let N0(δ)

be a δ-neighborhood of θ: N0(δ) = {θ ∈ Θ : ||θ − θ0|| ≤ δ} for δ > 0.

Assumption 2 (Regular Variation and Fractile Bound).

a. There exists a neighborhood N0(δ) such that

lim
a→∞

sup
θ∈N0(δ)

∣∣∣∣∣ aκ(θ)L(a, θ)
P (xt(θ) > a)− 1

∣∣∣∣∣ = 0. (2.2)

Note L(a, θ0) = L(a) in (1.1). The tail component L(a, θ) is slowly varying

with remainder in a, uniformly on Θ, that is supθ∈N0(δ) |L(λa, θ)/L(a, θ)−1| =
O(h(a)) as a→ ∞ for any λ > 0 where h is a measurable function on (0,∞)

with bounded increase: there exist 0 < D, z0 < ∞, and τ ≤ 0 such that

h(ϑz)/h(z) ≤ Dϑτ some for ϑ ≥ 1 and z ≥ z0 (Goldie and Smith (1987)).

Further, m
1/2
n h(cn) → 0. Moreover, the tail index κ(θ) is locally bounded,

infθ∈N0(δ) κ(θ) > 0 and supθ∈N0(δ) κ(θ) < ∞, and is twice differentiable with

locally bounded derivatives and a Lipschitz first derivative: ||(∂/∂θ)κ(θ)|| <
∞, ||(∂/∂θ)2κ(θ)|| <∞, and ||(∂/∂θ)κ(θ)−(∂/∂θ)κ(θ̃)|| ≤ K||θ− θ̃|| for each
θ, θ̃ ∈ N0(δ).

b. mn → ∞ and mn = o(n/ ln(n)).

Remark 3. Property (a) says any xt(θ) on some neighborhood N0(δ) of θ
0 has

a regularly varying tail. We use the property to derive a uniform limit for the in-

termediate order statistic x(mn+1)(θ). The property is satisfied by various classes

of Markov chains, including ARMA with heavy tailed errors, and stochastic re-

currence equations like GARCH and Random Coefficient Autoregressions, when

the errors satisfy a second order Paretian expansion. See Section 3 for examples.
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Remark 4. The property m
1/2
n h(cn) → 0 implicitly limits how big mn can

be, ensuring that observations are taken from far enough out in the tails. If

xt(θ) is exactly Pareto distributed for any θ then L(a, θ) depends only on θ

hence h(a) = 0. Thus, for a Pareto law there are no restrictions on how many

observations are valid, other than mn = o(n), cf., Haeusler and Teugels (1985)

and Goldie and Smith (1987). We impose mn = o(n/ ln(n)) in (b), even in the

exact Pareto case, to simplify working with the derivative of xt(θ) and therefore

an expansions of κ̂−1
mn

(θ̂n) around θ0. In many cases once m
1/2
n h(cn) → 0 is

assured then (b) automatically holds. See Section 3 for an example.

Assumption 3 (mixing). Define Gt
s(δ) := σ(∪θ∈N0(δ)σ(xτ (θ) : s ≤ τ ≤ t)).

xt(θ) is β-mixing on N0(δ) with summable coefficients: βl := supA⊂G∞
t+l(δ)

E|P (A|Gt
−∞(δ))− P (A)|, where

∑∞
l=1 βl <∞.

Remark 5. Allowed dependence decay is at least geometric βl = O(ρl) where

ρ ∈ (0, 1), and hyperbolic, e.g., βl = O(l−1/ ln(l)). Similar to Assumption 2,

we only need to consider dependence on a neighborhood of θ0. This is key,

however, since some processes {xt(θ)} can only be shown to be mixing on a small

neighborhood of θ0, including GARCH processes. See Section 3.

Remark 6. Our limit theory hinges on the tail empirical process {In,t(θ) : θ ∈
N0(δ)} based on the scaled indicator I(|xt(θ)| ≤ cn(θ)) defined in (2.3) below.

We show in Lemma 1 that the summability
∑∞

l=1 βl <∞ ensures {In,t(θ) : θ ∈
N0(δ)} satisfies a Gaussian uniform central limit theorem, while a Gaussian limit

can be used to argue that
∑∞

l=1 βl <∞ implies short-range dependence in xt(θ)

on N0(δ), an argument dating to Rosenblatt (1956). Interestingly, Kulik and

Soulier (2011) show if in I(|xt| ≤ cn) we replace cn with x(mn+1) as we do in the

Hill (1975) estimator, then a Gaussian limit theory exists for I(|xt| ≤ x(mn+1))

irrespective of long memory. That result, however, does not cover the uniform

central limit theorem for In,t(θ) that we require.

Assumption 4 (Plug-In). There exists a unique point θ0 ∈ Θ such that

m
1/2
n ln(n)(θ̂n − θ0) = op(1).

Theorem 1. Under Assumptions 1 − 4, m
1/2
n (κ̂−1

mn
(θ̂n) − κ−1)/σmn

d→ N(0, 1),

where σ2mn
:= E(m

1/2
n (κ̂−1

mn
− κ−1))2.

Remark 7. The proper scale is σ2mn
as if the true value θ0 were used instead of

the plug-in θ̂n. Therefore, if xt is i.i.d. then m
1/2
n (κ̂−1

mn
(θ̂n)− κ−1)

d→ N(0, κ−2),

cf., Hsing (1991, eq. (2.8)) and Hill (2010, Thm. 2). See Hall (1982, Thm. 2)

for a seminal proof for i.i.d. xt with a second order Paretian tail P (xt > a) =

da−κ(1 +O(a−β)), where β, d, κ > 0.
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Remark 8. Hill (2010) presents a nonparametric estimator σ̂2mn
of σ2mn

using

non-filtered data, e.g., xt. Under regular variation (1.1), a general weak depen-

dence property that covers mixing Assumption 3, and regularity conditions on

mn, the estimator is consistent: σ̂2mn
/σ2mn

p→ 1. Although we do not provide

a proof here, it is readily shown that σ̂2mn
/σ2mn

p→ 1 applies using filtered data

xt(θ̂n), provided Assumptions 1-4 hold. Indeed, since only consistency for σ̂2mn

is at stake, the plug-in need only be consistent θ̂n = θ0 + op(1).

The proof of Theorem 1 is contained in Hill (2014c), and exploits weak limit

theory for tail and non-tail arrays. In particular, we require a result concerning

trimming indicators and order statistics, that may be of independent interest.

Take

In,t(θ) :=
(
n

mn

)1/2

{I (|xt(θ)| ≤ cn(θ))− E [I (|xt(θ)| ≤ cn(θ))]} , (2.3)

where I(·) is an indicator function: I(A) = 1 (or 0) if A is true (or false).

By construction and (2.1): E[In,t(θ)] = 0 and E[I2
n,t(θ)] = (n/mn)P (|xt(θ)| >

cn(θ))× P (|xt(θ)| ≤ cn(θ)) = P (|xt(θ)| ≤ cn(θ)) → 1.

In the following we exploit the concept of weak convergence on a Polish

space, denoted =⇒∗, cf., Hoffmann-Jørgensen (1991). A Polish space is a sep-

arable and completely metrizable space. This generality helps sidestep difficult

measurability issues that arise when proving weak convergence of functions (cf.,

Dudley (1978), Hoffmann-Jørgensen (1991)). In particular, let {Zn(θ) ∈ T } be

a stochastic process on compact T ⊆ Θ, and {Z(θ) ∈ T } be a Gaussian process

with uniformly bounded and uniformly continuous sample paths with respect to

|| · ||2. Let P ∗ denote outer probability. Then {Zn(θ) ∈ T } =⇒∗ {Z(θ) ∈ T }
if Zn(θ) converges in finite dimensional distributions, and {Zn(θ) ∈ T } is tight

in the sense that limδ→0 lim supn→∞ P ∗(sup||θ−θ̃||≤δ |Zn(θ) − Zn(θ̃)| > ε) = 0

∀ε > 0. This approach for proving uniform central limit theorems dates at least

to Dudley (1978).

See the Supplementary Material, Hill (2014c), for a proof.

Lemma 1. Under Assumptions 1 − 3 there exists a Gaussian process {I(θ) :

θ ∈ N0(δ)} with uniformly bounded and uniformly continuous sample paths with

respect to || · ||2 such that

a. {n−1/2
∑n

t=1 In,t(θ) : θ ∈ N0(δ)} =⇒∗ {I(θ) : θ ∈ N0(δ)},

b. supθ∈N0(δ) |m
1/2
n ln(x(mn+1)(θ)/cn(θ))− κ−1n−1/2

∑n
t=1 In,t(θ)|

p→ 0,

c. {m1/2
n ln(x(mn+1)(θ)/cn(θ)) : θ ∈ N0(δ)} =⇒∗ {κ−1I(θ) : θ ∈ N0(δ)}.
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Remark 9. Apply the Mean Value and Continuous Mapping theorems to de-

duce a uniform probability bound for the intermediate order statistic: supθ∈N0(δ)

|x(mn+1)(θ)/cn(θ)− 1| = Op(1/m
1/2
n ).

Remark 10. By construction, {1/n1/2
∑n

t=1 In,t(θ) : θ ∈ N0(δ)} is a type of tail

empirical process. The standard construction is {1/n1/2
∑n

t=1 In,t(u) : u ≥ 0},
where

In,t(u) :=

(
n

mn

)1/2

{I (|xt| > cn + uϑn)− E [I (|xt| > cn + uϑn)]} ,

and {ϑn} are positive norming constants (Rootzén (2009, p.469)). Since trivially

In,t(θ) = −
(
n

mn

)1/2

{I (|xt(θ)| > cn(θ))− E [I (|xt(θ)| > cn(θ))]} ,

a tail empirical process includes a non-tail process (see Hill (2011a)). Lemma

1 extends Theorem 2.1 in Rootzén (2009) for {1/n1/2
∑n

t=1 In,t(u) : u ∈ R}
and compact R ⊂ [0,∞) to a larger function class, since |xt(θ)| > cn(θ) for

θ ∈ Θ generalizes |xt| > cn + uϑn for u ∈ R. Rootzén (2009), however, only

imposes β-mixing on tail information xtI(|xt| > cn) as n → ∞, but by trivial

added steps the same generality applies here. See also Hill (2009, 2010, 2011a).

Similarly, by the proof of Lemma 1.a, we can easily derive weak convergence for

{1/n1/2
∑n

t=1 In,t(θ, u) : θ, u ∈ N0(δ)×R}, where

In,t(θ, u) :=
(
n

mn

)1/2

{I (|xt(θ)| ≤ cn(θ) + uϑn)− E [I (|xt(θ)| ≤ cn(θ) + uϑn)]} .

3. Examples

We study filters and plug-ins for ARMA, GARCH and nonlinear GARCH

models with errors ϵt. Throughout ϵt is an i.i.d. random variable with an ab-

solutely continuous distribution that is positive on R, with supa∈R(∂/∂a)P (ϵt ≤
a) < ∞. In each example we impose a second order tail expansion for ϵt (or a

similar error) for brevity (cf., Hall (1982), Haeusler and Teugels (1985)):

P (|ϵt| > a) = da−κ
(
1 + ca−β

)
, β, c, d, κ ∈ (0,∞) . (3.1)

Let the fractile sequence {mn} satisfy

mn → ∞ and mn = o(n2β̃/(2β̃+κ)), where β̃ := min{β, 1}. (3.2)

If a higher order regular variation property is used in place of (3.1), then (3.2)

generally needs to be changed to ensure all parts of Assumption 2 hold. See
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Haeusler and Teugels (1985) and Goldie and Smith (1987) for theory and exam-

ples. In practice mn = o(n2β̃/(2β̃+κ)) is easily satisfied by setting mn = O(ln(n)),

e.g., mn = [λ ln(n)] for some λ > 0.

3.1. ARMA error

Consider estimating the tail index of the i.i.d. error ϵt in an ARMA(p, q)

process yt =
∑p

i=1 a
0
i yt−1+

∑q
i=1 b

0
i ϵt−i+ ϵt, where ϵt has tail (3.1), cf., Ling and

Peng (2004). Define polynomials a(z) := 1−
∑p

i=1 aiz
i and b(z) := 1+

∑q
i=1 biz

i,

and assume a0(z) and b0(z) have no common roots, and that all roots lie outside

the unit circle. Although yt has the same tail index as ϵt (Brockwell and Cline

(1985)), use of the unobserved ϵt for tail index estimation leads to an efficiency

gain for tail index estimation (Ling and Peng (2004)).

Let A ⊂ Rp and B ⊂ Rq be compact sets of vectors a and b with polynomial

roots outside the unit circle, and let Θ = A × B. Define recursively ϵt(θ) :=

yt−
∑p

i=1 aiyt−1−
∑q

i=1 biϵt−i(θ) hence ϵt = ϵt(θ
0). We restrict attention to tail-

sum P (|ϵt| > a) tail index estimation, hence the filter xt(θ) is a smoothed absolute

error bounded from zero: xt(θ) = (ϵ2t (θ) + ε)1/2 for any small ε > 0. Trivially

xt = (ϵ2t + ε)1/2 has the same tail index as |ϵt|, while xt(θ) ≥ ε1/2 > 0 a.s. and

xt(θ) is three-times continuously differentiable. In this, and each subsequent

example, if an estimate of the left or right tail index is desired then we use

(ϵ2t (θ)I(ϵt(θ) < 0) + ε)1/2 or (ϵ2t (θ)I(ϵt(θ) > 0) + ε)1/2.

Valid plug-ins include a large variety of M-estimators since under mild condi-

tions these are at least n1/2-convergent. Examples include smooth M-estimators

and LAD (Davis, Knight, and Liu (1992)), least tail-trimmed squares (Hill (2013)),

and weighted LAD (Zhu and Ling (2012)).

Lemma 2. Assumptions 1 − 3 hold. In the general ARMA case Assumption 4

holds for estimators in Davis (1996), Mikosch et al. (1995) and Zhu and Ling

(2012). In the AR case Assumption 4 holds for estimators in Hill (2013) and

Davis, Knight, and Liu (1992).

3.2. Mis-specified autoregression error

Assume yt =
∑∞

i=0 ψiϵt−i, where
∑∞

i=0 |ψi| <∞, and ϵt has a zero mean and

tail (3.1) with index κ > 1. Assume yt is β-mixing with summable coefficients.

The mixing assumption is mild since yt is α-mixing with summable coefficients

((Doukhan, 1994, p.74)), and in the stationary ARMA case yt is geometrically

β-mixing (Mokkadem (1988), Doukhan (1994, p.99)). By independence and co-

efficient summability yt has the same tail index as ϵt (cf., Brockwell and Cline

(1985)).
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We can always model yt as a finite order autoregression yt =
∑p

i=1 θ
0
i yt−i+vt

with a zero mean error vt. For example, there exists θ0 such that
∑p

i=1 θ
0
i yt−i

is the minimum Lr-norm predictor for r > 1, hence E[v<r−1>
t yt−i] = 0 where

v<r−1>
t is the signed power sign(vt)×|vt|r (cf., Giles (1967)). Further, although a
minimum || · ||2-predictor is not well defined, the least squares estimator identifies
θ0 := ([

∑∞
i=0 ψi−j1ψi−j2 ]

p
j1,j2=1)

−1 × [
∑∞

i=0 ψiψi−j ]
p
j=1, cf., Davis and Resnick

(1986).
A finite order AR may not be the true data generating process, which means

vt may not be i.i.d. Nevertheless, use of a mis-specified model still leads to valid
inference on the tail index of yt since vt is also a linear convolution of i.i.d. ϵt,
hence it has the same tail index as ϵt and therefore yt (Brockwell and Cline
(1985)).

Define vt(θ) := yt−
∑p

i=1 θiyt−i and consider the filter xt(θ) = (v2t (θ)+ ε)1/2

for small ε > 0. Let (3.2) hold.

Lemma 3. Assumptions 1−3 hold, and the OLS estimator satisfies Assumption 4.

Remark 11. Other estimators are evidently valid for AR models when the true
DGP is yt =

∑∞
i=0 ψiϵt−i with possibly heavy tailed ϵt, including each estimator

cited in Lemma 2 as well as a generalization to linear processes of the heavy
tail robust method of moments estimator in Hill (2014a). OLS, however, is
easily shown to satisfy Assumption 4 by exploiting limit theory results for sample
autocorrelations in Davis and Resnick (1986).

3.3. GARCH error

Consider estimating the tail index of the error ϵt in a GARCH(1,1) model
yt = σtϵt, where σ

2
t = ω0 +α0y2t−1 + β0σ2t−1, and ω

0 > 0, α0, β0 ∈ (0, 1). Assume
the error ϵt has a zero mean, unit variance, tail (3.1) with index κ > 2, and
E[ln(α0ϵ2t +β

0)] < 0. Define θ := [ω, α, β]′ and assume θ lies in a compact subset
Θ of (0,∞)× (0, 1)× (0, 1) with θ0 in the interior such that E[ln(αϵ2t + β)] < 0
∀θ ∈ Θ. Define the GARCH error function

ϵt(θ) =
yt

σt(θ)
=

yt(
ω + αy2t−1 + βσ2t−1(θ)

)1/2 .
The filter is xt(θ) = (ϵ2t (θ) + ε)1/2 for small ε > 0. Let (3.2) hold.

Under the stated properties {yt, σt} are strictly stationary and geometrically
β-mixing (Nelson (1990), Carrasco and Chen (2002)). Valid plug-ins include at
least QML, Log-LAD (Peng and Yao (2003)), Quasi-Maximum Tail-Trimmed
Likelihood (Hill (2014a)), and weighted Laplace QML (Zhu and Ling (2011)).
Other non-Gaussian QML estimators in Berkes and Horvath (2004) are valid
provided moment conditions hold other than, and possibly in place of, the con-
ventional GARCH moment conditions E[ϵt] = 0 and E[ϵ2t ] = 1 (see Hill (2014a)).
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Lemma 4. Assumptions 1−3 hold, and Log-LAD, Quasi-Maximum Tail-Trimmed

Likelihood and weighted Laplace QML satisfy Assumption 4. QML satisfies As-

sumption 4 when κ > 4, and when κ ∈ (2, 4] provided mn = o(n2−4/κ).

Remark 12. If κ ∈ (2, 4] then the QML rate is n1−2/κ/L(n) ≤ n1/2/L (n) for

some slowly varying L (n) → ∞ (Hall and Yao (2003)). QML therefore satisfies

Assumption 4 only if mn = o(n2−4/κ), in addition to (3.2). It suffices to set

mn = O(ln(n)).

3.4. AR-ARCH: ARCH error filter

Consider an AR(1)-ARCH(1) model yt = ϕ0yt−1+(ω0+α0y2t−1)
1/2ϵt, where

|ϕ0| < 1, ω0 > 0, and α0 ∈ (0, 1), and ϵt is i.i.d. with a zero mean, unit variance,

and tail (3.1) with index κ > 2. Cf., Borkovec and Klüppelberg (2004). Define

θ = [ϕ, ω, α]′ and the ARCH error ϵt(θ) := (yt − ϕyt−1)/(ω + αy2t−1)
1/2 on any

compact subset Θ of (−1, 1)× (0,∞)× (0, 1). Consider a filter derived from the

ARCH error xt(θ) = (ϵ2t (θ) + ε)1/2 for small ε > 0. Let (3.2) hold.

There are few results in the literature concerning estimation of ARMA-

GARCH models with heavy tailed errors. We therefore only consider Zhu and

Ling’s (2011) estimator. Note that Hill’s (2014a) Quasi-Maximum Tail-Trimmed

Likelihood and method of moments estimators easily extend to ARMA-GARCH

models.

Lemma 5. Assumptions 1−3 hold and weighted Laplace QML satisfies Assump-

tion 4.

3.5. AR-GARCH: AR error filter

The model is an AR(1) yt = θ0yt−1 + ut with GARCH(1,1) error ut =

σtϵt and σ2t = ω0 + α0u2t−1 + β0σ2t−1, where |θ0| < 1, ω0 > 0, α0, β0 ∈ (0, 1),

E[ln(α0ϵ2t + β0)] < 0 and ϵt is i.i.d. with a zero mean and unit variance. In

this case the filter is based on the AR error xt(θ) = (u2t (θ) + ε)1/2. Distribution

smoothness of ϵt and stationarity ensure ut has a power law tail, irrespective of

whether ϵt has tail (3.1).

Lemma 6. Assumptions 1 and 3 hold, and xt has tail P (|xt| > a) = da−κ(1 +

o(1)). If ϵt has a symmetric distribution then Hill’s (2014b) Generalized Empir-

ical Likelihood estimator satisfies Assumption 4.

Assumption 2.a remains to be resolved in general, while Assumption 2.b can

always be enforced. Although GARCH ut (and therefore xt) has a first order

power law tail P (|ut| > a) = da−κ(1 + o(1)) under very general conditions on

ϵt, we are not aware of a set of conditions that ensure a second order property
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like (3.1). See Basrak, Davis, and Mikosch (2002) for references, and see Geluk

et al. (1997) for second order regular variation that extends to linear processes∑∞
i=0 ψiϵt−i when i.i.d. ϵt has second order tail (3.1). If, however, ut has tail

(3.1) then so does ut(θ) by the proof of Lemma 4, cf., Lemma 2. In order to

apply Theorem 1 we would have to assume a second order property on ut such

that all aspects of Assumption 2.a hold.

Plug-in choices are limited due to the incomplete theory for parametric es-

timation with a non-i.i.d. heavy tailed error. If we assume the GARCH error

has a symmetric distribution then Hill’s (2014b) class of GEL estimators is n1/2-

convergent and therefore valid for Assumption 4. Hill (2013, 2014a) develops

tail-trimmed M-estimators for AR and GARCH models with i.i.d. errors. It

is straightforward to combine technical arguments in those papers for a tail-

trimmed least squares estimator for an AR model with a geometrically β-mixing

error that covers GARCH. In this case at worst tail-trimming leads to an esti-

mator with the rate n1/2/gn for some sequence of numbers {gn} that satisfies

1 ≤ gn < n and gn → ∞ as slowly as desired (see the proof of Lemma 4,

above). Zhu and Ling (2011, 2012) present estimators for ARMA models with

an i.i.d. error and ARMA-GARCH where all parameters must be estimated. Ev-

idently their theory can be extended to cover AR parameter estimation when the

error is non-i.i.d.

3.6. AR with heteroscedastic error: AR error filter

In the previous example we imposed a GARCH structure on the error, but

in practice we may only assume yt = θ0yt−1 + ut with error ut = σtϵt and not

know the form of heteroskedasticity σt. In view of Lemma 6 and the subsequent

remark, Assumptions 1-3 all hold if the AR error ut has tail (3.1) and is a

geometrically β-mixing martingale difference. In terms of Assumption 4, Hill’s

(2014b) GEL estimator is n1/2-convergent and therefore valid provided ϵt has a

symmetric distribution.

3.7. Nonlinear or asymmetric GARCH error

Consider a nonlinear or asymmetric GARCH(1,1) model yt = σtϵt, where

σ2t = f(σ2t−1, yt−1, θ
0) for some mapping f : [0,∞)×(−∞,∞)×Θ → [0,∞) that

is twice differentiable in each argument, and Θ is a compact subset of Rk for some

k ≥ 1. As long as ϵt has a finite fourth moment then, under mild smoothness and

boundedness conditions on f , the QML estimator is n1/2-convergent. See Francq

and Zaköıan (2010) and Meitz and Saikkonen (2011) for extensive references

covering Threshold GARCH, GJR-GARCH, Switching GARCH, Absolute Value

GARCH, and so on.
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In the case of heavy tailed errors, however, very little theory exists for es-

timation. If ϵt has a symmetric distribution then Hill’s (2014b) GEL estimator

is n1/2-convergent and therefore valid. In principle Zhu and Ling’s (2011) non-

Gaussian QML estimator for ARMA-GARCH models can be used on nonlinear

models. Hill’s (2014a) Quasi-Maximum Tail-Trimmed Likelihood estimator cov-

ers a large class of symmetric and asymmetric GARCH models with heavy tailed

errors, without any change in asymptotic theory, as long as (∂/∂θ)σ2t /σ
2
t is L2+ι-

bounded for tiny ι > 0, as it is for linear GARCH with α0 + β0 > 0.

4. Simulation Study

4.1. Set-up

We drew 10,000 samples of size n ∈ {100, 250, 500} of AR and GARCH

random variables. In the AR case y1 = ϵ1 and yt = θ0yt−1 + ϵt for t ≥ 2, where

θ0 ∈ {0.4, 0.9} and ϵt is distributed i.i.d. Pareto, P (ϵt < −a) = P (ϵt > a) =

0.5(1 + a)−κ with κ = 1.5. In the GARCH case, yt = htϵt where h21 = ω0,

h2t = ω0 + α0y2t−1 + β0h2t−1 for t ≥ 2, {ω0, α0} = {1, 0.6}, and β0 ∈ {0.2, 0.4}; ϵt
was distributed i.i.d. Pareto as above, with κ = 2.5. In this case the complete

parameter set is θ0 = {ω0, α0, β0}. We drew 20n observations and retained the

last n for analysis. We estimated κ for xt = (ϵ2t +10−10)1/2 using either the true

ϵt or a filter ϵt(θ̂n) for the sake of comparison.

In the AR case we computed θ0 by least squares. Since ϵt and yt have the

same tail index, for comparison we also estimated κ using the observed data |yt|.
In the GARCH case we computed θ0 on Θ = [0, 2]× [0.01, 0.99]× [0.01, 0.99]

using Hill’s (2014a) Quasi-Maximum Tail-Trimmed Likelihood estimator. Take

an iterated volatility process h̊21(θ) = ω and h̊2t (θ) = ω + αy2t−1 + βh̊2t−1(θ) for

t ≥ 2, and define ϵ̊t(θ) := yt/̊ht(θ) and E̊t(θ) := ϵ̊2t (θ) − 1. Let E̊(−)
t (θ) :=

E̊t(θ)I(E̊t(θ) < 0) and E̊(+)
t (θ) := E̊t(θ)I(E̊t(θ) ≥ 0), with {E̊(−)

(i) (θ), E̊(+)
(i) (θ)} the

order statistics E̊(−)
(1) (θ) ≤ E̊(−)

(2) (θ) ≤ · · · ≤ E̊(−)
(n) (θ) ≤ 0 and E̊(+)

(1) (θ) ≥ E̊(+)
(2) (θ) ≥

· · · ≥ E̊(+)
(n) (θ) ≥ 0. Define trimming indicators I(E)

n,t (θ) := I(E̊(−)

(k
(ϵ)
1,n)

(θ) ≤ E̊t(θ) ≤

E̊(+)

(k
(ϵ)
2,n)

(θ)) and I(y)
n,t := I(|yt| ≤ y

(a)

(k
(y)
n )

. The criterion is Qn(θ) :=
∑n

t=2{ln h̊2t (θ) +

ϵ̊2t (θ)} × I(E)
n,t (θ)I

(y)
n,t−1(θ), where k

(ϵ)
2,n = [0.025n/ ln(n)], k

(ϵ)
1,n = 35k

(ϵ)
2,n, and k

(y)
n =

[0.2 ln(n)]. In view of the Pareto error form, QMTTL is asymptotically unbiased,

consistent and normal, and satisfies Assumption 4, cf., (Hill, 2014a, Sec. 2.3). We

randomized 100 initial values to obtain 100 estimates, and picked the one that

minimized Qn(θ).

Least squares and Quasi-Maximum Tail-Trimmed Likelihood are at least

n1/2/L(n)-convergent for slowly varying L(n) → ∞. Hence, by Theorem 1, θ̂n
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does not impact the limit distribution of κ̂mn(θ̂n) when mn is regularly varying,

i.e. mn = [λnξ] for λ > 0 and ξ ∈ (0, 1). Since ϵt is i.i.d., it follows by Remark 7

and the Mean Value Theorem that m
1/2
n (κ̂mn(θ̂n) − κ)

d→ N(0, κ2). The appro-

priate scale for m
1/2
n (κ̂mn(θ̂n)−κ), technically, is σmnκ

2, where by independence,

σ2mn
→ κ−2.

In Figures 1 and 2 we plot simulation averages of Hill’s (1975) estimator

over fractiles mn ∈ {5, . . . , 100} for the case n = 250. Results using n = 100

or n = 500 were qualitatively similar and are therefore omitted. In Table 1 we

report two optimal m′
ns: one is the average mn across samples that minimizes

|κ̂mn−κ| overmn ∈ {5, . . . , 150}, denotedm∗
n; the other minimizes the simulation

mse of κ̂mn over mn ∈ {5, . . . , 150}, denoted m̂n. In this study plotting κ̂mn past

mn = 100 was redundant, except in the AR case where θ0 = 0.9 and yt was

used for tail index estimation. In this case the optimal fractile was above 100

in many samples. Hence in all cases we computed m∗
n over a greater range than

plotted. See also Table 1 for the average κ̂m∗
n
across samples, and associated mse

estimates.

Let κ̂mn denote the simulation average estimate for any case. We include

two 95% confidence bands. One is based on the assumption that the data are

i.i.d., hence we report κ̂mn ± 1.96κ̂mn/m
1/2
n . This is only correct asymptotically

in the case of using residuals or the true errors since σ2mn
→ κ−1. It is incor-

rect asymptotically when κ̂mn is estimated using AR data yt. Further, in small

samples, even when σ2mn
→ κ−1 is true, κ̂2mn

may underrepresent the true sam-

pling dispersion of κ̂mn since ϵt(θ̂n) is serially dependent. See Hill and Shneyerov

(2013, Sec. 3.3) for discussion. We therefore also computed Hill’s (2010) consis-

tent kernel estimator of σ2mn
. Writing x̂t = xt(θ̂n) and (z)+ := max{z, 0}, the

estimator is:

σ̂2mn
=

1

mn

n∑
s,t=1

K
(s− t

bn

){
ln
( x̂s
x̂(mn+1)

)
+
− mn

n
κ̂−1
mn

}
×
{
ln
( x̂t
x̂(mn+1)

)
+
− mn

n
κ̂−1
mn

}
,

with Bartlett kernel K(x) = (1−|x|)+ and bandwidth bn = n0.25. If σ̂2mn
denotes

the simulation average, then by Remark 7 and the Mean Value Theorem the

asymptotic bands are κ̂mn ± 1.96σ̂mn κ̂
2
mn
/m

1/2
n , and a robust mse estimator for

m
1/2
n (κ̂mn(θ̂n)− κ) is σ̂2mn

κ̂4mn
.

4.2. Summary of results

AR or GARCH filters ϵt(θ̂n) led to roughly the same tail index estimate κ̂mn

as if the true unobserved errors ϵt were used. The optimal mn were roughly
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Figure 1. Hill-Plots for AR, κ = 1.5. The model is yt = θ0yt−1 + ϵt. Left
panels: θ0 = 0.4, and right panels: θ0 = 0.8. The top row is for the filter
ϵt(θ̂n), the middle for the true error ϵt and the bottom for yt. The plotted
lines are κ̂mn and two 95% confidence bands. The outer ”non-param” bands
use the robust nonparametric mse estimator. The other band uses the mse
estimator in the i.i.d. case. The optimal mn minimizes |κ̂mn − κ| over
{1, . . . , 150}. The reported mn is the average over 10,000 samples.
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Figure 2. Hill-Plots for GARCH, κ = 2.5. The model is yt = htϵt where
h2t = 1+0.6y2t−1+β

0h2t−1. Left panels: β
0 = 0.2, and right panels: β0 = 0.4.

The top row is for the true error ϵt and the bottom row is for the filter ϵt(θ̂n).
The plotted lines are κ̂mn and two 95% confidence bands. The outer “non-
param” bands use the robust nonparametric mse estimator. The other band
uses the mse estimator in the i.i.d. case. The optimalmn minimizes |κ̂mn−κ|
over {1, . . . , 150}. The reported mn is the average over 10,000 samples.

identical for ϵt and ϵt(θ̂n) in all cases, and were 1.5 to 3.5 times larger for AR yt
depending on θ0 = 0.4 or 0.9.

Figures 1 and 2 and Table 1 also reveal several important traits of Hill’s

(1975) estimator. First, in the AR case θ0 = 0.9, strong positive serial dependence

inflated the tail index value at each fractile mn giving the appearance of thinner

tails.

Second, in the AR case the use of a filter ϵt(θ̂n) with a least squares plug-

in θ̂n, as opposed to the observed data yt, led to an efficiency improvement.

See Resnick and Stărică (1997), cf., Ling and Peng (2004). Table 1 shows the

average robust non-parametric mse estimates σ̂2m∗
n
κ̂4m∗

n
at the optimal fractile m∗

n
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Table 1.

AR: κ = 1.5 GARCH: κ = 2.5
θ0 = 0.4 θ0 = 0.9 β0 = 0.2 β0 = 0.4

ϵt(θ̂n) ϵt yt ϵt(θ̂n) ϵt yt ϵt(θ̂n) ϵt ϵt(θ̂n) ϵt
m̂n 31a 25 47 32 28 142 16 13 11 9
m∗

n 25b 25 37 25 24 86 13 12 8 8
κ̂m∗

n
1.48c 1.48 1.49 1.48 1.48 1.54 2.57 2.51 2.58 2.52

κ̂2m∗
n

2.19d 2.19 2.25 2.19 2.19 2.46 6.60 6.30 6.66 6.25

σ̂2
m∗

n
κ̂4m∗

n
1.98e 1.91 6.29 2.10 2.02 67.3 8.62 8.10 11.2 10.4

a. The fractile that minimizes the simulation mse over mn ∈ {1, . . . , 150}.
b. The average fractile that minimizes |κ̂mn − κ| over mn ∈ {1, . . . , 150}.
c. The average closest tail index estimate κ̂mnto κ for each sample.
d. The average asymptotic mse estimate of κ̂m∗

n
under the i.i.d. assumption.

e. The average robust non-parametric mse estimate of κ̂m∗
n
.

were nearly identical when ϵt or ϵt(θ̂n) was used, but were larger, and possibly

much larger, when yt was used.

Third, in the GARCH case we used an iterated volatility sequence
̂̊
h
2

1 = ω̂n

and
̂̊
h
2

t = ω̂n + α̂ny
2
t−1 + β̂n

̂̊
h
2

t−1 for t ≥ 2, hence an iterated estimated error

sequence yt/
̂̊
ht for computing the tail index of ϵt. By comparison, ϵt = yt/ht

was drawn using a large burn-in of 19n = 4, 750 (discarded) observations. This

implies yt/
̂̊
ht involved both sampling error from θ̂n and a potential under approx-

imation of the true volatility at small t, hence yt/
̂̊
ht appeared more heavy tailed

than ϵt. In fact, yt/
̂̊
ht appeared even more heavy tailed for larger GARCH param-

eter values β0 due to a monotonically larger under-representation of volatility.

Fourth, there was a comparatively large discrepancy between Hill-estimator

mse estimates κ̂2m∗
n
and σ̂2m∗

n
κ̂4m∗

n
when the data were dependent. Specifically

σ̂2m∗
n
κ̂4m∗

n
> κ̂2m∗

n
, suggesting dependence increased Hill-estimator dispersion. The

difference was massive in the AR case when yt with θ0 = 0.9 was used for tail

index estimation, but also arose with residuals since sampling error adds serial

dependence. However, in the AR case, the nonparametric mse σ̂2m∗
n
κ̂4m∗

n
was close

to κ̂2m∗
n
for ϵt and ϵt(θ̂n), as it should be, since σ̂2m∗

n

p→ κ−2. In the GARCH case

this should also be true, but σ̂2m∗
n
κ̂4m∗

n
was comparatively larger than κ̂2m∗

n
since the

residuals yt/
̂̊
ht exhibited a greater degree of serial dependence due to sampling

error compounded with the fact that
̂̊
h
2

t under-represented true volatility.

Fifth, m̂n and m∗
n roughly coincided for i.i.d. ϵt, but otherwise did not co-

incide for dependent data. There was a small difference m̂n > m∗
n for residuals

ϵt(θ̂n), and substantial m̂n > m∗
n for AR data when yt was used for estimation.
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The latter matches evidence for a large dispersion in κ̂mn for highly dependent

data: variance dominates the mse, hence minimizing the mse leaves a high degree

of bias. This suggests that conventional adaptive tail index estimation methods

for i.i.d. data may not be appropriate for filtered data (e.g., Hill (1975), Hall

(1982), Hall and Welsh (1985), Huisman et al. (2001) Groeneboom, Lopuhaä and

de Wolf (2003)).
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