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Abstract: Determining which covariates enter the linear part of a partially linear

additive model is always challenging. It is more serious when the number of covari-

ates diverges with the sample size. In this paper, we propose a double penalization

based procedure to distinguish covariates that enter the nonparametric and para-

metric parts and to identify insignificant covariates simultaneously for the “large

p small n” setting. The procedure is shown to be consistent for model structure

identification, it can identify zero, linear, and nonlinear components correctly. The

resulting estimators of the linear coefficients are shown to be asymptotically nor-

mal. We discuss how to choose the penalty parameters and provide theoretical

justification. We conduct extensive simulation experiments to evaluate the nu-

merical performance of the proposed methods and analyze a gene data set for an

illustration.
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1. Introduction

Consider the additive model (Hastie and Tibshirani (1990)):

Y = µ+

p∑
j=1

fj(Xj) + ϵ, (1.1)

where Y is a scalar response, X = (X1, . . . , Xp)
T contains p covariates, µ is

the intercept, fj are unknown univariate functions. Let (Yi, Xi), i = 1, . . . , n be

independent and identically distributed (i.i.d.) as (Y,X).

Additional efforts have been made to further simplify model (1.1) and to bal-

ance the interpretability of linear models and flexibility of additive models. As

a result, the partially linear additive model, a more parsimonious special case of

(1.1), has been proposed and studied (Opsomer and Ruppert (1999); Liu, Wang,

and Liang (2011)). If the choice of linear components is correctly specified, then
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the biases in the estimation of these components are avoided and root-n con-
vergence rates can be obtained for the linear coefficients. However, such prior
knowledge is rarely available, especially when the number of covariates is large.
Thus, determining which functions are linear is critical prior to use of (1.1). In
this paper, we propose a penalization procedure for simultaneously identifying
parametric components in an additive model and removing insignificant predic-
tors when the numbers of the covariates can diverge with the sample size. Thus,
it is not necessary to pre-determine the parametric components, and we show
that the resulting estimator possesses the oracle property in the sense that it es-
timates as well as when zero components and parametric components are known
a priori.

Penalization-based methods are traditionally used only for variable selection.
Substantial progress has been made on linear regression when p is large, in partic-
ular based on lasso (Tibshirani (1996); Zou (2006); Zhao and Yu (2006); Huang,
Ma and Zhang (2008); Zhang and Huang (2008); Bickel, Ritov and Tsybakov
(2009)), which used an l1 penalty to encourage shrinkage to zero. For additive
models, several independent works (Ravikumar et al. (2009); Meier, Van de Geer,
and Buhlmann (2009); Huang, Horowitz and Wei (2010)) have shown that the
sparse additive models can be fitted successfully to various data sets with large
dimensions. Given the success of sparse additive models in detecting insignifi-
cant predictors, it is highly desirable to identify the parametric components in
a consistent framework, and the contributions of Zhang, Cheng, and Liu (2011)
and Huang, Wei and Ma (2012) are discussed in Section 1.1.

The paper is organized as follows. After discussion of related works in the
Section 2.1, we propose our doubly penalized estimation method and consider its
asymptotic properties in Section 2.2. We focus on the adaptive lasso penalty only
but note that other penalties such as smoothly clipped absolute deviation (SCD,
Fan and Li (2001)) and minimax concave penalty (MCP, Zhang (2010)) could
also be applied. The initial lasso estimation is discussed in Section 2.3. In Section
2.4, we adopt an extended BIC for tuning parameters selection (Chen and Chen
(2008)) in the semiparametric setting and prove its consistency. The method is
illustrated with extensive Monte Carlo simulations and an analysis of a data set
in Section 3. The proofs for the main results are deferred to the Supplementary
Appendix available online. We have placed R code for our implementation at
http://www.ntu.edu.sg/home/henglian/PLAMcode.htm.

2. Penalized Estimation with Polynomial Splines

2.1. Related proposals

One possibility to simplify model (1.1) to a partial linear additive
model is to fit an additive model (1.1) first, and then test component by compo-
nent (Chen, Liang, and Wang (2011)). Another is to manipulate recursively the
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following recipe (Liu, Wang, and Liang (2011)). Put all the continuous covariates

in the nonparametric part and the discrete covariates in the parametric part. If

the estimation results show that some of the continuous covariate effects can be

described by certain parametric forms such as a linear form, then a new model

can be fitted with those continuous covariate effects moved to the parametric

part. Such approaches seem cumbersome in high-dimensional cases.

Our method is based on double penalization: one penalty function is used

to identify zero components, and a second is used to identify parametric compo-

nents. Double penalization strategies have been used before for other purposes,

for example, in elastic net (Zou and Hastie (2005)), fused lasso (Tibshirani et al.

(2005)), sparse group lasso (Peng et al. (2010)), and adaptive elastic-net lasso

(Zou and Zhang (2009)). The idea behind our method is similar to those of

Zhang, Cheng, and Liu (2011) and Huang, Wei and Ma (2012).

In Zhang, Cheng, and Liu (2011), starting from (1.1), the authors assume

fj ∈ Hj for some reproducing kernel Hilbert space (RKHS) Hj which admits

the orthogonal decomposition Hj = {1} ⊕ H0j ⊕H1j , where {1} is the space of

constant functions and H0j is a subspace of the space linear function (orthog-

onal to {1}). Let P0j and P1j be the orthogonal projection onto H0j and H1j

respectively. Zhang, Cheng, and Liu (2011) propose to solve the problem

min
fj∈H0j∪H1j ,µ

1

2

n∑
i=1

(Yi − µ−
p∑

j=1

fj(Xij))
2 + nλ1

p∑
j=1

w0j∥P0jfj∥Hj

+nλ2

p∑
j=1

w1j∥P1jfj∥Hj ,

where ∥.∥Hj is the RKHS norm, λ1, λ2 are regularization parameters, and w0j

and w1j are appropriate weights. The idea is that if ∥P1jfj∥Hj = 0, then gj is a

linear function, and if ∥P1jfj∥Hj = ∥P0jfj∥Hj = 0, then fj = 0.

Huang, Wei and Ma (2012) directly write fj(x) = β0j + βjx + gj(x) with

a series expansion gj(x) ≈
∑K

k=1 θjkϕk(x) for some basis functions ϕ1, . . . , ϕK .

Since fj is linear if θj = (θj1, . . . , θjK)T is zero, they proposed the penalized

criterion

min
θjk,βj ,µ

1

2

n∑
i=1

(Yi − µ−
p∑

j=1

Xijβj −
p∑

j=1

K∑
k=1

θjkϕk(Xij))
2 + np(∥θj∥),

where p(·) is some penalty function (with some tuning parameters that we do

not explicitly write down). In particular they used the group minimax concave

penalty (Zhang (2010)). Although they only used one penalty and thus do not

perform variable selection, it seems relatively easy to extend their results to the

case with two penalties.
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Our work differs from these papers in several ways: they focused only on fixed

dimensional problems, while we consider a more challenging high-dimensional

setting; we use an approach that directly shrinks the second derivative of the

component function to zero; we construct a “regularized oracle estimator” and

resort to results from convex analysis to overcome some theoretical difficulties

due to high dimensionality.

2.2. Estimation procedure

Since the linear components are not pre-determined, the starting point of our

analysis is the additive model (1.1). We assume the distribution of Xj is com-

pactly supported and so, without loss of generality, supported on [0, 1]. We also

impose the condition Efj(Xj) = 0 for identifiability. We use polynomial splines

to approximate the components. Let τ0 = 0 < τ1 < · · · < τK′ < 1 = τK′+1

be a partition of [0, 1] into subintervals [τk, τk+1), k = 0, . . . ,K ′ with K ′ internal

knots. We restrict attention to equally spaced knots, although a data-driven

choice could be considered. A polynomial spline of order q is a function whose

restriction to each subinterval is a polynomial of degree q−1 and which is globally

q − 2 times continuously differentiable on [0, 1]. The collection of splines with a

fixed sequence of knots has a normalized B-spline basis {B1(x), . . . , BK̃(x)} with

K̃ = K ′ + q. Because of the centering constraint Efj(Xj) = 0, we focus on the

subspace of spline functions S0
j := {s : s =

∑K̃
k=1 bjkBk(x),

∑n
i=1 s(Xij) = 0}

with basis {Bjk(x) = Bk(x) −
∑n

i=1Bk(Xij)/n, k = 1, . . . ,K = K̃ − 1} (the

subspace is K = (K̃ − 1)-dimensional due to the constraint). Using spline ex-

pansions, we can approximate the components by fj(x) ≈
∑

k bjkBjk(x). It is

possible to specify different values of K for each component but we assume they

are the same for notational simplicity.

We are interested in a sparse model, in which many components fj are zero,

some components are linear, and the remaining ones are nonlinear. Without loss

of generality, we assume the first p1 components are nonlinear and should be

modeled nonparametrically, the next p2 components are linear, and all the rest

are zero. Let s = p1 + p2 ≤ p denote the total number of nonzero components.

We assume the number of nonzero components is bounded and does not diverge

with n.

Let f0j , 1 ≤ j ≤ p, be the true functions and β0 = (β0,p1+1, . . . , β0s)
T be the

true coefficients in the linear components. We propose a penalized least squares
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estimation procedure to automatically identify different types of components:

(µ̂, b̂) = argmin
µ,b

1

2

∑
i

{
Yi − µ−

p∑
j=1

K∑
k=1

bjkBjk(Xij)
}2

+nλ1

p∑
j=1

w1j ||bj ||Aj + nλ2

p∑
j=1

w2j ||bj ||Dj , (2.1)

where λ1, λ2 are regularization parameters, w1 = (w11, . . . , w1p) and w2 = (w21,

. . . , w2p) are vectors of weights that need to be appropriately chosen in order

to achieve consistency in model selection. For now we assume these are given

and leave their choices to the next subsection. We allow these weights to be

random as is the case for weights derived from an initial lasso estimator (Section

2.3). Aj and Dj are two K ×K matrices, ∥bj∥Aj = (bTj Ajbj)
1/2, and ∥bj∥Dj =

(bTj Djbj)
1/2. There is some flexibility in choosing Aj and Dj but one requirement

is that ∥bj∥Aj = 0 if and only if
∑

k bjkBjk(x) ≡ 0 and ∥bj∥Dj = 0 if and only

if
∑

k bjkBjk(x) is a linear function, so that the two penalties can be used to

identify zero and linear components, respectively. One natural choice is Aj =

{
∫ 1
0 Bjk(x)Bjk′(x)dx}Kk,k′=1 and Dj = {

∫ 1
0 B′′

jk(x)B
′′
jk′(x)dx}Kk,k′=1 (in this case

all Dj ’s are the same by our construction of Bjk) so that ∥bj∥Aj = ∥
∑

k bjkBjk∥
and ∥bj∥Dj = ∥

∑
k bjkB

′′
jk∥. Thus, both the estimated component and its second

derivative are shrunk towards zero, as desired. Alternatively, we might set Aj =

I, the identity matrix. Once we obtain estimates of bjk, we estimate fj using

f̂j =
∑

k b̂jkBjk.

Since µ in (2.1) is not penalized and Bjk is appropriately centered, it is

straightforward to show µ̂ = Ȳ =
∑

i Yi/n. Using the notation

Zj =

Bj1(X1j) Bj2(X1j) · · · BjK(X1j)
...

...
. . .

...

Bj1(Xnj) Bj2(Xnj) · · · BjK(Xnj)


n×K

,

Z = (Z1, . . . , Zp), and Y = (Y1− Ȳ , . . . , Yn− Ȳ )T , (2.1) can be written in matrix

form as

min
b

1

2
||Y − Zb||2 + nλ1

p∑
j=1

w1j ||bj ||Aj + nλ2

p∑
j=1

w2j ||bj ||Dj . (2.2)

We now consider the asymptotic properties of the solution to (2.2). Proof of

the folowing results are in the Supplementary Appendix.

Proposition 1. Assume Dj satisfies the requirement that ∥b∥Dj = 0 if and only

if bTBj(x) is a linear function, where Bj(x) = (Bj1(x), . . . , BjK(x))T . Fix j ∈
{p1 +1, . . . , s}. For any bj ∈ RK , the following conditions are equivalent:
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(i) ∥bj∥Dj = 0.

(ii) There exists a unique constant aj ∈ R such that bTj Bj(x) ≡ aj(x− X̄j) where

X̄j =
∑n

i=1Xij/n. Such a mapping from RK to R is linear, one-one and

onto, with ∥bj∥2/K ∼ a2j .

(iii) bj is a constant multiple of ξj, where ξj ∈ RK satisfies ξTj Bj(x) ≡ x− X̄j.

Here an ∼ bn means 0 < c ≤ an/bn ≤ C < ∞ for some constants c and C

and all n.

Theorem 1. Under Assumptions (c1)−(c7) in the Supplementary Appendix and

assuming that K logK/n → 0 and K → ∞, with probability approaching 1,

∥b̂j∥Dj = 0 for p1 + 1 ≤ j ≤ s and b̂j = 0 for s+ 1 ≤ j ≤ p.

Now we study the convergence rates of the nonzero components. Let w0
1 =

(w11, . . . , w1s) and w0
2 = (w21, . . . , w2p1). Here w0

1, as a subvector of w1, contains

the weights associated with nonzero additive components, while w0
2, a subvector,

contains the weights in w2 associated with nonlinear additive components. These

weights are typically smaller in magnitude so that the corresponding components

will not be shrunk to zero or to linear functions.

Theorem 2 (Convergence rates). Under the conditions of Theorem 1, the esti-

mator obtained from (2.2) satisfies

s∑
j=1

||f̂j − f0j ||2 = Op

(
K

n
+

1

K2d
+ (λ2

1||w0
1||2 + λ2

2||w0
2||2)K

)
, (2.3)

where d is the smoothness parameter for the component functions.

For the parametric components, since ∥b̂j∥Dj = 0 for p1 + 1, . . . , s by The-

orem 1, we effectively get estimates β̂j of the true slopes β0j. If (c8) holds and√
n/K2d → 0,

s∑
j=p1+1

(β̂j − β0j)
2 = Op

(
1

n
+ (λ2

1||w0
1||2 + λ2

2||w0
2||2)K

)
. (2.4)

Under slightly stronger assumptions, the estimator for the parametric com-

ponents can be shown to be asymptotically normal.

Theorem 3 (Asymptotic normality). Under the assumptions of Theorem 2, if√
nK(λ1∥w0

1∥+ λ2∥w0
2∥) = op(1)

√
n(β̂ − β0) → N(0, σ2Ξ−1) in distribution,

with Ξ the p2 × p2 matrix at (c8) of the Supplementary Appendix.
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2.3. Initial estimator for determination of the weights

The adaptive group lasso penalty in (2.2) involves the weights w1 and w2.
The weights w1j are best if large for zero components and small for nonzero
ones, and similarly the w2j are best if large for linear components and small for
nonparametric ones. There is some flexibility in specifying these weights based
on a certain initial estimator. We mention that the group lasso estimator in
Huang, Horowitz and Wei (2010) can be used; it is obtained from

b̃ = argmin
b

1

2
∥Y − Zb∥2 + nλ0

p∑
j=1

∥bj∥Aj .

Under certain assumptions, they showed that, if λ0 = C
√

log(pK)/n for a
sufficiently large constant C, then the number of estimated nonzero compo-
nents is bounded by Ms for some constant M , and that

∑p
j=1 ∥b̃j − b0j∥22 =

Op(K
2 log(pK)/n+1/K2d−1), where b0j is any vector that satisfies ∥f0j−bT0jBj∥ =

O(K−d) for j ≤ p1 and f0j = bT0jBj for j > p1. These authors only considered
the case with Aj as the identity matrix, but the proof applies without change for
any positive definite Aj whose eigenvalues are bounded and bounded away from
zero.

Using this initial estimator, we can then set w1j = 1/∥b̃j∥Aj and w2j =

1/∥b̃j∥Dj . Assuming K ∼ n1/(2d+1) (this is the optimal choice that balances

bias and variance term in the rates (2.3)), and log p = o(n2d/(2d+1)), we have
K2 log(pK)/n + 1/K2d−1 = o(K), and thus ∥b̃j∥Aj ≥ C

√
K, 1 ≤ j ≤ s and

∥b̃j∥Dj ≥ C
√
K, 1 ≤ j ≤ p1, for some constant C > 0, under assumption (c9)

in the Supplementary Appendix. This in turn implies ∥w0
1∥ = Op(1/

√
K) and

∥w0
2∥ = Op(1/

√
K). If we choose

λ1 = λ2 = O
(√K

n

)
, (2.5)

the final term in the convergence rate (2.3) is at most the same order of the first
term and can be ignored. Furthermore, based on the convergence rates for the
initial estimator b̃ stated above, after some simple algebraic calculations, we see
that assumption (c7) is satisfied if

λ1 = λ2 >>

√
K log(pK) +K

√
log(pK)

n
. (2.6)

For λ1, λ2 to satisfy both (2.5) and (2.6), we require that
√
K log(pK) +K

√
log(pK)

n
= o

(√
K

n

)
,

which is the same as p = o(exp{n1/2}), the largest dimensionality allowed.
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2.4. Tuning parameters selection

In practice, we need to choose some parameters including the spline order

q, the number of basis K, as well as the regularization parameters λ0, λ1, and

λ2. We fixed q = 4 (cubic splines) in all our numerical results. When computing

the initial group lasso estimator and the doubly penalized adaptive group lasso

estimator, we fixed K = 6. This strategy is similar to that commonly used

in functional smoothing/functional data analysis literature where the number

of knots is chosen to be sufficiently large so that approximation error is small,

and the overfitting can be effectively controlled by the penalization terms (see

for example Section 5.5 of Ruppert, Wand, and Carroll (2003) or Chapter 5

of Ramsay and Silverman (2005)). The same strategy was adopted by Huang,

Horowitz and Wei (2010) for high-dimensional additive models. In the simulation

studies, we also computed the oracle estimator which is the minimizer of (A.2)

in the Supplementary Appendix, with the penalty terms removed. In that case

we used 10-fold cross-validation to choose K.

The choice of λ1 and λ2 in (2.2) is critical for the performance of the es-

timators. In our high-dimensional context, we adopt the extended Bayesian

information criterion (eBIC) of Chen and Chen (2008) that was developed for

parametric models. More specifically, we simultaneously select λ1 and λ2 based

on the value of

log(
1

n
∥Y − Zb̂λ∥2) + d1

log(n/K)

n/K
+ d2

log n

n
+

d1K + d2
n

log p, (2.7)

where b̂λ is the minimizer of (2.2) for given λ = (λ1, λ2), d1 is the number of esti-

mated nonparametric components and d2 is the number of estimated parametric

components, both for the given λ. For the initial estimator we use a similar

criterion,

log(
1

n
∥Y − Zb̂λ∥2) + d1

log(n/K)

n/K
+

d1
n/K

log p. (2.8)

In (2.7) and (2.8), if the last term is omitted, we have the ordinary BIC. We also

note a slight difference of the final term in the criterion from that of Chen and

Chen (2008), for example in (2.8) we use pd1 instead of
(
p
d1

)
. This is because when(

p
d1

)
is used, it penalizes models with about half of its components being nonzero

most heavily (since
(
p
d1

)
is largest when d1 ≈ p/2). In particular, based on this

penalty, a full model is as parsimonious as the null model, which is unnatural

(although the other penalty term can penalize against a large d1). See Chen

and Chen (2008) for the motivation of their use of
(
p
d1

)
. Related work proving

consistency of BIC or its modifications in parametric or nonparametric models

includes Wang, Li, and Tsai (2007); Wang and Xia (2009); Wang, Li, and Leng

(2009).
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Theorem 4. For models with at most S (does not increase with n) nonzero com-

ponents, S ≥ s, then under the conditions that K ∼ n1/(2d+1) and K log p/n → 0,

in addition to those assumed in Theorems 1 and 2, the extended BIC (2.7) will

correctly identify the nonzero components and the parametric components with

probability approaching 1.

We do not have theoretical performance guarantees for BIC or eBIC in the

initial non-adaptive group lasso estimator. The choice of criterion is investigated

in detail in Monte Carlo studies.

3. Numerical Examples

3.1. Simulations

The minimization problem (2.2) is solved by local quadratic approximation

as adopted in Fan and Li (2001). Given the current estimate b
(0)
j , the penalty

terms can be approximated by

∥bj∥Aj ≈ ∥b(0)j ∥Aj +
1

2

∥bj∥2Aj
− ∥b(0)j ∥2Aj

∥b(0)j ∥Aj

,

∥bj∥Dj ≈ ∥b(0)j ∥Dj +
1

2

∥bj∥2Dj
− ∥b(0)j ∥2Dj

∥b(0)j ∥Dj

.

After removing some irrelevant terms, the optimization problem becomes quadratic

in b and has a closed-form solution. During the iterations, as soon as some ∥bj∥Aj

(respectively, ∥bj∥Dj ) drops below a certain threshold (10−6 in our implementa-

tion), the component is identified as a zero function (respectively, linear function).

We generated data from the model

Yi =

p∑
j=1

fj(Xij) + ϵi,

with f1(x) = 5 sin(2πx), f2(x) = 10x(1 − x), f3(x) = 3x, f4(x) = 2x, f5(x) =

−2x, fj(x) = 0, j > 5 and ϵi ∼ N(0, σ2). Thus in our simulations p1 = 2 and

p2 = 3. To generate covariates, we first let Xij be marginally standard normal

with correlations given by Cov(Xij1 , Xij2) = (1/2)|j1−j2|, and then applied the

cumulative distribution function of standard normal distribution to transform

Xij to be marginally uniform on [0, 1]. We performed simulations with n =

50, 100, 200, p = 50, 100, 200, and σ = 0.2, 0.5, resulting in a total of 18 scenarios.

For each scenario, the reported numerical results are based on 50 simulated data

sets. To save space, only the case n = 100 is shown below (6 scenarios) and the

complete simulation results are presented in the supplementary material available

online.
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First we consider the model selection performance of the non-adaptive group

lasso estimator and adaptive group lasso estimator, when BIC or eBIC is used

for choosing the regularization parameters. As mentioned in Section 2.4, we fix

K = 6 in all experiments below. Table 1 reports the model identified by various

estimation procedures. The initial non-adaptive lasso estimators with a single

penalty cannot identify linear components. If BIC is used, there is a large number

of identified nonzero components (false positives) and if eBIC is used, it seems

the penalty is too strong so that some nonzero components are missed (false

negatives). Since zero coefficients in the initial estimator will stay zero in the

adaptive group lasso estimator, these false negatives cannot be addressed by the

subsequent estimator. On the other hand, if BIC is used in the initial estimator,

although there are a large number of false positives, these will be corrected in

the second step if eBIC is used, as seen from the table. Finally, if both steps

adopt ordinary BIC, the number of false positive is still too large. In summary,

the best performance in model selection is obtained when BIC is used for initial

estimator and eBIC is used for doubly penalized adaptive estimator. Thus we

only consider this combination of criteria in the following.

In Table 2, we present the root mean squared errors for the first 6 component

functions (note f6 is zero),

RMSEj =

√√√√ 1

T

T∑
i=1

(f̂j(ti)− fj(ti))2,

evaluated on a fine grid (t1, . . . , tT ) consisting of 500 equally spaced points on

[0, 1]. We compare our estimator to two others, including an oracle estimator

where the nonlinear and linear components are known before analysis, and a

sparse additive model (SA) where only one penalty is used in both steps to

identify nonzero components only. Comparing SA with our estimator, we see

that for the nonparametric components (f1 and f2), RMSEs are similar. However,

for the truly linear components, our doubly penalized estimators obviously have

better performance than SA, with improvement on RMSE of 30–50%. To see how

this efficiency in estimation can result in better prediction, we also generated n

independent test observations in each scenario and the squared prediction errors

are reported in a table in the supplementary material. Our estimator is seen

there to produce smaller predictor errors than SA. We also considered linear

estimators based on the adaptive lasso and the RMSE for the linear model is

much larger, which is not surprising since some components are truly nonlinear

in the simulations. Therefore, the results for linear models are not reported.

Finally, we investigate the estimation of the standard errors of the linear co-

efficients. Since after spline approximation, computationally the model is similar
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Table 1. Model identification results with n = 100. The different rows in
each scenario correspond to different estimators/parameter selection criteria.
BIC: the initial estimator using BIC for regularization parameter selection.
EBIC: the initial estimator using eBIC for parameter selection. BIC/BIC:
the final estimator obtained by using BIC for parameter selection in the
initial estimator, and also using BIC for the doubly penalized adaptive es-
timator in the second step. EBIC/EBIC and BIC/EBIC are interpreted
similarly. #N: number of nonparametric components identified; #NT: num-
ber of nonparametric components identified that are truly nonparametric (or
truly nonzero for the initial estimator). #L: number of linear components
identified; #LT: number of linear components identified that are truly linear.
The true number of nonparametric components is 2 and the true number of
linear components is 3. The numbers in smaller font are the corresponding
standard errors.

#N #NT #L #LT
n = 100 BIC 32.8615.1563 50 00 00
p = 50 EBIC 6.222.8521 4.361.3667 00 00
σ=0.2 BIC/BIC 2.60.8571 20 2.741.2747 2.40.8571

EBIC/EBIC 1.940.5115 1.840.3703 2.481.1110 2.421.0515
BIC/EBIC 2.060.2399 20 3.060.5500 2.940.2399

n = 100 BIC 43.461.5281 50 00 00
p = 50 EBIC 3.742.2840 3.31.7871 00 00
σ = 0.5 BIC/BIC 12.6412.5727 20 2.81.7261 1.441.3273

EBIC/EBIC 1.60.5714 1.560.5014 1.71.3132 1.71.3132
BIC/EBIC 2.420.5380 20 3.321.0583 2.640.4849

n = 100 BIC 25.719.1644 4.90.5803 00 00
p = 100 EBIC 4.923.0159 3.781.6817 00 00
σ = 0.2 BIC/BIC 2.981.4497 20 2.681.7076 2.161.1314

EBIC/EBIC 1.760.5175 1.720.4536 21.3093 21.3093
BIC/EBIC 2.040.2828 1.980.1414 3.040.7548 2.860.4953

n = 100 BIC 25.224.3788 4.80.8081 00 00
p = 100 EBIC 3.842.6447 3.161.6826 00 00
σ = 0.5 BIC/BIC 4.26.8512 1.940.2399 2.621.3536 2.21.1429

EBIC/EBIC 1.680.7677 1.520.5047 1.441.2316 1.421.1968
BIC/EBIC 2.260.5997 1.960.1979 2.760.8704 2.580.7309

n = 100 BIC 13.4211.8754 4.61.1066 00 00
p = 200 EBIC 3.83.0034 2.861.7958 00 00
σ = 0.2 BIC/BIC 2.881.0230 20 2.361.4107 2.11.0738

EBIC/EBIC 1.580.6728 1.480.5047 1.31.4178 1.241.3180
BIC/EBIC 2.180.6289 1.920.2740 2.521.0349 2.40.9258

n = 100 BIC 9.489.1724 4.141.4709 00 00
p = 200 EBIC 2.421.7507 2.11.1995 00 00
σ = 0.5 BIC/BIC 2.181.3506 1.680.4712 2.021.5451 1.721.1787

EBIC/EBIC 1.280.4536 1.280.4536 0.820.9624 0.80.9476
BIC/EBIC 1.960.6987 1.760.4314 2.441.2644 2.221.0746
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Table 2. Root mean squared errors for the first six components with n = 100.
“Sparse Additive” denotes the estimator for the sparse additive model ob-
tained when λ2 = 0 in (2.2). The numbers in smaller font are the corre-
sponding standard errors.

Oracle Our Estimator Sparse Additive
n = 100 f1 0.32860.01716 0.33010.01622 0.33010.01883
p = 50 f2 0.07610.02542 0.11840.04923 0.08830.03043
σ = 0.2 f3 0.03190.02216 0.03610.02643 0.08000.02745

f4 0.03660.02271 0.04810.03229 0.09410.04142
f5 0.03610.02702 0.04320.03751 0.09290.04113
f6 0.00000.00000 0.00000.00000 0.00000.00000

n = 100 f1 0.33640.01925 0.34680.03131 0.34200.02067
p = 50 f2 0.11860.04531 0.17530.08853 0.15410.06361
σ = 0.5 f3 0.05270.03669 0.06450.04389 0.16010.07305

f4 0.04940.04048 0.07070.05324 0.18120.06942
f5 0.04630.03850 0.06340.05495 0.17330.08265
f6 0.00000.00000 0.00000.00000 0.00000.00000

n = 100 f1 0.32570.01730 0.33080.02130 0.33020.02229
p = 100 f2 0.07320.02724 0.11620.09691 0.09190.09643
σ = 0.2 f3 0.03460.02900 0.05200.12083 0.09810.11482

f4 0.03860.02964 0.06820.10873 0.11200.10062
f5 0.03470.03369 0.05130.08559 0.10080.08169
f6 0.00000.00000 0.00000.00000 0.00000.00000

n = 100 f1 0.33820.02306 0.34660.02564 0.34520.03010
p = 100 f2 0.12060.04630 0.18810.13073 0.17230.12995
σ = 0.5 f3 0.04370.03314 0.08550.16233 0.16330.15331

f4 0.04800.03817 0.10680.13266 0.19230.14004
f5 0.04870.03855 0.08680.13342 0.16150.13449
f6 0.00000.00000 0.00220.01577 0.00260.01835

n = 100 f1 0.32430.01170 0.33850.03798 0.33840.03830
p = 200 f2 0.07700.02476 0.16260.17174 0.14030.17663
σ = 0.2 f3 0.03660.03136 0.10800.22410 0.14280.21421

f4 0.03660.03087 0.11860.18542 0.15740.17160
f5 0.05170.03874 0.45030.19922 0.52150.13808
f6 0.00000.00000 0.00000.00000 0.00000.00000

n = 100 f1 0.33650.01910 0.37120.06386 0.37330.05478
p = 200 f2 0.11890.03959 0.28750.25395 0.27170.24912
σ = 0.5 f3 0.05300.03713 0.16790.26175 0.25320.23850

f4 0.05030.04106 0.20730.23334 0.30160.20832
f5 0.04820.03595 0.19240.23047 0.26860.20975
f6 0.00000.00000 0.00000.00000 0.00000.00000

to a linear model, it is easy to adapt the sandwich formula proposed in Fan and

Li (2001) for estimation of standard errors. For each of the three linear coeffi-

cients in the true model, the sample standard deviation (SD) of the estimated
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coefficients in the simulations (only using simulations in which the component

is correctly identified as linear) is regarded as the true standard error. The es-

timated standard error (SE) averaged over repeated simulations, together with

the sample standard deviation of the estimated standard errors, are calculated.

We find that the sandwich formula works well only for large sample sizes. The

results are reported in a table in the supplementary material. The unsatisfac-

tory performance of standard error estimation based on asymptotic normality

for sparse regression has been noted in the literature, for example in Chatterjee

and Lahiri (2013). It would be interesting to investigate better standard error

estimation in the future.

3.2. Data

Here our main purpose is to use data to demonstrate that the automatically

identified semiparametric additive models can be more accurate in prediction

than general additive models as well as linear models.

An interesting question in fundamental biological research is that whether

gene expression pattern can be determined by the gene’s upstream sequence. This

problem was investigated in Meier, Van de Geer, and Buhlmann (2009) using an

additive model to predict gene expression levels. Using a general additive model

with only nonparametric components is a reasonable strategy when little is known

about whether the genes have linear effects or not. However, one would wonder

whether a partially linear additive model can make the estimation more efficient.

Of course, the difficulty is that it is a priori unknown which genes should enter

the linearly.

We applied our method to the ChIP-chip data of Saccharomyces cerevisiae

reported in Lee et al. (2002) and also analyzed by Hong et al. (2005) for motif

discovery. In contrast to these works, here our goal was to predict binding in-

tensities based on the DNA sequence. There are a total of forty data sets, for

genes targeted by forty different transcription factors (TF). Based on an ChIP-

chip p-value of 0.001 as the cutoff, from 25 to 176 positive sequences (believed

to contain binding sites for the TF according to ChIP-chip experimental results)

were obtained by Hong et al. (2005) for different TFs. For each positive sequence

i in a data set, motif scores xij , j = 1, . . . , p, are available as covariates in the

regression, obtained as follows. First the Gibbs sampling program AlignACE

(Roth et al. (1998); Hughes et al. (2000)) was run to find at most 100 motifs

with MAP score (MAP score is a metric for motif strength used by AlignACE)

at least 10. Because of this constraint, in many data sets a much smaller number

of motifs are found, resulting in dimension p ranging from 27 to 100 for different

data sets. Then the motif scores were found for each sequence-motif pair as in
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Table 3. Prediction errors for the motif regression data sets. 12 TFs are used
in the analysis. The smallest prediction error among the three estimators
are in boldface.

TF #seq # motif our estimator sparse additive sparse linear
ABF1 176 99 5.140 5.331 5.587
CIN5 116 100 2.262 2.142 2.587
FHL1 124 100 3.752 3.876 4.497
FKH2 72 99 2.773 2.994 4.423
GCN4 56 100 3.266 3.271 4.529
MBP1 74 35 0.863 1.063 0.715
MCM1 58 87 1.540 1.856 1.534
NDD1 66 100 1.819 1.898 2.103
RAP1 127 100 2.098 2.102 3.066
REB1 89 75 0.839 0.838 1.043
SWI4 90 100 3.296 3.797 4.380
SWI6 65 27 0.289 0.327 0.307

Motif Regressor (Conlon et al. (2003)), which is a matching score representing

the existence of motif in the sequence.

For this analysis, we only used a subset of the data sets with at least 50

positive sequences and for which the known true motif can be found by AlignACE,

resulting in a total of 12 data sets that are listed in Table 3. The 2nd and 3rd

columns of the table show the number of positive sequences and the number of

motifs found respectively for each TF. For each data set there exists a large

number of negative sequences which are believed to be not binding to the TF.

We randomly selected from it the same number of negative sequences as the

number of positive sequences and motif scores were also calculated on the negative

sequences. Half of the sequences were used for training in regression and the

rest were used for testing the prediction accuracy on the binding intensities.

The prediction errors for our estimator, the sparse additive estimator and the

sparse linear estimator are reported in Table 3 as the last three columns. It

is seen that our estimator performs best among the three for 8 out of 12 data

sets. Even for those data sets where our estimator is not the best, it can be

seen that the differences are small and our estimator is never the worst of the

three estimators. The good performance of our estimator can be attributed to its

ability to automatically choose a model specification that represents a reasonable

trade-off between efficiency and flexibility.

4. Conclusion and Discussion

We here proposed a data-based procedure for identifying the nonparametric

and parametric components of semiparametric additive models. Based on a dou-

ble penalization strategy, model identification is performed simultaneously with
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estimation, which is not possible with existing methods. Our Monte Carlo studies

and applications to a data set demonstrate that the sparse partially linear addi-

tive model (with automatically determined model structure) can be more efficient

than sparse additive models and can improve predictions. In high-dimensional

settings, we naturally expect that some components are linear for parsimony and

some components are nonparametric for flexibility. The proposed framework is

thus valuable for automatically determining the linear part of a semiparametric

model.

The extended BIC was shown to work very well in our numerical examples for

choosing appropriate tuning parameters. The consistency proof of eBIC requires

the assumption that K ∼ n1/(2d+1), but in practice we fixed K to be a more

or less arbitrary integer. In a high-dimensional case, it is generally difficult

to automatically determine K, or even prove the resulting K has the desired

divergence rate. One possibility is to choose K based on some hold-out data as

in cross-validation methods, but this search would increase the computational

burden of the method.

In terms of computation, we used the local quadratic approximation ap-

proach of Fan and Li (2001). One shortcoming of this algorithm is that it

cannot obtain exactly zero solutions. To address this problem, algorithms of

the coordinate-descent type have been used for sparse estimators (Zou and Li

(2008); Huang, Horowitz and Wei (2010); Huang, Wei and Ma (2012)). This

is based on the observation that when all coefficients are fixed except those as-

sociated with one predictor, there is a closed-form solution to the optimization

problem via thresholding. However, with two penalties, it seems not straightfor-

ward to extend this class of algorithms for our problem. How to obtain exact

zero solutions for our problem in the future is an interesting problem.

It seems possible to extend the double penalization approach to generalized

additive models in order to deal with different types of responses. It is also

of interest to see how it works with quantile regression, which provides a more

complete picture of the relationship between responses and predictors and is also

more robust than mean regression.
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