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Abstract: Various continuously-indexed spatio-temporal process models have been

constructed to characterize spatio-temporal dependence structures, but the com-

putational complexity for model fitting and predictions grows in a cubic order with

the size of dataset and application of such models is not feasible for large datasets.

This article extends the full-scale approximation (FSA) approach by Sang and

Huang (2012) to the spatio-temporal context to reduce computational complexity.

A reversible jump Markov chain Monte Carlo (RJMCMC) algorithm is proposed

to select knots automatically from a discrete set of spatio-temporal points. Our

approach is applicable to nonseparable and nonstationary spatio-temporal covari-

ance models. We illustrate the effectiveness of our method through simulation

experiments and application to an ozone measurement dataset.

Key words and phrases: Covariance approximation, Gaussian process, knot selec-

tion, reversible jump Markov chain Monte Carlo, sparse matrix.

1. Introduction

Spatio-temporal datasets arising from climatology, geology, and other sci-

entific fields have generated considerable interests in statistical modeling. The

primary interests in analyzing such data are to detect meaningful spatio-temporal

dependence patterns, and to subsequently smooth and predict in space-time do-

main.

Recent developments are mainly in spatio-temporal process models. We

focus on a paradigm in which both space and time are continuously indexed.

A key ingredient is a valid spatio-temporal covariance model that characterizes

spatio-temporal dependence structure. A simple but commonly used class of

spatio-temporal covariance model assumes a separable form that factors into a

purely spatial and a purely temporal component. However, separable models do

not allow for space-time interaction and often fail to model a physical process

adequately. There is a growing literature on methods for constructing more flex-

ible spatio-temporal covariance functions. Cressie and Huang (1999) introduced

several classes of nonseparable spatio-temporal covariance functions based on the

spectral density of nonnegative finite measures. Gneiting (2002) extended their
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work and introduced a broader class of nonseparable spatio-temporal covariance

functions, which does not depend on closed forms of inverse Fourier transforms.

Stein (2005) developed a class of asymmetric and nonstationary space-time co-

variance functions on the sphere.

Parameter estimation and spatio-temporal prediction with these models typ-

ically require O(n3) operations for a spatio-temporal dataset of size n, imposing

computational challenges. One approach to the computation seeks to simplify the

model fitting method mainly through likelihood approximations. Composite like-

lihood (CL) methods (Varin and Vidoni (2005)) have been applied to deal with

spatial and spatio-temporal datasets due to their simplicity and sound asymptotic

properties. The idea is to use a pseudo-likelihood by combining likelihood objects

constructed from conditional or marginal models as a surrogate for the ordinary

likelihood. Recently, Bevilacqua et al. (2012) introduced a weighted composite

likelihood (WCL) method based on pairwise differences of spatio-temporal ob-

servations. They showed that the estimators of their methods are consistent and

asymptotic normal under increasing domain asymptotics (Cressie (1993)). Bai,

Song, and Raghunathan (2012) also developed a CL method based on pairwise

differences, forming a joint estimation function based on spatial, temporal and

spatio-temporal group-based estimation functions. A second approach seeks to

simplify model specifications of covariance structures to achieve computational

efficiency. Many literature following this path have emerged but primarily fo-

cusing on spatial or spatial discrete-time contexts (Furrer, Genton, and Nychka

(2006); Rue and Held (2005); Cressie and Johannesson (2008); Katzfuss and

Cressie (2011)). Banerjee et al. (2008) proposed a class of spatial predictive pro-

cesses models that is applicable to fitting spatio-temporal process models with

large data sets. The idea of this reduced rank type of approach is to approx-

imate a spatio-temporal process with a predictive process, the prediction of a

given spatio-temporal process conditional on the random spatio-temporal vector

at a selected location set of reduced size.

Recently, Sang and Huang (2012) developed a covariance approximation

method, referred to as full-scale approximation (FSA), for the implementation of

univariate spatial process models with large datasets. Combining merits of re-

duced rank techniques (Cressie and Johannesson (2008); Banerjee et al. (2008))

and sparse matrix algorithms (Furrer, Genton, and Nychka (2006)), the FSA ap-

proach provides a high quality approximation to the covariance function at both

large and small spatial scales and achieves computational efficiency.

We extend the FSA approach to the spatio-temporal process context. We

propose a general-purpose full-scale approximation that can approximate well

the original covariance function at both large and small spatio-temporal scales.

Here the first step produces a reduced rank spatio-temporal covariance that is
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effective in capturing large-scale spatio-temporal dependence and the second step

a sparse covariance matrix that can approximate well the small-scale spatio-

temporal dependence unexplained by the first part. Our method yields a new

full-scale spatio-temporal covariance function for any given covariance function

that maintains the flexibility and the richness of spatio-temporal structure while

substantially reducing computational cost. Spatio-temporal predictions of the

full-scale covariance approximation models can be carried out efficiently following

the conventional prediction procedure in Gaussian processes.

The method requires careful selection of knots in the reduced rank step,

an issue not addressed by Sang and Huang (2012), to achieve a good balance

between model fitting and computational time. We propose an adaptive and au-

tomatic way to select both the knot number and knot locations by treating them

as random variables. We consider selecting knots either from a set containing

all spatio-temporally observed locations or a fine grid covering entire space-time

domain following a reversible jump Markov chain Monte Carlo (RJMCMC) al-

gorithm (Green (1995)).

The rest of the article is organized as follows. In Section 2, we present the

FSA approach for spatio-temporal processes and detail the Bayesian implemen-

tation of the FSA approach, including knot selection. Section 3 presents results

of some simulation studies to investigate performance of the method and to com-

pare it with existing methods. In Section 4, we apply our method to a dataset of

the maximum 8-hour ozone measurements across the eastern US. Section 5 gives

some concluding remarks.

2. The FSA Approach

2.1. Model

Let Y (s, t) be a response variable observed at location s and time t, where

s ∈ S ⊆ R2, t ∈ [0, T ] ⊆ R+. A general formulation of spatio-temporal process

model is

Y (s, t) = µ(s, t) + w(s, t) + ϵ(s, t), (2.1)

where µ(s, t) is a deterministic mean function, w(s, t) is a zero-mean Gaussian

process characterizing spatio-temporal variations, and ϵ(s, t) is a Gaussian white

noise process independent of w(s, t). The variance of ϵ(s, t) is usually assumed

to be a constant τ2, called the “nugget effect”, to account for measurement

errors. The spatio-temporal dependence structure of w(s, t) is specified by a

spatio-temporal covariance function Γw(s, t; s
′, t′) ≡ Cov(w(s, t), w(s′, t′)). In

the spatio-temporal regression framework, we assume µ(s, t) = ZT (s, t)β, where

Z(s, t) is a p× 1 column vector of space-time covariates and β is the associated

coefficient vector.
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To simplify notation, denote a spatio-temporal point x by (s, t). Let X =

{x1,x2, · · · ,xn} be a collection of all observed spatio-temporal points, w =

(w(x1), w(x2), · · · , w(xn))
T and ϵ = (ϵ(x1), ϵ(x2), · · · , ϵ(xn))

T . It follows that

w ∼ MVN(0,Σw) and ϵ ∼ MVN(0,Σϵ), where MVN stands for the multivariate

normal distribution, Σw = [Γw(xi,xj)]i=1:n,j=1:n, and Σϵ = τ2In.

The marginal distribution of Y = (Y (x1), · · · , Y (xn))
T ∼ MVN(Zβ,Σw +

τ2In), where Z = (Z(x1), Z(x2), · · · , Z(xn))
T . To make likelihood-based or

Bayesian inferences, we need to evaluate the likelihood of Y; this requires O(n3)

computational time due to the inversion of Σw + τ2In. A similar computational

bottleneck is encountered when performing spatio-temporal prediction.

2.2. Covariance approximation for large computation of spatio-

temporal process

We propose a full-scale covariance approximation for the latent spatio-

temporal process w by a sum of two independent processes,

w†(x) = wl(x) + ws(x), (2.2)

where wl(x) is a low-rank process that captures the large-scale spatio-temporal

dependence structure and ws(x) is a residual process that models the small-scale

spatio-temporal dependence not captured by wl(x). We model the low rank

process using a predictive process on spatio-temporal domain. The predictive

process, proposed by Banerjee et al. (2008), has been shown to be flexible enough

to model the large-scale dependence structure of a spatial process. Given a set of

points X ∗ = {x∗
1,x

∗
2, · · · ,x∗

m}, called spatio-temporal knots, the spatio-temporal

predictive process is

wl(x) = C(x,X ∗)C∗−1w∗,

wherew∗ = (w(x∗
1), w(x

∗
2), · · · , w(x∗

m))T , C(x,X ∗) = [Γw(x,x
∗
j )]j=1:m, and C∗ =

C(X ∗,X ∗) is the covariance matrix ofw∗. It follows that the covariance function

of wl is given by

Γwl
(x,x′) = C(x,X ∗)C∗−1CT (x′,X ∗). (2.3)

The covariance matrix of wl evaluated at X is Σwl
= C(X ,X ∗)C∗−1CT (X ,X ∗)

where C(X ,X ∗) = [Γw(xi,x
∗
j )]i=1:n,j=1:m. One often chooses m ≪ n, which

results in a low-rank matrix Σwl
and hence leads to efficient computations. If

the knot set is chosen to be X , the original spatio-temporal covariance is fully

recovered.

The residual process ws(x) is an important supplement to wl(x) for bet-

ter approximating the original process w(x), while maintaining computational

efficiency. The idea is to use a sparse covariance matrix to approximate the co-

variance of the exact residual process w(x) − wl(x). The covariance function of
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w(x) − wl(x) is Γw(x,x
′) − Γwl

(x,x′), and we take the covariance function of

ws(x) to be

Γws(x,x
′) = {Γw(x,x

′)− Γwl
(x,x′)}K(x,x′), (2.4)

where K(x,x′), referred to as a modulating function, is chosen to ensure Γws is a

valid positive semidefinite function and that is zero for a large proportion of pos-

sible spatio-temporal pairs (x,x′) evaluated at X . The choice of K(x,x′) ensures

that the resulting residual covariance matrix Σws can be handled efficiently.

We describe several strategies for specifying the modulating function K. The

first is to use a tapering function, the result is referred to as FSA-Taper, which

sets the correlation of distant spatio-temporal pairs to zero. In the univariate

spatial case, a number of compactly supported covariance functions have been

used for covariance tapering, for example the spherical covariance function, the

family of Wendland covariance functions, and the bisquare function, to name a

few (Wendland (1995, 1998); Gneiting (2002); Cressie and Johannesson (2008)).

In the spatio-temporal context, we consider tapering functions as Schur products

of a purely spatial and a purely temporal tapering function. Let Ku(s, s
′; γu) be a

tapering function on the spatial domain satisfying Ku = 0 when ∥s−s′∥ > γu, and

Kv(t, t
′; γv) be a tapering function on the temporal domain such thatKv = 0 when

∥t− t′∥ > γv. Here, γu and γv are referred to as the spatial taper range and the

temporal taper range, respectively. Then K(s, t; s′, t′) = Ku(s, s
′; γu)Kv(t, t

′; γv).

A second specification of K uses local partitioning: residuals are assumed

to be independent across partitioned space-time subregions, while the original

residual covariance is preserved within each subregion. Let B1, B2, · · · , BK be a

partition of the space-time domain S × [0, T ], referred to as blocks. Then the

modulating function is

Kblock(x,x
′) =

{
1 if x,x′ ∈ Bi, i = 1, . . . ,K;

0 otherwise.

By rearranging observation indices such that the observations within a block are

grouped together, we obtain a block-diagonal modulating matrix Kblock(X ,X )

with 1ni1
T
ni

the ith block, where 1ni is a column vector of 1s and ni is the number

of observations within the ith block for i = 1, 2, . . . ,K. Thus the covariance

matrix of the approximated residual process ws on X is also block-diagonal,

whose inverse can be efficiently computed if the block size is not large. We refer

the FSA approach with K = Kblock as the FSA-Block method.

Let Σw† denote the covariance matrix of observations X given by the FSA-

Block method. It is positive definite (PD) when the knot set does not overlap

with the observation set, otherwise it is positive semidefinite (PSD). To see why,

note that Σw† = Σwl
+Σws , where Σwl

is the covariance matrix of the predictive

process and Σws is a residual covariance. Here Σws = (Σw−Σwl
)◦Kblock(X ,X ),
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where ◦ is the Schur product (entry-wise product) of matrices. Denote the ob-

servational locations in the block Bk by Xk. Then we obtain a block diagonal

matrix Σws with Σk
ws

= Γw(Xk,Xk)− Γwl
(Xk,Xk) as its kth block. Since Σk

ws

is the conditional covariance of w(Xk) given w(X ∗), it is PD when X ∗∩X = ∅
and PSD otherwise. It follows that Σws and Σw† are PD when X ∗ ∩X = ∅ and

PSD otherwise.

The reduced-rank part plus the residual part using local partitioning provides

an exact recovery of the true covariance within each subregion. Specifically, the

covariance function of w† is

Γw†(x,x′) =

{
Γw(x,x

′) if x,x′ ∈ Bi, i = 1, . . . ,K;

Γwl
(x,x′) otherwise.

(2.5)

As the covariance approximation errors induced by the FSA-Block only occur

for pairs belonging to different subregions and most of these pairs some distance

apart, the errors Γw(x,x
′)− Γw†(x,x′) are expected to be small for most pairs.

2.3. Fast computation of parameter estimation and spatio-temporal

prediction using FSA

In this section, we show the implementation of a spatio-temporal regression

model using the FSA method. Replacing the latent spatio-temporal process w

as (2.1) with its induced spatio-temporal FSA w† as (2.2), we obtain the data

model at n observed locations,

Y = Zβ +w† + ϵ, ϵ ∼ MVN(0,Σϵ), (2.6)

where w† is an n× 1 vector of w† evaluated on X . The data likelihood is then

given by Y ∼ MVN(Zβ,Σwl
+Σws +Σϵ).

Here Σws+Σϵ is a sparse matrix for FSA-Taper or a block diagonal matrix for

FSA-Block, whose inversion can be handled efficiently. We apply the Sherman-

Woodbury-Morrison formula to calculate the inverse of ΣY

Σ−1
Y = (Σws +Σϵ)

−1 − (Σws +Σϵ)
−1C(X ,X ∗)

×{C∗ + CT (X ,X ∗)(Σws +Σϵ)
−1C(X ,X ∗)}−1

×CT (X ,X ∗)(Σws +Σϵ)
−1. (2.7)

The determinant of ΣY can also be efficiently computed by applying Sylvester’s

determinant theorem,

|ΣY| = |Σws +Σϵ| × |C∗|−1

×|C∗ + CT (X ,X ∗)(Σws +Σϵ)
−1C(X ,X ∗)|. (2.8)
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Likelihood-based inference uses maximum likelihood or restricted maximum

likelihood. For Bayesian inference, we need to specify priors for model param-

eters. For the regression coefficient vector β, we assign a vague multivariate

normal prior β ∼ MVN(µβ,Σβ). For the variance of measurement errors τ2, we

assign an inverse-gamma prior IG(a, b) where the hyper-parameters a, b are cho-

sen with reasonable guesses of mean and variance. Denote the set of parameters

in the spatio-temporal covariance function Γw by θ, whose prior specification de-

pends on the choice of the covariance function. Customarily, the inverse-gamma

prior can be assigned on the variance parameter σ2; the spatial/temporal range

parameter can be assigned with a reasonably informative prior, e.g. a uniform

prior with its support specified according to the belief on the practical spa-

tial/temporal dependence range of the spatio-temporal dataset.

Let Ω = (β,θ, τ2) be the collection of model parameters. The MCMC

method is used to draw samples of parameters from the posterior

p(Ω|Y) ∝ p(β)p(θ)p(τ2)p(Y|Ω). (2.9)

The Gibbs sampler is used to update β from MVN(µβ|·,Σβ|·), where

Σβ|· = (ZT (Σwl
+Σws +Σϵ)

−1Z+Σ−1
β )−1,

µβ|· = Σβ|·(ZT (Σwl
+Σws +Σϵ)

−1Y+Σ−1
β µβ).

For parameters without a closed-form of the full conditional distribution, we

draw samples using the Metropolis-Hasting algorithm. For example, for spa-

tial/temporal dependence range parameters, we can use truncated normal distri-

bution centered at the current value as the proposal distribution. The log-normal

proposal centered at the current value can also be used for dependence range pa-

rameters.

The spatio-temporal process regression model combined with the FSA

provides a straightforward and efficient prediction using large spatio-temporal

datasets. In classical geostatistics, assuming the model parameters are known,

for a given new spatio-temporal point x0 the approximated best linear unbiased

predictor (BLUP) of Y (x0) is

Ŷ (x0) = ZT (x0)β + Cw†(x0,X ){Σwl
+Σws +Σϵ}−1(Y− Zβ) (2.10)

and the approximated mean square error (MSE) is

MSE(Ŷ (x0)) = σ2 + τ2 − Cw†(x0,X ){Σwl
+Σws +Σϵ}−1CT

w†(x0,X ), (2.11)

where Cw†(x0,X )=[Γwl
(x0,xi)+Γws(x0,xi)]i=1:n,xi∈X is a 1×n cross-covariance

matrix between w†(x0) and w. In practice, data-based estimates of the parame-

ters are plugged in the above expression.
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The Bayesian approach generalizes to the case of prediction when the co-

variance parameters are unknown. The predictive distribution for Y (x0) is a

Gaussian distribution with predictive mean given by (2.10) and variance given

by (2.11). Therefore, a random sample of Y (x0) from the (posterior) predictive

distribution can be obtained by a draw of Ω from the posterior followed by a

draw from the conditional predictive distribution of Y (x0) given Ω.

Again, the calculation of BLUP and draws from the posterior predictive dis-

tribution involve the inversion of Σwl
+Σws+Σϵ, which can be handled efficiently

using the computational technique described in (2.7).

2.4. Selection of tuning parameters

Both the FSA-Taper and the FSA-Block involve tuning parameters: taper

ranges and a knot set are required for the FSA-Taper; block partition in space-

time domain and a knot set are required for the FSA-Block. The choices of these

tuning parameters determine the approximation performance and the computa-

tional complexity of the FSA model.

Choice of knots is a key ingredient in the low rank component of the FSA.

Typically, a denser knot design can lead to a better approximation of the par-

ent process but at a cost of heavier computational burden. A heuristic way for

selecting knots is to predetermine a knot number m based on available compu-

tational resources, then to place knots with good space-time coverage. Possible

options include random sampling, Latin hypercube sampling (McKay, Conover,

and Beckman (1979); Stein (1987)) and using a regular grid. Alternatively, one

may consider a random knot selection in which knot number m and their loca-

tions are allowed to be chosen automatically.

For random knot selection, Guhaniyogi et al. (2011) introduced an adap-

tive predictive process model for spatial data. They fixed the knot number and

modeled knot locations with a point pattern model. Katzfuss (2013) applied the

FSA-Taper approach to a nonstationary Matérn covariance function for spatial

process, where the knot number was assigned with an improper flat prior on the

set of all positive integers and knot locations were assigned with a uniform prior

over the whole spatial domain.

Motivated by this work, we propose a Bayesian approach to adaptively se-

lect knot number and knot locations for the spatio-temporal FSA method. A

RJMCMC algorithm (Green (1995)) is offered to update the knot set from a dis-

crete set of spatio-temporal points. Choices of candidate set include the set of all

observed points or a regular grid covering the entire space-time domain, denoted

by L̄. Let m be the knot number and L be the set of selected knot locations.

We propose to assign the knot number m with a Poisson(λ) prior truncated at

λ0, where λ is chosen to balance the trade-off between computational capacity
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and model fitting, and λ0 > 0 is set to reflect the maximum tolerance of compu-

tational time. Conditional on the knot number, we assume knots are randomly

chosen from the candidate knot set, p(L|m) =
(
M
m

)−1
, where M is the size of L̄.

At each MCMC step, we consider three types of possible moves of selected

knot set, changing from (L,m) → (L∗,m∗): (a) birth: add a knot by randomly

selecting a point in L̄\L, so m∗ = m + 1; (b) death: randomly delete a knot in

L, so m∗ = m − 1; and (c) change: randomly choose a knot from L and then

replace it with a randomly chosen point from L̄\L, so m∗ = m. The acceptance

ratio α of proposing a move is given by

α = min

(
1,

p(Y|Ω,m∗,L∗)p(L∗|m∗)p(m∗)J((L∗,m∗) → (L,m))

p(Y|Ω,m,L)p(L|m)p(m)J((L,m) → (L∗,m∗))

)
.

Denote the probability of birth, death, and change moves with knot number

m by bm, dm and cm respectively, then bm + dm + cm = 1. If m = 1, we set

dm = cm = 0 ; if m = λ0, we set bm = 0 and dm = cm = 1/2; and if 1 < m < λ0,

we set bm = dm = cm = 1/3. Then J is calculated as follows,

J((L,m) → (L∗,m∗)) =


bm

M−m if m∗ = m+ 1,

dm
m if m∗ = m− 1,

cm
m(M−m) if m∗ = m.

(2.12)

Following this RJMCMC algorithm, the knot number and locations are auto-

matically selected at each iteration. We illustrate this algorithm in Section 3.2

through simulation experiments.

For the choice of block partition for the FSA-Block, one principle is to maxi-

mize residual correlations within blocks and minimize residual correlations across

blocks so that most of the spatio-temporal correlations are preserved. If the

spatio-temporal residual covariance is fairly isotropic, one simple strategy is to

apply the K-means clustering algorithm on observed spatio-temporal points to

find K cluster centers (Kaufman and Rousseeuw (1990)) and then create parti-

tions in space-time domain. For the choice of tapering range for the FSA-Taper,

some pilot studies can be conducted to give a rough estimate of the practical spa-

tial/temporal dependence range. For example, we can select several time points

and consider purely spatial datasets to estimate the spatial dependence range;

similarly, we can consider time series at properly selected locations to estimate

the time dependence range. These pilot estimates of dependence range are then

subsequently used to set proper/conservative taper range to balance the trade-off

between covariance approximation accuracy and computation efficiency.
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3. Simulation Study

In this section, we report on simulation studies to evaluate the performance

of the spatio-temporal FSA approach. We show the effectiveness of FSA-Block

in approximating stationary spatio-temporal covariance models, and compare

it with the independent blocks model (denoted as “Block”), predictive process

model (denoted as “PP”) and modified predictive process model (denoted as

“Modified PP”) (Finley et al. (2009)). The implementations of all methods

were written in Matlab and run on a processor with 2.9 GHz Xeon CPUs and

16GB memory. For likelihood function optimization, we used the matlab function

fminunc which implements a Broyden-Fletcher-Goldfarb-Shanno (BFGS) based

Quasi-Newton method. In the supplementary document, we also illustrate the

FSA with random knot selection for a nonstationary spatio-temporal covariance

model in a simulation study. In both simulation studies, the full covariance model

(denoted as “FM”) is also implemented to serve as the benchmark.

We randomly selected 4,000 spatio-temporal locations on a space-time do-

main S × T , where S = [0, 20]× [0, 20] and T = [0, 20]. The selected locations

were then divided into a training set of size 3,500 and a test set of size 500, where

the test set included 243 points in a space-time hole [5, 10] × [5, 10] × [0, 20]

and 257 randomly selected points from the remaining space-time locations. We

obtained realizations of the spatio-temporal process Y (s, t) at the selected points

following the model in (2.1).

We first experimented with a nonseparable space-time covariance function

proposed by Gneiting (2002),

C(h, u) =
σ2

((20|u|2α/a) + 1)
exp

(
− 3∥h∥

c ((20|u|2α/a) + 1)η/2

)
, (h, u) ∈ Rd × R,

(3.1)

where a, c > 0 are temporal and spatial dependence range parameters respec-

tively; α ∈ (0, 1] is the smoothness parameter; and η ∈ [0, 1] is the space-time

interaction parameter. The mean of the regression model µ(s, t) was set to 0 for

the entire region. We used equal variance τ2 = 0.01 for the variance of ϵ(s, t).

The true values of the covariance parameters and other model parameters are

shown in Table 1. Two parameter settings were considered: the first had a = 10

and c = 20, for a large-scale spatio-temporal dependence structure; the second

had a = 5 and c = 10, for a small-scale spatio-temporal dependence structure.

The maximum likelihood estimators (MLEs) were obtained based on the training

set and the mean squared prediction errors (MSPE) were calculated based on the

predictions of the test set for evaluation.

We implemented the FSA-Block approach using 500 spatio-temporal knots

and 35 blocks. The knots were chosen randomly from S × T and the 35 block
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centers were created by the K-means clustering algorithm based on Euclidean

distances of space-time points. For comparisons, the independent blocks method

with the same 35 blocks and the predictive process method with the same 500

knots were considered. The smoothness parameter α in the covariance model was

fixed to be 0.5. The parameter estimations and the prediction results of different

approaches are shown in the Table 1.

Under the first parameter setting, where the spatio-temporal dependence

range was large, the FSA-Block approach clearly outperformed the other meth-

ods in terms of prediction. The independent blocks method gave less accurate

predictions. The predictive process model and the modified predictive process

model did not work well either in terms of prediction, possibly requiring a denser

knot set for a satisfactory approximation.

The FSA-Block obtained reasonable estimates for the range parameters a

and c, but higher MSEs than the independent blocks method. The estimate of

the nugget effect τ2 obtained by the FSA-Block was slightly higher than the

truth. The biases may be attributed to its predictive process part, which under-

estimates the correlations between blocks due to the limited number of knots.

The naive independent blocks method worked well in terms of parameter estima-

tion, which is not surprising since local information may be enough for estimating

a stationary model with dense observations. The parameter estimation results

of the predictive process model had noticeable biases, again perhaps due to the

use of limited knots. Besides, the predictive process model gives a much larger

estimate of the nugget effect due to its underestimation of the variance at each

location (Finley et al. (2009)). The modified predictive process provided a bias

correction for the variance at each location, so its estimates of τ2 and σ2 were

better than those obtained from the predictive process model, but it still under-

estimated correlations, leading to biased estimation of range parameters. The

FSA-Block provides bias-correction for the predictive process model within each

block, thus the estimates of range parameters, the nugget, and the variance had

much smaller biases than those obtained from the predictive process model and

the modified predictive process model.

When the spatio-temporal dependence range was relatively small, the FSA-

Block still gave comparable prediction performance with the full covariance model,

while the predictive process model and the modified predictive process model

gave worse prediction performance than under large-scale spatio-temporal de-

pendence. The predictive process model fails to capture small-scale dependence

and thus its performance is often sensitive to the strength of dependence, and

its parameter estimation has fairly large biases. The FSA approach seems to be

more robust and capable of adjusting the biases in the estimation of the range

parameters at different scales of dependence range.
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Table 1. The means and MSEs (in parenthesis) of each parameter and MSPE
results for covariance model with a nugget. The results are based on 100
runs of simulations.

Settings Method Mean and MSEs MSPE

a c η σ2 τ2

Set-up 1 10 20 0.5 1 0.01

FM 9.68 ( 1.75) 19.81 ( 4.31) 0.48 (0.0395) 0.97 (0.0062) 0.01 (0.0001) 0.34

FSA-Block 11.73 ( 5.84) 25.09 ( 34.71) 0.48 (0.0687) 1.04 (0.0104) 0.04 (0.0009) 0.37

Block 9.48 ( 2.38) 19.89 ( 4.97) 0.39 (0.0923) 0.96 (0.0090) 0.02 (0.0001) 0.43

PP 23.47 (206.36) 37.54 (349.67) 0.87 (0.2175) 2.25 (1.6948) 0.40 (0.1499) 0.45

Modified PP 26.16 (293.08) 42.26 (539.68) 0.86 (0.2224) 1.51 (0.2989) 0.03 (0.0011) 0.46

Set-up 2 5 10 0.5 1 0.01

FM 5.10 ( 0.27) 10.19 ( 0.40) 0.47 (0.0368) 0.99 (0.0020) 0.02 (0.0004) 0.60

FSA-Block 5.82 ( 1.15) 11.68 ( 3.85) 0.46 (0.0809) 0.97 (0.0035) 0.06 (0.0031) 0.63

Block 5.03 ( 0.29) 10.18 ( 0.60) 0.43 (0.0560) 0.97 (0.0028) 0.03 (0.0006) 0.66

PP 17.75 (181.76) 21.24 (135.58) 0.62 (0.1947) 1.52 (0.3322) 0.64 (0.4006) 0.73

Modified PP 19.04 (221.35) 21.87 (150.45) 0.80 (0.2076) 1.18 (0.0554) 0.15 (0.0223) 0.73

The Matérn class (Matérn et al. (1960); Stein (1999)) is another widely used

stationary covariance family due to its flexibility in accommodating different

smoothness. We simulated data from the Matérn covariance model with

C(h, u) =
σ2

Γ(ν)2ν−1

(
3

√
∥h∥2
ϕ2
s

+
|u|2
ϕ2
t

)ν

Kν

(
3

√
∥h∥2
ϕ2
s

+
|u|2
ϕ2
t

)
, (3.2)

where ϕs, ϕt > 0 are spatial and temporal range parameters, respectively, ν > 0

is the smoothness parameter, and Kν denotes the modified Bessel function of the

second kind of order ν. The results are included in the supplementary document.

4. Analysis of the Eastern US Ozone Data

We applied the spatio-temporal FSA to the daily surface ozone data collected

at 513 monitoring stations in the eastern US from May 1, 1998 to October 31,

1999. The observations are the maxima of hourly means over 8 consecutive hours

of ozone. The raw data can be downloaded from www.image.ucar.edu/Data/

Ozmax/.

We followed the procedure described in Gilleland and Nychka (2005) and

Bevilacqua et al. (2012) to pre-process the daily observations. The daily maxi-

mum 8-hour ozone measurement at station s and day t is assumed to have the

decomposition,

Y (s, t) = µ(s, t) + σ(s)w(s, t),

where µ(s, t) = a(s) +
3∑

j=1
{bj(s) cos(2πjt/184) + cj(s) sin(2πjt/184)}, modeling

the seasonal effect. The coefficients in the seasonal effect µ(s, t) were estimated

www.image.ucar.edu/Data/Ozmax/
www.image.ucar.edu/Data/Ozmax/
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by ordinary least square and σ(s) was estimated using the residuals after remov-

ing the seasonal effect. Following Gilleland and Nychka (2005), the estimated

coefficients matrix of the seasonal effect were further smoothed over space.

We modeled the spatio-temporal component w(s, t) by a Gaussian process

with mean 0 and a nonseparable spatio-temporal covariance function as in (3.1),

with s defined on the sphere. Since the station locations are on the sphere, the

transformed great circle distance (Gneiting (1999); Gilleland and Nychka (2005))

was used to ensure positive-definiteness of the covariance function: d(s, s′) =

2r sin (∆ϕ/2), where r is the radius of the earth and ∆ϕ ∈ [0, π] is the central

angle between s and s′. We used kilometer as the unit of spatial lags and day as

the unit of temporal lags.

Using only the monthly data in June and July, 1998 and 1999, allows us to

implement the full covariance model whose results can be used as a benchmark.

For each monthly dataset containing roughly 15, 000 observations, we randomly

selected 1,500 space-time data points as a hold-out set for prediction and used the

rest as training data. We obtained the maximum likelihood estimates of model

parameters of the full model, the FSA-Block method, and the weighted composite

likelihood (WCL) method (Bevilacqua et al. (2012)) for the training data. For

the FSA-Block approach, we applied Latin hypercube sampling to obtain 400

space-time knots and the K-means clustering algorithm to divide the monthly

data into 14 blocks. The WCL method needs to specify a pair of spatio-temporal

lags (ds, dt) such that the weights wij = 1 when d(s, s′) ≤ ds and |ti − tj | ≤ dt,

wij = 0 otherwise. Following Bevilacqua et al. (2012), we set ds = 400, dt = 3,

obtained by minimizing the asymptotic variances of WCL estimators. The results

are included in the supplementary document.

We considered larger datasets of around 45,000 daily ozone observations

from June to August in 1998 and 1999. We randomly held out 4,500 space-time

data points for prediction. We considered three covariance models to fit the

data: model A is the separable covariance model in (3.1) with η = 0; model

B is the nonseparable covariance model in (3.1); and model C is the Matérn

covariance model in (3.2). Here MLEs of model parameters were only obtained

for the FSA-Block and WCL methods only since the full covariance model is

not computationally feasible. For the WCL method, the weights were chosen

in the same way as in the monthly data analysis; for the FSA-Block method,

we applied Latin hypercube sampling to obtain 400 space-time knots and the

K-means clustering algorithm to divide each summer dataset into 54 blocks.

Prediction was performed for both methods using partial training data.

Parameter estimations and prediction results are shown in Table 2. It ap-

pears that Gneiting’s covariance models (Model A and B) outperform the Matérn

covariance model (Model C) in terms of prediction. The separable and the non-

separable Gneiting models provide comparable prediction results, indicating that
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Table 2. Parameter estimation and prediction results of summer ozone.
Model A is the separable covariance model in (3.1) with space-time inter-
action parameter η = 0. Model B is the nonseparable covariance model in
(3.1). And model C is the Matérn covariance model in (3.2).

Gneiting’s model
Year Method Model a c η α RMSPE

FSA A 20.17 376.88 − 0.268 0.372
1998 B 20.78 378.62 0.062 0.267 0.372

WCL A 29.22 1106.17 − 0.716 0.385
B 23.98 1060.31 1 0.775 0.382

Matérn model
Model ϕt ϕs ν RMSPE

FSA C 2.55 1958.93 0.274 0.436
WCL C 12.30 285.89 1.830 0.635

Gneiting’s model
Year Method Model a c η α RMSPE

FSA A 19.15 418.08 − 0.270 0.380
1999 B 19.22 418.32 0.008 0.270 0.380

WCL A 20.01 1022.59 − 1 0.402
B 14.63 1001.88 1 1 0.401

Matérn model
Model ϕt ϕs ν RMSPE

FSA C 1.49 2863.92 0.251 0.447
WCL C 9.91 132.79 2.750 0.821

a simple separable covariance model may be capable of modeling the spatio-

temporal dependence of the summer ozone datasets. For all three covariance

models, the FSA-Block clearly outperforms the WCL method in terms of pre-

diction performance. The parameter estimations using WCL seem problematic

in some cases, for example, estimates of η and α for Gneiting models are on the

boundary of the parameter space for the dataset in the summer of 1999. We

applied the RJMCMC algorithm described in Section 2.4 to automatically select

knots when applying the FSA-Block on the summer ozone datasets in 1998 and

1999, and the results are included in the supplementary document.

5. Discussion

We have proposed a method FSA to approximate a spatio-temporal covari-

ance function. Our construction provides a flexible framework for statistically

and computationally efficient parameter estimation and prediction for modeling

of large spatio-temporal datasets. We have focused on the FSA-Block variation

that provides exact bias-corrections for spatio-temporal pairs of the covariance

matrix within blocks.
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We have used the K-means clustering algorithm to choose block centers and

subsequently create the space-time partition. An interesting direction for the

future work is to treat the partition as unknown and select it adaptively using

a Bayesian method, such as the tree-generating process (Chipman, George, and

McCulloch (1998); Gramacy and Lee (2008); Konomi, Sang, and Mallick (2013)).
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