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Abstract: In spatial-temporal neuroimaging studies, there is an evolving literature

on the analysis of functional imaging data in order to learn the intrinsic functional

connectivity patterns among different brain regions. However, there are only few

efficient approaches for integrating functional connectivity pattern across subjects,

while accounting for spatial-temporal functional variation across multiple groups of

subjects. The objective of this paper is to develop a new sparse reduced rank (SRR)

modeling framework for carrying out functional connectivity analysis across multi-

ple groups of subjects in the frequency domain. Our new framework not only can

extract both frequency and spatial factors across subjects, but also imposes sparse

constraints on the frequency factors. It thus leads to the identification of important

frequencies with high power spectra. In addition, we propose two novel adaptive

criteria for automatic selection of sparsity level and model rank. Using simulated

data, we demonstrate that SRR outperforms several existing methods. Finally,

we apply SRR to detect group differences between controls and two subtypes of

attention deficit hyperactivity disorder (ADHD) patients, through analyzing the

ADHD-200 data.

Key words and phrases: Functional connectivity, lasso, low rank representation,

resting-state functional MRI, singular value decomposition.

1. Introduction

The predominant functional imaging techniques, such as functional mag-

netic resonance imaging (fMRI), electroencephalography (EEG), and magnetoen-

cephalography (MEG), have been widely used in behavioral and cognitive neu-

roscience to understand functional segregation and integration of different brain

regions in a single subject and across different populations (Friston (2009)). Such

statistical methods as principal component analysis (PCA), general linear models

(GLM), and independent component analysis (ICA), have been developed to ex-

tract both spatial and temporal patterns of interest from functional signals, and

to understand how different brain regions interact with each other. For instance,

ICA has been widely used in single-subject fMRI/EEG studies to separate spa-

tially or temporally independent components (McKeown et al. (1998); Beckmann

and Smith (2004)). However, the extension of these methods to group inference
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is not straightforward due to striking neuroanatomic variations, and thus it re-

mains an active research topic (Calhoun, Liu, and Adalı (2009)). The aim of

this paper is to develop a sparse reduced rank (SRR) spatial-temporal modeling

framework in the frequency domain for group analysis of functional imaging data

across multiple groups.

Two strategies are typically adopted in group ICA of neuroimaging data.

The first strategy is to perform ICA for each subject separately, and then to

combine the outputs across subjects through, for example, clustering analysis

and correlation analysis (Calhoun et al. (2001a); Esposito et al (2005)). These

methods are sensitive to different source separations obtained from different sub-

jects, making it difficult to establish good correspondence among independent

components across subjects. The second strategy is to concatenate functional

imaging data either temporally or spatially, and then perform ICA on the con-

catenated data matrix. For instance, temporal concatenation, namely spatial

ICA, implicitly assumes that neural activation is observed at the same locations

across all subjects (Calhoun et al. (2001b); Guo and Pagnoni (2008)), whereas

spatial concatenation, namely temporal ICA, assumes subject-specific spatial

maps with a common temporal basis (Svensén, Kruggel, and Benali (2002)).

To avoid the assumption of spatial correspondence, a possible solution is to

extend temporal ICA by addressing two major limitations: temporal inconsis-

tency and noise sensitivity. In the time domain, assuming a common temporal

basis across subjects can be unreasonable for functional neuroimaging data due

to the large temporal variability in response latency, especially for resting-state

data. Hence, performing data analysis in the frequency domain can be a remedy

to achieve temporal consistency. Calhoun et al. (2003) performed group spatial

ICA in the frequency domain. However, as in the other ICA methods, PCA is

needed to reduce the number of time points. There are two potential solutions to

noise sensitivity. The first is to increase the temporal sampling rate and improve

data quality (Smith (2012)); the second is to use some advanced mathematical

and statistical methods, such as compressed sensing theory and regularization

methods (Tibshirani (1996); Donoho, Elad, and Temlyakov (2006)). There are a

few recent developments on the use of sparse dictionary learning algorithms for

neuroimaging data in the time domain (Aharon, Elad, and Bruckstein (2006);

Lee et al. (2011a); Lee, Tak, and Ye (2011); Varoquaux et al. (2011)).

The objective of the current paper is to develop a sparse reduced rank (SRR)

modeling framework in the frequency domain, with several novel developments

in order to carry out group functional imaging analysis and comparison across

multiple groups. We view SRR as a combination of temporal ICA and sparse

dictionary learning algorithms. Our new developments include i) a group model-

ing framework in the frequency domain, ii) detection of common frequency basis
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functions, iii) sparsity of the frequency basis functions, iv) novel data-driven pro-

cedures to select sparsity level and model rank, and v) varying spatial functions

across groups for group comparison and integration.

Different from many other methods, our proposal aims at finding “optimal”

low-rank approximations to the power spectrum matrices of the original imag-

ing data from multiple groups. The low-rank approximation assumes a set of

common frequency factors, along with the subject-specific spatial maps which

then enable group comparison and data integration across groups. Our model-

ing framework also imposes sparsity on the frequency factors, which is a natural

consideration given the particular characteristics of power spectra of temporal

functions. We propose an efficient alternating algorithm for estimating the fre-

quency basis and spatial factors. We develop two Bayesian information criteria

(BIC) for sparsity and rank selection, while accounting for dependence among

observations at each distinct frequency. Simulation studies are performed to il-

lustrate the nice performance of our method from a wide range of perspectives.

Due to space limitations, we present the simulation results in the supplementary

material. Through an analysis of the New York University (NYU) sub-sample

of the ADHD-200 data, we demonstrate that our method can detect meaningful

functional connectivity patterns across two ADHD subtypes and typically devel-

oping children (TDC), varying significantly across groups at some specific regions

of interest.

The rest of the paper is organized as follows. In Section 2, we formulate our

SRR model, and derive the alternating estimation algorithm, along with detailed

discussions about the modified BICs. We report the analysis of the ADHD-

200 data in Section 3, and compare functional connectivity patterns across one

control and two patient groups. We conclude the paper with some discussion

in Section 4. In Section S1 of the supplementary material, we report on the

simulation studies that compare SRR with several existing methods.

2. Methods

2.1. Model formulation

It is well-known that most of functional imaging data show significant fluc-

tuations at certain range of frequencies. For example, resting-state fMRI data

focus on spontaneous low frequency fluctuations below 0.1 Hz in the BOLD signal

(Biswal et al. (1995)). In addition, EEG data have revealed oscillatory activity

in specific frequency bands, including delta (1-4 Hz), theta (4-8 Hz), alpha (8-12

Hz), beta (13-30 Hz), and gamma (30-70 Hz). As shown in Figure 1, we trans-

form the standardized time courses from brain images to the frequency domain,

and use the power spectra rather than the raw time courses. One advantage is
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Figure 1. Illustration of data structures from time course measurements of
brain activities to power spectra matrices.

that the power spectra matrices are much sparser, since strong power is believed

to distribute in a specific range (e.g., below 0.1 Hz) of frequencies.

Let T be the number of distinct frequencies and R be the number of regions

(or voxels) of interest (ROI). Without loss of generality, we use ROI throughout

the paper. We observe (or calculate) the T × R power spectra matrix Ys
g of

rank q = min(T,R) for each subject s of group g, where s = 1, . . . , Ng and

g = 1, . . . , G. For example, the (i,j)th element of Ys
g is the power spectrum of

the jth ROI at the ith frequency for the sth subject of the gth group. Group g

has Ng subjects, and the total number of subjects is N =
∑G

g=1Ng.

To integrate functional imaging data across subjects, we consider the follow-

ing multi-group low-rank spatial-temporal model:

Ys
g = UMs

g +Es
g, (2.1)

where U is the T × q frequency factor matrix common across groups, Ms
g is the

corresponding q ×R spatial factor matrix specific to each subject, and Es
g is the

subject-specific error matrix. A key assumption in Model (2.1) is that there is a

set of common frequency basis functions for all subjects. This is a reasonable as-

sumption for most functional neuroimaging studies. In fMRI studies, all subjects

undergo the same set of experimental stimuli or conditions across time, and thus

it is expected that frequency basis functions would be shared across subjects.

For instance, Bai et al. (2008) have adopted the frequencies of stimuli used in

the block design fMRI studies for their model formulation.

A schematic overview of our SRR framework is given in Figure 2. Using the

data from multiple groups of subjects, SRR can extract the common frequency

factors, while allowing the spatial factors to vary across subjects. We note that
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Figure 2. Illustration of the SRRmodel framework for incorporating multiple
subjects across groups.

the common frequency factors do not mean that all subjects have the same dom-

inating frequencies, but that we can use a common factor incorporating all the

frequency information across subjects. Furthermore, Model (2.4) below enables

follow-up hypothesis testing of spatial differences among groups.

To estimate U and Ms
g in Model (2.1), we consider the squared loss function:

G∑
g=1

Ng∑
s=1

∥Ys
g −UMs

g∥2F s.t. U′U = I, (2.2)

where ∥ · ∥F denotes the Frobenius norm. For model identifiability, we impose a

set of orthogonality constraints on the frequency factors.

We further impose discontinuity and sparsity constraints on the frequency

factors. It is common that the corresponding power spectra exhibit high-magni-

tude signals only in several dominating frequencies and nuisance noise elsewhere.

To account for such characteristics in the frequency domain, we consider imposing

sparsity on the frequency factor matrix which in turn leads to the identification

of frequencies with large power spectra by shrinking small entries of U toward

zero. One of the most popular approaches is to impose the L1 (or lasso) penalty

(Tibshirani (1996)). For model estimation, we thus consider minimizing the

penalized loss function

G∑
g=1

Ng∑
s=1

∥Ys
g −UMs

g∥2F +

q∑
i=1

λi∥ui∥1, (2.3)

where ∥ · ∥1 denotes the L1 norm, ui is the ith frequency factor, and λi ≥ 0 is the
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tuning parameter, to determine the degree of sparseness for ui, which enables

sparsity level to vary among factors.

After estimating Ms
g, we can directly model Ms

g to make comparison and

integration of functional imaging data across groups. For instance, if spatial

correspondence is reasonable for a given data set, we can consider the spatial

factor matrix as being group-specific:

Ms
g = Mg +Hs

g, (2.4)

where Mg represents the spatial factor matrix specific to the gth group and Hs
g

is the corresponding error matrix assuming that vec(Hs
g) have mean 0 and the

qR× qR independent variance-covariance matrix.

Under Model (2.4), we can perform statistical tests of group differences,

while preserving the inherent characteristics from each group. Furthermore, we

can incorporate stimulus types or other individual characteristics, such as age or

gender, to build a linear model as follows:(
vec(M1

1), · · · , vec(M
NG
G )

)′
= XB+

(
vec(H1

1), · · · , vec(H
NG
G )

)′
,

where (vec(M1
1), · · · , vec(M

NG
G ))′ is an N × qR matrix, X is an N × p design

matrix with p the number of covariates, B = (vec(B1), · · · , vec(Bp))
′ is a p× qR

coefficient matrix with Bk the q×R coefficient matrix for the kth covariate, and

the error (vec(H1
1), · · · , vec(H

NG
G ))′ is an N × qR matrix.

2.2. Model estimation

The high-dimensionality of the problem makes it challenging to directly min-

imize the objective function in (2.3). To begin with, we horizontally concatenate

the matrices Ys
g and Ms

g, respectively, for all subjects and denote the resulting

matrices as Y and M. The concatenated matrix Y can be written by

Y = (Y1
1,Y

2
1, · · · ,Y

NG
G ) =

G∑
g=1

Ng∑
s=1

Js
g ⊗Ys

g,

where ⊗ is the Kronecker product and Js
g is a 1 × N vector of zeros, with the

exception that the (
∑g−1

i=0 Ni + s)-th element is 1, where N0 = 0. Note that∑g−1
i=0 Ni + s corresponds to the location of the subject s within the group g

when the N subjects are first ordered according to group and then within each

group.

Similarly, we have M = (M1
1,M

2
1, · · · ,M

NG
G ) =

∑G
g=1

∑Ng

s=1 J
s
g ⊗ Ms

g. In-

stead of simultaneously minimizing the loss function (2.3) with respect to U and

M, we describe below an iterative estimation algorithm that alternates the op-

timization with respect to U and M, while performing data-driven selection of

the tuning parameters λi’s as well as the underlying rank r.



A SPARSE REDUCED RANK FRAMEWORK FOR GROUP ANALYSIS 301

2.2.1. Initial estimation

To initialize, we minimize the un-penalized loss function (2.2) that can be

rewritten as

∥Y −UM∥2F s.t. U′U = I, (2.5)

where Y is the T ×RN matrix and M is the q ×RN matrix. Assuming that U

is given, the minimizer is M̂ = U′Y obtained by taking the derivative of (2.5)

with respect to M. Plugging this into (2.5), we have

min
U

∥Y −UM̂∥2F =min
U

∥Y −UU′Y∥2F = max
U

tr(U′YY′U),

where tr(A) denotes the trace of the matrix A. It suggests that the minimization

of (2.5) with respect to U is equivalent to finding

Û = argmax
U

tr(U′YY′U) s.t. U′U = I. (2.6)

As shown in Jolliffe (2002, Chap. 2), the solution Û in (2.6) is given by the first

q eigenvectors of YY′. It then follows that M̂ = Û′Y. We refer to Û and M̂ as

the initial estimators.

2.2.2. Sparse Estimation for U and M

We can further express (2.3) in a concatenated form as

∥Y −UM∥2F +

q∑
i=1

λi∥ui∥1, s.t. ui ≥ 0, i = 1, . . . , q. (2.7)

We first present how to solve the above optimization problem without the non-

negative constraints on the factors ui then discuss ways of incorporating those

constraints.

GivenM, the optimization of (2.7) with respect toU is essentially a quadratic

programming problem. However, direct minimization is computationally in-

tensive given a large number of ROIs in neuroimaging data. We can rewrite

(2.7) as a form of linear regression model: ||y − Xβ||22 +
∑q

i=1 λi||βi||1, where
y = vec(Y) is a TRN × 1 vector, X = M′ ⊗ IT is a TRN × T 2 matrix, and

β = (vec(u1)
′, . . . , vec(uq)

′)′ is a T 2 × 1 vector. For the ADHD-200 sample with

R = 954, T = 24, and N = 178 in Section 3, the design matrix X has dimension

4, 075, 488× 576, which requires a large amount of memory and tedious compu-

tation time. Therefore, we propose to sequentially estimate each component of

U and M. The sequential extraction also makes it feasible to incorporate factor-

specific sparsity through selecting a factor-specific tuning parameter. Simultane-

ous data-driven selection of multiple tuning parameters is computationally too

costly.
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For sequential estimation, we first express UM as the sum of q rank-one

matrices given by UM =
∑q

i=1 uimi, where ui is the ith column vector of U

and mi is the ith row vector of M.

For the first rank-one term (i = 1), we consider minimizing

∥Y − u1m1∥2F + λ1∥u1∥1. (2.8)

Given the initial estimate m̂1 obtained in the initialization step, we estimate u1

by minimizing

∥Y − u1m̂1∥2F + λ1∥u1∥1. (2.9)

It can be shown that the minimizer ũ1 of (2.9) has the explicit form

ũj1 = sgn
(
ûOLS
j1

)(∣∣ûOLS
j1

∣∣− λ1

2∥m̂1∥22

)
+

for j = 1, . . . , T. (2.10)

Here sgn(·) is the sign function, the subscript “+” indicates the nonnegative part,

and ûOLS
j1 = < yj , m̂1 >/∥m̂1∥22 is the ordinary least squares (OLS) estimate of

uj1 when setting λ1 = 0 in (2.9), with < ·, · > denoting the inner product between

two vectors, and yj being the jth row of the matrix Y. The proof is given in

Section S2 of the supplementary material.

Given the sparse estimate ũ1, m1 can be updated by minimizing

∥Y − ũ1m1∥2F ,

which yields m̃1 = (ũ′
1ũ1)

−1ũ′
1Y. After estimating the first rank-one term as

ũ1m̃1, we consider the residual matrix K2 = Y − ũ1m̃1. To find the second

rank-one term, we modify the optimization criterion in (2.8) with

∥K2 − u2m2∥2F + λ2∥u2∥1,

which can be minimized with respect to u2 and m2 in a similar alternating way.

The rest of the rank-one terms, uimi, i = 3, . . . , q, can be obtained sequentially

in a similar manner by using the residual matrices from the lower-rank approxi-

mations, denoted as Ki = Y −
∑i−1

j=1 ũjm̃j , with K1 = Y.

Thus, given the initial estimate m̂i, the minimization criterion for estimating

ui can be written as

∥Ki − uim̂i∥2F + λi∥ui∥1 for i = 1, . . . , q. (2.11)

Setting λi = 0, the OLS estimator for ui can be obtained as

ûOLS
ji =

< ki,j , m̂i >

∥m̂i∥22
, (2.12)
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where ki,j is the jth row vector of the matrix Ki. Then the minimizer of (2.11)

with respect to ui can be explicitly given as

ũji = sgn
(
ûOLS
ji

)(∣∣ûOLS
ji

∣∣− λi

2∥m̂i∥22

)
+

for j = 1, . . . , T. (2.13)

The proof is given in Section S2 of the supplementary material.

Given the updated estimate ũi, we minimize the objective function

∥Ki − ũimi∥2F , (2.14)

whose minimizer is m̃i = (ũ′
iũi)

−1ũ′
iKi. If ũi is a zero vector, we also set m̃i to

be a zero vector.

Finally, we comment that the estimated frequency basis functions ũi might

be negative. Even though the proposed method has an explicit solution which

reveals the dominating frequencies quite well, we can consider another approach

that implicitly imposes the non-negativity constraints when estimating the fre-

quency basis functions, in addition to the orthogonality or sparsity constraints.

Each optimization can be solved via multiplicative iterative algorithm or alternat-

ing least squares algorithm for a semi-nonnegative matrix factorization problem

(Cichocki et al. (2009)). However, such method is computationally extensive

since the two estimation steps need to be iteratively updated. We leave this

approach for future research.

2.2.3. Data-driven parameter selection

Our estimation algorithm involves a set of tuning parameters that needs to

be selected in a data-driven fashion, including the sparsity tuning parameters λi,

i = 1, . . . , q, and the model rank r. For tuning parameter selection, many criteria

have been proposed and studied in the literature, such as the Akaike information

criterion (Akaike (1973)), Bayesian information criterion (BIC) (Schwarz (1978)),

and (generalized) cross-validation (Craven and Wahba (1979)). In linear model

settings, it is well-known that BIC gives consistent model selection. We propose

two BIC-type criteria for selecting the tuning parameters in our algorithm and

illustrate the nice performance of the criteria in Section S1 of the supplementary

material.

Following Lee et al. (2010), we are tempted to use a natural BIC for selecting

the sparsity tuning parameter λi,

∥Ki − ũim̂i∥2F
∥Ki − ûOLS

i m̂i∥2F
+

log(NTR)

NTR
× df for i = 1, . . . , q, (2.15)

where df is the number of nonzero elements in ũi. However, this naive crite-

rion failed to generate reasonable models in our study. For a large number of
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ROIs, this BIC imposes very small penalties on bigger models, and hence has the

tendency to select the full model. Such a problem is caused by the intrinsic de-

pendence in our data, suggesting that the effective sample size should be smaller

than NTR used in the naive BIC (2.15).

To adjust for the dependence, we treat each frequency as a cluster because

different frequencies illustrate different variabilities, and define the intra-cluster

correlation coefficient (Killip, Mahfoud, and Pearce (2004); Faes et al. (2009))

as ρ = V 2
b /(V

2
b + V 2

w), where V 2
b is the between-cluster variability and V 2

w is the

within-cluster variability. The setup is analogous to one-way analysis of variance

(ANOVA), in which each frequency corresponds to one level of the factor, and

the response variable is Y. We can then estimate the between-frequency and

within-frequency variabilities using ANOVA. It follows that the effective sample

size is

NE =
NTR

1 + ρ(NR− 1)
. (2.16)

If ρ = 0, the effective sample size remainsNTR. As ρ increases, the effective sam-

ple size becomes closer and closer to T , the number of frequencies (i.e. clusters).

Using the effective sample size, we revise the naive BIC as

BICS(λi) =
∥Ki − ũim̂i∥2F

∥Ki − ûOLS
i m̂i∥2F

+
log(NE)

NE
× dfS , (2.17)

where the subscript S indicates that this BIC is used for selecting the sparsity

tuning parameter. For each component i = 1, . . . , q, we choose the optimal value

of λi at which the minimum BICS is achieved.

Given the final estimates Ũ and M̃, we choose the “optimal” rank using the

following BIC-type statistic. For r = 1, . . . , q,

BICR(r) =
∥Y −

∑r
j=1 ũjm̃j∥2F

∥Y −
∑q

j=1 ũjm̃j∥2F
+

log(NE)

NE
× dfR, (2.18)

where dfR is the effective number of parameters in the rank-r approximation∑r
j=1 ũjm̃j . Under the independence assumption, the degrees of freedom in

(2.18) should be (T +NR)× r for the rank-r model. Given the above discussion

of intra-cluster-dependence, we adjust NR to NR/(1 + ρ(NR − 1)), where ρ is

obtained from the ANOVA model with the response variable
∑r

j=1 ũjm̃j . It then

suggests that the effective degrees of freedom should be

dfR =

(
T +

NE

T

)
× r for rank r.

Algorithm 1 summarizes the key steps of the estimation procedure derived.

We note that the resulting estimate Ũ might not be orthogonal. Adding the
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Algorithm 1 Estimation for U and M

Step 1: Initial Estimation for U and M
Minimize the un-penalized loss function in (2.5) to obtain the initial

estimates Û and M̂;
Step 2: Sparse Estimation for U and M:

For i = 1, . . . , q,
For each λi, obtain ũi by minimizing (2.11);

Then, select the optimal λ̂i that minimizes BICS(λi) in (2.17);
Given ũi, obtain m̃i by minimizing (2.14);

Step 3: Rank Determination:
For r = 1, . . . , q, compute BICR(r) in (2.18);
Then, choose the optimal rank r̂ that minimizes BICR(r);

Obtain the estimates Ũ and M̃ for the rank-r̂ model.

orthogonalization after Step 2 could make Ũ lose sparsity. Even though we do

not enforce orthogonality, our estimate is quite close to orthogonal in that Ũ′Ũ

is close to an identity matrix and the off-diagonal elements are almost zero, based

on our experience.

3. Application to the ADHD-200 Data

3.1. Data acquisition and preprocessing

We used the resting-state fMRI data from the ADHD-200 sample which

is available from http://fcon_1000.projects.nitrc.org/indi/adhd200. The

data were collected from eight sites of the ADHD-200 consortium. In this study,

we only analyzed the data from NYU with the largest number of subjects. At

NYU, a Siemens Allegra 3T scanner was used to acquire the 6-min resting-state

fMRI scans. The scan parameters are the following: voxel size = 3× 3× 4 mm,

slice thickness = 4 mm, number of slices=33, TR (repetition time) = 2 s, TE

(echo time) = 15 ms, flip angle = 90◦, and field of view = 240 mm. One or

two resting-state fMRI scans were acquired for each subject in the NYU data.

During acquisition, each subject was asked to be awake and not to think about

anything under a black screen.

Table 1 shows the demographic information for the NYU sample. We ex-

cluded the ADHD hyperactive/impulsive subtype group which only has two sub-

jects. Based on the quality control (QC) performance given in the phenotypic

data, we deleted the scans showing artifacts and then chose one of the scans for

each subject. If no scans passed QC, we removed the subject from our study.

We also excluded subjects with the same values at all time points. In Table 1,

the last column shows the number of subjects for each group used in our study.

The ADHD-200 sample provides various types of time course data that were

extracted using different atlases and pipelines. Among them, we used the ‘1,000

http://fcon_1000.projects.nitrc.org/indi/adhd200
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Table 1. Demographic information for the NYU sample of the ADHD-200
data. The number of females, males, and subjects with gender missing data
are given in parentheses.

Diagnostic status Frequency Mean age No. of subjects
(female/male/missing) (min/max) used in our study

TDC 99 (52/47/0) 12.2 (7.2/18.0) 86 (44/42/0)
ADHD combined 77 (12/64/1) 10.7 (7.2/17.4) 61 (10/50/1)

ADHD hyperactive/impulsive 2 (0/2/0) 10.6 (9.2/11.9) -
ADHD inattentive 44 (15/29/0) 12.0 (7.4/17.6) 31 (13/18/0)

Total 222 (79/142/1) 11.6 (7.2/18.0) 178 (67/110/1)

ROI extracted time courses’ that were preprocessed by the Neuroimaging Anal-

ysis Kit (NIAK) (Lavoie-Courchesne et al. (2012)). To check the existence of

frequency coherence, we examined the ROIs consisting of 30+ voxels, and com-

puted the Moran’s I statistic and its Z-score. Averaged across all subjects, 99.2%

of ROIs had the Z-scores greater than 1.96, indicating that there exist frequency

coherence within each ROI. Before analyzing the data, we standardized the time

course data in order to have zero mean and unit variance. A band-pass filter

is usually applied during preprocessing to eliminate some frequencies that are

assumed to have nuisance noise, such as slow drift or physiological effects. Even

though the NIAK applied a high-pass filter at 0.01 Hz to correct slow time drifts,

some data still exhibit high power spectra below 0.01 Hz. Therefore, we addi-

tionally applied a band-pass Fourier filter (0.009-0.08 Hz) which is used in the

Athena pipeline to remove frequencies not related to resting-state brain activity.

We then focused on this frequency band, and thereby the number of distinct

frequencies within this range is 24. Using the filtered data, we computed the

power spectra matrices to be used for finding the group differences.

3.2. Results

Figure S8 in the supplementary material shows the BICR curve for selecting

the model rank r̂. Note that the full rank is 24, the number of frequencies within

the filtered frequency band. The minimum of BICR was achieved at r̂ = 14.

For applying SRR, we thus used the first 14 components instead of the whole 24

components.

Figure S9 in the supplementary material displays the estimated U matrices

as heat maps. The left panel displays the initial Û matrix obtained from Step

1. The first column of each matrix tends to represent the average over all the

frequencies. The first few elements at low frequencies are large and the rest are

close to zero. We expect that the small noisy elements will be shrunken toward

zero or become zero after penalization in Step 2. The right panel presents the

sparse Ũ matrix obtained from Step 2. As expected, only a few large elements
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Table 2. Comparison of spatial maps between two groups. The p-values are
adjusted by FDR correction.

Component ROI ID (regions) p-value

TDC 13 221 (R Transverse TG, Insula, Post- & Precentral G) 0.0906

vs 13 726 (R Superior TG, Insula, Transverse TG) 0.0906

ADHD combined 14 775 (L Middle TG) 0.0727

TDC 2 847 (R Tuber, Culmen, Fusiform G) 0.0050

vs 3 215 (L Insula) 0.0530

ADHD inattentive 12 116 (R Middle and Superior FG) 0.0706

12 598 (L Inferior Parietal Lobule) 0.0319

ADHD combined 3 231 (L Medial FG) 0.0779

vs 3 257 (L Medial FG, Cingulate Gyrus) 0.0627

ADHD inattentive 3 300 (R Insula) 0.0627

3 626 (R Postcentral G) 0.0779

7 203 (R Middle and Inferior FG) 0.0789

L: left, R: right, G: gyrus, TG: temporal gyrus, FG: frontal gyrus

remain and the rest are estimated to be zero after penalization. The red square

shows the final Ũ matrices after rank selection by BICR.

From Model (2.4), we tested whether there exist group differences in any

specific ROI. We state a null hypothesis to test whether at least one group is

different from the others. Specifically, for each i and j, we have

H0 : M1(i, j) = M2(i, j) = · · · = MG(i, j), (3.1)

where Mg(i, j) is the (i, j)th element of Mg. To test this hypothesis, we consid-

ered a conditional inference procedure assuming M̂s
g fixed, and then carried out

an F-test under a linear regression setting. Unfortunately, we found no group

differences in any ROIs under the significance level of 0.10 after the false discov-

ery rate (FDR) correction (Benjamini and Hochberg (1995)). We also applied

FastICA and K-SVD, which found no significant difference either.

Next we tested group differences between a pair of two groups. For groups

g1 and g2, the null hypothesis is

H0 : Mg1(i, j) = Mg2(i, j) for the ith component and the jth ROI. (3.2)

For each of the three pairwise comparisons, Table 2 lists the ROIs detected as

significantly different between the groups, providing FDR-corrected p-values less

than 0.10. Most of the ROIs were located in the frontal and temporal lobes.

These findings are displayed in Figure S10 of the supplementary material, where

− log10(p-values) are superimposed on a brain anatomical image.

The top panel plots the ROIs showing the differences between TDC and

ADHD combined subtype groups. The significant ROIs are included in the tem-

poral lobe, right parietal lobe, right frontal lobe (precentral gyrus), and right
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insula. In the middle panel, we compared TDC with ADHD inattentive subtype

group. We found significantly different activation in the left insula, right cerebel-

lum, right temporal, right frontal and left parietal lobes. In the bottom panel,

we compared two ADHD subtype groups and found different activations in the

left and right frontal lobes, left limbic and right parietal lobes, and right insula.

The significant ROIs identified are consistent with existing clinical findings

of ADHD patients. Both resting-state and task-based fMRI studies have been

used for investigating brain activation patterns in ADHD patients (Teicher et

al. (2000); Tian et al. (2008)). It is well known that the prefrontal cortex is

an important brain region in ADHD studies. Moreover, it has been recently

reported that ADHD patients show different activation pattern in the temporal

lobe (Cherkasova and Hechtman (2009)). The temporal lobe is mainly asso-

ciated with language and verbal memory. The cerebellum has been known to

be responsible for motor control and cognitive functions. There are several pa-

pers which reported dysfunction in the cerebellum for ADHD patients (Toplak,

Dockstader, and Tannock (2006)). In addition, the parietal lobe is related to

attention, memory, and cognitive process. Different brain activations in the pari-

etal lobe for ADHD patients have been reported in the literature (Tamm, Menon,

and Reiss (2006)). Interestingly, functional relationship between the insula and

cingulate gyrus has received a lot of attention in the literature (Taylor, Seminow-

icz, and Davis (2009); Medford and Critchley (2010)). The insula plays a role

in consciousness related to emotions as well as perception, motor control, and

self-awareness. The dysfunction in the insula has been observed in ADHD pa-

tients across a variety of task-related studies such as timing and error processing

(Spinelli et al. (2011)). The cingulate gyrus is mainly associated with cognitive

process that is linked to the signs of ADHD. There is growing evidence that sug-

gests the anterior cingulate cortex dysfunctions in ADHD patients (Bush, Valera,

and Seidman (2005)).

We present the boxplots to depict the groups showing different power spectra

with the others in Figure S11 of the supplementary material. For each pair of

groups, we display the boxplots of ũim̃
g,s
ij for the ith frequency component and

the jth ROI, where significant group difference is detected, as shown in Table

2 and Figure S10 in the supplementary material. Due to sparsity on the Ũ,

the ith frequency component has nonzero values at a few distinct frequencies.

Therefore, ũim̃
g,s
ij has the same number of nonzero components. For simplicity,

we only consider the frequency corresponding to the largest absolute value of ũi.

The corresponding frequencies are shown on the x-axis of each plot. Within each

panel, the horizontal line is drawn at zero. These boxplots help us to interpret

the results from our analysis. For example, on the top-left panel we can see

that the ADHD combined subtype group shows higher power spectra than the
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control group at f = 0.043 in the 221st ROI (right transverse temporal gyrus,

insula, postcentral and precentral gyri); on the other hand, the top-right panel

shows that the ADHD combined subtype group has lower power spectra than

the control group at f = 0.046 in the 775th ROI (left middle temporal gyrus).

For the purpose of comparison, we also analyzed the data using K-SVD and

FastICA. (Note that GIFT cannot be used for ROI analysis.) First of all, both

methods yielded very unstable results even for the same dataset. Therefore, we

repeated the analysis 10 times for each method, and then examined the ROIs

found to be significant in all repetitions. Since both methods assume a given

model rank, we considered r̂ = 14 as suggested by BICR. We tested the group

difference by using the simultaneous test in (3.1) and pairwise tests in (3.2). As

a result, both methods failed to find any significant difference.

4. Discussion

We have presented a novel sparse reduced rank modeling framework for group

analysis of functional imaging data in the frequency domain. The key assump-

tion of SRR is that the power spectra matrix of functional imaging data can

be well approximated by a sparse representation of a set of common frequency

factors. We have proposed a sequential penalization approach to learn the com-

mon frequency factors and the spatial factor matrix. Our method does not suffer

from lack of memory or heavy computation even for a large number of ROIs.

For testing the computation time of SRR algorithm, we have run the voxel-level

whole brain images of ADHD-200 data with 48,472 voxels, and compared it with

the ROI-based data used in Section 3. The computation times for the ROI- and

voxel-based data were 51 seconds (0.01 hours) and 5113 seconds (1.42 hours),

respectively. Considering a large number of subjects, it seems to run reasonably

fast.

We have also proposed two novel BIC-type selection criteria for choosing

the tuning parameters and for selecting the best model rank. We have demon-

strated the promising performance of SRR using both the simulated data and

ADHD-200 sample. In data application, we have performed F-tests based on

the estimated spatial factors for group comparisons, and found significant group

differences in some brain regions, such as the prefrontal cortex, temporal cortex,

and cerebellum. These findings are consistent with existing clinical findings of

ADHD studies.

The SRR framework in the frequency domain can be suitable for analyzing

the resting-state neuroimaging data, as considered in this paper. However, it

still has potential applicability for other fMRI studies with specific experimental

designs. Bai et al. (2008) have applied the frequencies of stimuli used in the block

design fMRI studies to the SVDmodel framework. In case of event-related design,
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it might be inappropriate to apply the frequency domain analysis. However, it

would be possible to consider time domain analysis with smoothing penalty as

a modified version of the SRR algorithm. We leave this extension for future

research.
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