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Abstract: In this paper, we consider a panel data varying-coefficient partially linear

model errors correlated in space and time. A serially correlated error structure is

adopted for the correlation in time, and we propose an estimating procedure for

the autoregressive coefficients in our set-up by combining a polynomial spline se-

ries approximation with least squares. The resulted estimators are shown to enjoy

asymptotic properties. We construct a weighted semiparametric least squares es-

timator (WSLSE) and a weighted polynomial spline series estimator (WPSSE) for

the parametric and nonparametric components of the mean model, respectively.

The WSLSE is shown to be asymptotically normal and more efficient than the

unweighted one, and the WPSSE is shown to achieve the optimal nonparamet-

ric convergence rate. Some simulation studies are reported to illustrate the finite

sample performance of the proposed procedure. An application to Indonesian rice

farming data is given.
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1. Introduction

In Statistics and Econometrics, panel data refers to observations on a cross-

section of countries, households, firms, individuals, or patients, etc., over multi-

ple time periods. Compared with traditional time series or cross-sectional data,

there are several benefits of its use: panel data can control individual heterogene-

ity; panel data give more data points, therefore are more informative and less

collinear among the explanatory variables; panel data are better able to study

the dynamics of adjustment. See Baltagi (2008) for details. Various parametric,

nonparametric, and semiparametric models and corresponding statistical meth-

ods have been developed for analyzing panel data with assuming cross-sectional

independence in the last decades. See, for instance, Diggle, Liang, and Zeger

(1994) and Baltagi (2008) for the parametric modeling; Ullah and Roy (1998)

and Ruckstuhl, Welsh, and Carroll (2000) for the nonparametric modeling; and
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Horowitz and Markatou (1996), Wang, Carroll, and Lin (2005) Fan, Huang, and

Li (2007) and Henderson, Carroll, and Li (2008) for the semiparametric modeling.

When sample data are randomly drawn from a population, the cross-sectional

independence may not be a worry. However, if competitions between cross-

sectional units, copy-cat policies, net work issues, spill-overs, externalities, re-

gional issues, etc., are involved, the cross-sectional independence may not hold

(e.g., see Kapoor, Kelejian, and Prucha (2007)). An attractive way of allow-

ing for interdependence between cross-sectional units in an empirical modeling

is by means of a spatial method. In spatial models, interactions between cross

sectional units are typically modeled in terms of some measure of distance be-

tween them. So far, the most widely used spatial models are variants of the one

considered by Cliff and Ord (1981). The statistical inferences of spatial cross-

sectional data models are discussed in Kelejian and Robinson (1992), Kelejian

and Prucha (2001, 2004, 2010), Lee (2002, 2005), Su and Jin (2010), Su (2012),

and so on. Recent theoretical contributions and applications on panel data spa-

tial models include Baltagi, Song, and Koh (2003), Druska and Horrace (2004),

Egger, Pfaffermayr, and Winner (2005), Baltagi, Egger, and Pfaffermayr (2007),

Lee and Yu (2010), and Korniotis (2010). Kapoor, Kelejian, and Prucha (2007)

generalized the procedure of generalized method of moments (GMM) in Kelejian

and Prucha (1999) to panel data models involving a first-order spatially autore-

gressive disturbance term, whose innovations have an error component structure;

Badinger and Egger (2013) developed an estimation for higher-order spatial au-

toregressive panel data error component models with spatial autoregressive dis-

turbances, derived the moment conditions and optimal weighting matrix without

distributional assumptions for a generalized moments estimation procedure of the

spatial autoregressive parameters of the disturbance process and defined a gen-

eralized two-stages least squares estimator for the mean regression parameters

of the model; Mutl and Pfaffermayr (2011) discussed an instrumental variable

estimation under both the fixed and the random effects specifications, proposed

a spatial Hausman test which compared these two models accounting for spatial

autocorrelation in the disturbances and showed that the test statistic follows,

asymptotically, a chi-squared distribution.

Almost all works on spatial panel data mentioned above focus on parametric

models, although some scholars have investigated the estimating problem of spa-

tial cross-sectional data semiparametric models (e.g., see Su and Jin (2010) and

Su (2012)). Parametric models are useful for analyzing panel data and provid-

ing a parsimonious description of the relationship between the response variable

and its covariates. They are, however, often subject to the risk of increasing

modeling biases. Semiparametric and structural nonparametric panel data re-

gression models are good alternatives that keep a balance between a general
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nonparametric framework and a fully parametric specification. In this paper, we

propose a semiparametric spatial panel data model, namely spatial panel data

varying-coefficient partially linear model in which the errors are allowed to be

correlated in space and time, and the correlation in time is described by a seri-

ally correlated error component structure. Obviously, a serially correlated error

component structure is more general than the classical one-way error component

structure that assumes the same correlation between errors no matter how large

the distance of the two observed time points (e.g., see Baltagi (2008)).

We consider the panel data varying-coefficient partially linear model

YN (t) = XN (t)β + ZN (t)⊙MN (UN (t)) + εN (t), t = 1, . . . , T, (1.1)

where YN (t) = (Y1t, . . . , YNt)
τ are the response vectors, XN (t) = (X1t, . . .,

XNt)
τ
p×N , ZN (t) = (Z1t, . . . ,ZNt)

τ
q×N , and UN (t) = (U1t, . . . , UNt)

τ are real-

izations of explanatory variables X, Z and U, respectively. In addition, β ∈
Rp is a p-dimensional unknown coefficient vector, MN (UN (t)) = (m(U1t), . . .,

m(UNt))
τ
q×N with m(·) = (m1(·), . . . ,mq(·))τ a q-dimensional unknown function

vector, εN (t) = (ε1t, . . . , εNt)
τ are random noises and “⊙” denotes an operator

of two matrices such that G1 ⊙G2 = (
∑p2

j=1 g11jg21j , . . . ,
∑p2

j=1 g1p1jg2p1j)
τ for

two p1 × p2 matrices G1 = (g1ij) and G2 = (g2ij).

We further assume that the random errors εN (t) in the model (1.1) follow

the spatially and serially correlated error component structure

εN (t) = λWNεN (t) + ηN (t) and ηN (t) = µN + νN (t), (1.2)

where λ is a scalar cross-sectional autoregressive parameter, and WN is an N ×
N weighting matrix of known constants which does not depend on t. More

specifically, the serially time-wisely correlated part ηN (t) has been partitioned

into time independent error µN = (µ1, . . . , µN )τ and correlated error νN (t) =

(ν1t, . . . , νNt)
τ which satisfies

νit = ρ1νi(t−1) + · · ·+ ρsνi(t−s) + eit, 1− ρ1z − · · · − ρsz
s ̸= 0 for |z| ≤ 1. (1.3)

Here µi and eit are i.i.d. random variables with zero mean and variances σ2µ and

σ2e , respectively, and ρ = (ρ1, . . . , ρs)
τ is an s-dimensional unknown autoregres-

sive coefficient vector.

The model (1.1)−(1.3) is a generalization of many usual parametric, non-

parametric and semiparametric models. When λ = 0 and T = 1, the model is

the cross-sectional data varying-coefficient partially linear model studied by Fan,

Peng, and Huang (2005) who proposed a profile least squares estimation and a

quasi likelihood ratio test. When λ = 0, the model is the panel data varying-

coefficient partially linear model without cross-sectional interdependence studied
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by Fan, Huang, and Li (2007); they proposed an estimation procedure for regres-

sion coefficients by combining a profile weighted least squares approach and es-

timating parameters in the correlation structure. When m1(·) = · · · = mq(·) ≡ 0

and ρ1 = · · · = ρs = 0, the model is the panel data linear model with spa-

tially correlated error components. See Kapoor, Kelejian, and Prucha (2007) for

details.

To the best of our knowledge, this is the first work in which the estimating

problem of modeling panel data with both spatially and time-wise correlated er-

rors is investigated. Specifically, our main contributions include constructing a

new generalized moment estimator for the autoregressive parameter in a spatial

model by combining the polynomial spline series approximation with semipara-

metric least squares; investigating the fitting of a time correlated structure; based

on the estimated spatially and time-wise correlated error structure, construct-

ing, respectively, a weighted semiparametric least squares estimator (WSLSE)

and a weighted polynomial spline series estimator (WPSSE) for the parametric

and nonparametric components of the mean model; showing that the WSLSE is

asymptotically normal and more efficient than the unweighted one, and that the

WPSSE achieves the optimal nonparametric convergence rate.

The layout of the rest of the paper is as follows. In Section 2, we describe

a semiparametric least squares estimation for the parametric and nonparametric

components. In Section 3, the fitting of the spatial and time-wise correlation

structures are investigated. In Section 4, we construct the WSLSE and WPSSE

procedures for the parametric and nonparametric components, respectively, and

establish their asymptotic properties. Section 5 illustrates results from simula-

tion studies. An application is analyzed in Section 6. Concluding remarks are

presented in Section 7. All proofs of main results are summarized in a online

supplementary document due to space limitation.

2. Semiparametric Least Squares Estimation

As in Kelejian and Prucha (2001), we use aij to denote the ijth element of

some matrix A, ai· and a·j to denote ith row and jth column, respectively, while

ai denotes the ith element of a vector a. Let AN denote a sequence of dN × dN
matrices with some fixed integer dN . We say that the row and column sums of

the sequence of matrices AN are bounded uniformly in absolute value if there

exist a constant cA <∞, not depending on N , such that

max
1≤i≤dN

dN∑
j=1

|aij,N | ≤ cA and max
1≤j≤dN

dN∑
i=1

|aij,N | ≤ cA for any N ≥ 1.

We choose the Euclidean norm, ||AN || = {tr(Aτ
NAN )}1/2, for the sequenceAN =

(aij,N ).
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Polynomial splines are piecewise polynomials jointed together smoothly at a

set of interior points (knots). A polynomial spline of degree r ≥ 0 on an interval

U (without loss of generality, let U = [0, 1] ) with inner knots 0 < η1 < · · · <
ηM < 1 is made of piecewise r-degree polynomial functions on each subinterval

[ηk, ηk+1), 0 ≤ k ≤ M − 1, and with continuous r − 1 derivatives for r > 2.

A piecewise constant function, linear spline, quadratic spline and cubic spline

correspond to r = 0, 1, 2, 3 respectively. See de Boor (1978) for details.

In our case, let {ζl(·)}κN
l=1 be a set of r-degree B-spline bases with κN =

r + 1 +M . We approximate each unknown smoothing function mj(u) as

mj(u) ≈
κN∑
l=1

θjlζl(u), j = 1, . . . , q,

where κN plays a role of smoothing parameter and θj = (θj1, . . . , θjκN )
τ is an

unknown κN -dimensional pseudo coefficient vector. Thus, the model (1.1) can

be approximated by

Yit ≈ Xτ
itβ +

q∑
j=1

Zitj

{ κN∑
l=1

θjlζl(Uit)
}
+ εit, i = 1, . . . , N, t = 1, . . . , T. (2.1)

Write YN = (Yτ
N (1), . . . ,Yτ

N (T ))τ ,XN = (Xτ
N (1), . . . ,Xτ

N (T ))τ , εN = (ετN (1),

. . . , ετN (T ))τ , Z∗
N = (Z∗τ

N (1), . . . ,Z∗τ
N (T ))τ and Z∗

N (t) = (Z∗
1t, . . . ,Z

∗
Nt)

τ with

Z∗
it = (Zit1(ζ1(Uit),· · · , ζκN (Uit)), · · · , Zitq(ζ1(Uit), · · · , ζκN (Uit)))

τ . In matrix

form, the model (2.1) is

YN ≈ XNβ + Z∗
Nθ + εN (2.2)

with θ = (θτ1 , . . . ,θ
τ
q )

τ . If we define MZ∗
N

= INT − Z∗
N (Z∗τ

N Z∗
N )−1Z∗τ

N , then

MZ∗
N
Z∗
NθN = Z∗

NθN − Z∗
NθN = 0, the model (2.2) leads to

MZ∗
N
YN ≈ MZ∗

N
XNβ +MZ∗

N
εN . (2.3)

If we take MZ∗
N
εN as the residuals, the model (2.3) can result in the conventional

least squared estimator of β,

β̂N = (Xτ
NMZ∗

N
XN )−1Xτ

NMZ∗
N
YN .

Substituting β̂N into (2.2), we get a profiled least squared estimator of θN ,

written as

θ̂N = (Z∗τ
N Z∗

N )−1Z∗τ
N (YN −XN β̂N ).

This helps us attain the polynomial spline series estimator of m(u) = (m1(u), . . .,

mq(u))
τ , denoted by

m̂N (u) = (m̂1,N (u), . . . , m̂q,N (u))τ = ζ∗N (u)θ̂N
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with ζ∗N (·) = 1q⊗(ζ1(·), . . . , ζκN (·)); that is a nonparametric projecting estimator.

In order to present asymptotic properties of β̂N , m̂N (u) and other estimators

proposed in the following sections, some notations and technical assumptions are

useful.

Assumption A.

(A1) {Uit} , i = 1, . . . , N, t = 1, . . . , T , form a sequence of designs generated by

a ”design density” fU (u) which is bounded away from zero and infinity on

U . (Xτ
it,Z

τ
it, Uit)

τ , i = 1, . . . , N, t = 1, . . . , T are nonstochastic regressors.

(Xτ
it,Z

τ
it)

τ are uniformly bounded on the space X× Z.

(A2) There exist some functions φj1(u), . . . , φjq(u) such that

Xitj = Zτ
it(φj1(Uit), . . . , φjq(Uit))

τ +Πitj ,

for i = 1, . . . , N, t = 1, . . . , T , and j = 1, . . . , p, and the real sequences

{Πitj} satisfy

lim
N→∞

1

NT

N∑
i=1

T∑
t=1

ΠitΠ
τ
it = Ω

with Πit = (Πit1, . . . ,Πitp)
τ .

(A3) m1(·), . . . ,mq(·), φ1(·), . . . , φp(·) are 2-times continuously differentiable and

their 2th derivatives are Lipschitz continuous of order one.

Assumption B.

(B1) For each N ≥ 1, the individual effects {µi, 1 ≤ i ≤ N} are independently

distributed with zero mean and variance σ2µ, where 0 < σ2µ < cµ with

cµ <∞. Further, sup1≤i≤N E(|µi|4+δµ) <∞ for some δµ > 0.

(B2) For each N ≥ 1, the individual effects {eit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} are

independently distributed with zero mean and variance σ2e , where 0 < σ2e <

ce with ce <∞. Further, sup1≤i≤N,1≤t≤T E(|eit|4+δe) <∞ for some δe > 0.

(B3) The processes {µi} and {eit} are independent.

(B4) 1− ρ1z − · · · − ρsz
s ̸= 0 for |z| ≤ 1.

Assumption C.

(C1) λ ∈ (−aλ, aλ) with 0 < aλ < aλ < cλ <∞.

(C2) All diagonal elements of WN are zero.

(C3) The row and column sums of WN and (IN − λWN )−1 are bounded uni-

formly in absolute value.

(C4) The matrix IN − λWN is nonsingular for all λ ∈ (−aλ, aλ).
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Assumption D. lim
N→∞

(NT )−1Πτ
NΠN = Ω > 0 and lim

N→∞
(NT )−1Πτ

NΣ−1ΠN =

Ωw > 0, where Σ = (σ2µ1T1
τ
T + Γ) ⊗

{
(IN − λWN )−1(IN − λWτ

N )−1
}

with

Γ =
(
γν(j1 − j2)

)
T×T

and ΠN = (Π11, . . . ,ΠN1, . . . ,ΠNT )
τ .

Assumption E. κN = o(N1/2) and N1/2κ−4
N = o(1).

Assumption F. max1≤j≤p(NT )
−1

∣∣∣∣∣∣∑N
i=1

∑T
t=1 ζ(Uit)Πitj

∣∣∣∣∣∣ = O(κ
1/2
N N−1/2).

For any smooth function h(·), there exists some vector π such that

max
1≤j≤p

∣∣∣∣∣ 1

NT

N∑
i=1

T∑
t=1

(h(Uit)− πτζ(Uit))Πitj

∣∣∣∣∣ = O
(
κ−2
N N−1/2

)
with ζ(u) = (ζ1(u), . . . , ζκN (u))

τ .

Remark 1. These assumptions are quite mild and are easily satisfied. The fixed

and bounded design assumption in Assumption A1 is usually made in the litera-

ture on spatially correlated data. See, for example, Kapoor, Kelejian, and Prucha

(2007), Kelejian and Prucha (2010), Su (2012), and so on. Assumptions A2 and

F parallel those in the literature on semiparametric modeling (e.g., Ahmad, Lee-

lahanon, and Li (2005)), and do not preclude {Xit,Zit, Uit} from being generated

by some random mechanism. We focus on the fixed regressor case, but our anal-

ysis holds with probability one if {Xit,Zit, Uit} are generated randomly. And,

in this case, we can interpret our analysis as being conditional on {Xit,Zit, Uit}.
Assumption A3 is a standard smoothing condition in the nonparametric and

semiparametric regression literature. Assumption C part concerns the essential

features of the spatial weights matrix, of which, C2 implies that each unit is not

a neighbour of itself. Assumptions C1 and C4 imply that the dependent variable

YN (t) is uniquely determined in terms of the disturbances conditional on the

regressors. The uniform boundedness condition on WN and (IN − λWN )−1 in

C3 originated in papers Kelejian and Prucha (1998), in order to limit the spatial

dependence across units to a manageable degree. Assumption D is necessary to

establish the asymptotic normality of the parametric component; they are easy

to verify if {Xit,Zit, Uit} are random designs. Assumption E is standard in the

literature on polynomial spline approximation.

Let ∥as∥L2 denote the L2 norm of a square integrable function m(u) on U ,
and φN be the L∞ distance between mN (·) and G given by φN = dist(m,G) =
infa∈G supu∈U |m(u)− a(u)|.

Theorem 1. Under Assumptions A−F,

(i)
√
NT (β̂N−β)→D N(0,Ω−1Ω1Ω

−1) as N→∞, where Ω1=limN→∞(1/NT )

Πτ
NΣΠN ,
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(ii) max
1≤j≤q

∥m̂j,N −mj∥2L2
= Op( max

1≤j≤q
κNN

−1 + φ2
N ) = Op

(
κNN

−1 + κ−4
N

)
.

Here, β̂N and (m̂1,N (·), . . . , m̂j,N (·))τ do not take the spatial and time-wise

correlations into account, hence may not be asymptotically efficient. We will

construct more efficient estimators by implementing estimated correlations in

the following sections.

3. Estimation of the Spatial and Time-wise Error Structure

We investigate the estimation of the spatial and time-wise error structure.

Based on β̂N and (m̂1,N (·), . . . , m̂q,N (·))τ , we can obtain the estimated residuals

as

ε̂it,N =Yit−Xτ
itβ̂N−Zit1m̂1,N (Uit,N )−· · ·−Zitqα̂q,N (Uit), i=1, . . . , N, t=1, . . . , T.

As the generalized moments estimation proposed by Kapoor, Kelejian, and Prucha

(2007) does not apply to our scenario, we propose a new generalized moments

method based on the temporally averaged disturbances.

Let η̄N =
∑T

t=1 ηN (t)/T and ¯̄ηN = WN η̄N . Then E(¯̄ητN ¯̄ηN ) = (σ2µ +

σ2ν)tr(WNWτ
N ) and E(¯̄ητN η̄N ) = 0. Like Kelejian and Prucha (2010), it is con-

venient to rewrite the above moment conditions as

1

N
E

(
cη̄τNA1N η̄N
η̄τNA2N η̄N

)
= 0, (3.1)

where A1,N = Wτ
NWN − diag(Wτ

NWN ) and A2,N = (Wτ
N + WN )/2. We

estimate λ based on the moment conditions in (3.1).

Noting that η̄N = (IN − λWN )ε̄N with ε̄N =
∑T

t=1 εN (t)/T , we can substi-

tute this expression into (3.1) to yield ψN −ΨNθN = 0, where θ = (λ, λ2)τ ,

ψN =

(
ψ1,N

ψ2,N

)
=

(
N−1E(ε̄τNA1,N ε̄N )

N−1E(ε̄τNA2,N ε̄N )

)
,

ΨN =

(
ψ11,N ψ12,N

ψ21,N ψ22,N

)
=

(
2N−1E(ε̄τNWτ

NA1,N ε̄N )N−1E(ε̄τNWτ
NA1,NWN ε̄N )

2N−1E(ε̄τNWτ
NA2,N ε̄N )N−1E(ε̄τNWτ

NA2,NWN ε̄N )

)
.

We then obtain the corresponding estimators Ψ̂N =
(
ψ̂s1s2,N

)
2×2

and ψ̂N =(
ψ̂1,N , ψ̂2,N

)τ
of ΨN = (ψs1s2,N )2×2 and ψN =

(
ψ̂1,N , ψ2,N

)τ
in which

ψ̂11,N = 2N−1̂̄ετNWτ
NA1,N ̂̄εN , ψ̂12,N = 2N−1̂̄ετNWτ

NA1,NWN ̂̄εN ,
ψ̂21,N = 2N−1̂̄ετNWτ

NA2,N ̂̄εN , ψ̂22,N = 2N−1̂̄ετNWτ
NA2,NWN ̂̄εN ,

ψ̂1,N =N−1̂̄ετNA1,N ̂̄εN , ψ̂2,N = N−1̂̄ετNA2,N ̂̄εN ,
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where ̂̄εN =
∑T

t=1 ε̂N (t)/T and ε̂N (t) = (ε̂1t,N , . . . , ε̂Nt,N )τ .

Let ~~~(λ) = ψ̂N−Ψ̂NθN . Then we obtain the generalized moments estimator
λ̂N ≡ λ̂N (ΥN ) for λ by minimizing the objective function QN = (~~~(λ))τΥN~~~(λ),
where ΥN is a 2× 2 symmetric positive semidefinite matrix.

Theorem 2. Assume that λmin(Ψ
τ
NΨN ) ≥ c1 > 0, λmin(ΥN ) ≥ c2 > 0 and

λmin(ΦN ) ≥ c3 > 0. Under Assumptions A-F, (λ̂N − λ) = Op(N
−1/2).

Due to the cross-sectional correlation and the individual effect, the conven-
tional Yule-Walker equations-based method could not be used to estimate the
temporal autoregressive parameter vector ρ. We here propose a new method to
estimate ρ that can be taken as an extension of the method of Baltagi and Li
(1991) who focused on the scenario of AR(1) and without cross-sectional corre-
lation.

Set Ts = T − (s+ 1) for brevity, and let

η̂it,N = ε̂it,N − λ̂N

N∑
i1=1

Wii1 ε̂i1t,N ,

Q̂0,N =
1

NTs

N∑
i=1

Ts∑
t=1

(η̂i(t+(s−1)),N , . . . , η̂it,N )τ (η̂i(t+(s−1)),N , . . . , η̂it,N ),

Q̂1,N =
1

NTs

N∑
i=1

Ts∑
t=1

(η̂i(t+(s−1)),N , . . . , η̂it,N )τ (η̂i(t+s),N , . . . , η̂i(t+1),N ),

Q̂2,N =
1

NTs

N∑
i=1

Ts∑
t=1

(η̂i(t+(s−1)),N , . . . , η̂it,N )τ η̂i(t+s),N ,

Q̂3,N =
1

NTs

N∑
i=1

Ts∑
t=1

(η̂i(t+(s−1)),N , . . . , η̂it,N )τ η̂i(t+s+1),N .

We can estimate ρ = (ρ1, . . . , ρs)
τ by

ρ̂N = (ρ̂1,N , . . . , ρ̂s,N )τ = (Q̂0,N − Q̂1,N )−1(Q̂2,N − Q̂3,N ).

Noting that ηi(t+s) = µi + νi(t+s) = µi + ρ1νi(t+(s−1)) + · · ·+ ρsνit + eit, we have

ηi(t+s) − ρ1ηi(t+(s−1)) − · · · − ρsηit = (µi − ρ1µi − · · · − ρsµi) + eit.

Set ℓit = ηi(t+s) − ρ1ηi(t+(s−1)) − · · · − ρsηit for t = 1, . . . , T − s. Since σ2e =
E(ℓ2it,N )− E(ℓit,Nℓi(t+1),N ), we can estimate σ2e by

σ̂2e,N =
1

NTs

N∑
i=1

Ts∑
t=1

ℓ̂2it,N − 1

NTs

N∑
i=1

Ts∑
t=1

ℓ̂it,N ℓ̂i(t+1),N ,

where ℓ̂it,N = η̂i(t+s),N − ρ̂1,N η̂i(t+(s−1)),N − · · · − ρ̂s,N η̂it,N for t = 1, . . . , Ts.
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Theorem 3. Under Assumptions B-F, we have

(i) ρ̂N − ρ = Op(N
−1/2T−1/2).

(ii) σ̂2e,N − σ2e = Op(N
−1/2T−1/2).

In the following section, we investigate how to apply the estimated spatial

and time-wise correlations to improve the estimations of the parametric and

nonparametric components in model (1.1).

4. Weighted Semiparametric Least Squares Estimation

Define Σ̂N = (σ̂2µ,N1T1
τ
T + Γ̂N )⊗

{
(IN − λ̂NWN )−1(IN − λ̂NWτ

N )−1
}
,

Γ̂N =


γ̂ν,N (0) γ̂ν,N (1) · · · γ̂ν,N (T − 1)

γ̂ν,N (1) γ̂ν,N (0) · · · γ̂ν,N (T − 2)
...

...
...

...

γ̂ν,N (T − 1) γ̂ν,N (T − 2) · · · γ̂ν,N (0)

 ,

and

MΣ̂−1

Z∗ = Σ̂−1
N − Σ̂−1

N Z∗
N (Z∗τ

N Σ̂−1
N Z∗

N )−1Z∗τ
N Σ̂−1

N .

Pre-multiplying (2.2) by Σ̂
−1/2
N leads to

Σ̂
−1/2
N YN ≈ Σ̂

−1/2
N XNβN + Σ̂

−1/2
N Z∗

NθN + Σ̂
−1/2
N εN . (4.1)

Due to the fact that M
Σ̂−1

N
Z∗
N

Z∗
NθN = Z∗

NθN − Z∗
NθN = 0, (4.1) leads to

M
Σ̂−1

N
Z∗
N

YN ≈ M
Σ̂−1

N
Z∗
N

XNβN +M
Σ̂−1

N
Z∗
N
εN . (4.2)

If we take M
Σ̂−1

N
Z∗
N
εN as the residuals, then (4.2) is also a version of the usual

linear regression. A weighted semiparametric least squares estimator of β is

β̂w
N = (Xτ

NM
Σ̂−1

N
Z∗
N

XN )−1Xτ
NM

Σ̂−1
N

Z∗
N

YN .

Substituting β̂w
N into (2.2) gets an estimator of θ,

θ̂wN = (Z∗τ
N Σ̂−1

N Z∗
N )−1Z∗τ

N (YN −XN β̂
w
N ).

A weighted polynomial spline series estimator of m(·) is then

m̂w
N (u) = (m̂w

1,N (u), . . . , m̂w
q,N (u))τ = ζ∗N (u)θ̂wN ,

where ζ∗N (u) is defined in Section 2.
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Theorem 4. Under Assumptions A-F, the following hold.

(i)
√
NT (β̂w

N −β) →D N(0,Ωw−1) as N → ∞ where Ωw is defined in Assump-

tion E.

(ii) max
1≤j≤q

∥m̂w
j,N −mj∥2L2

= Op

(
κNN

−1 + φ2
N

)
= Op( max

1≤j≤q
κNN

−1 + κ−4
N ).

(iii)Ωw−1 ≤ Ω−1Ω1Ω
−1.

In order to use (i) of Theorem 4 for inference about β, a consistent estimator

of Ωw is needed.

Theorem 5. Under Assumptions A-F, Ω̂w
N ≡ (NT )−1Xτ

NMΣ̂−1

Z∗
N

XN →p Ωw as

N → ∞.

With Theorems 4 and 5, we can construct asymptotic confidence intervals

for β, or check whether Cβ = 0, where C is a known d× p constant matrix with

d ≤ p.

5. Simulation Studies

We report here on some simulation studies of the finite sample performance

of the proposed estimators.

The data were generated from the panel data varying-coefficient partially

linear model

Yi(t) = X1i(t)β1 +X2i(t)β2 + Z1i(t) ·m1(Ui(t)) + Z2i ·m2(Ui(t)) + εi(t),

i = 1, . . . , N ; t = 1, . . . , T,

with the true fixed coefficient values as β = (β1, β2)
τ = (1,−1.5)τ , and the real

varying-coefficient functions as m1(u) = 2 sin(2πu) and m2(u) = 1.5 cos(1.5πu)3

−(u− 0.5)3 + 1. We generated Ui(t) from a uniform distribution on the interval

[0, 1], the random variables Z1i and Z2i independently from two zero mean normal

distributions with different standard deviations 0.5 and 0.6, respectively. We

generated X1,i and X2i as X1i(t) = Ui(t) + 1 + ω1i(t) and X2i(t) = Ui(t)
2 +

1 + ω2i(t)
2, where ω1i(t) and ω2i(t) were independently generated as standard

normal. We took the error structure εN (t) = (ε1(t), . . . , εN (t))τ as

εN (t) = λWNεN (t) + ηN (t), ηN (t) = µN + νN (t), t=1, . . . , T,

where µN = (µ1, . . . , µN )τ with µi ∼ i.i.d. N(0, σ2µ), νN (t) = (ν1t, . . . , νNt)
τ

with νit = ρνi(t−1) + eit and eit ∼ i.i.d. N(0, σ2e). We took (σ2µ, σ
2
e) = (1, 1),

and (λ, ρ) = (0.3, 0.3) and (0.6, 0.6) to represent different degrees of spatial

and time-wise correlations. We considered WN with each element of εN (t)

directly related to the elements immediately after and immediately before it.
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Table 1. Finite sample performance of the proposed estimators
λ̂N , ρ̂N , σ̂

2
µ,N , σ̂

2
e,N of the error structure parameters λ, ρ, σµ, σ

2
e .

N = 100 N = 200 N = 300
T (λ, ρ) (0.3, 0.3) (0.6, 0.6) (0.3, 0.3) (0.6, 0.6) (0.3, 0.3) (0.6, 0.6)

5 λ̂N est 0.3077 0.6081 0.2995 0.6057 0.2995 0.6047
std 0.0964 0.1093 0.0750 0.0838 0.0690 0.0707

ρ̂N est 0.2844 0.5151 0.2897 0.5369 0.2903 0.5592
std 0.0707 0.0855 0.0574 0.0692 0.0502 0.0615

σ̂2
µ,N est 0.9509 1.0722 0.9663 1.0692 0.9770 1.0201

std 0.1640 0.3222 0.1312 0.2579 0.1103 0.2433
σ̂2
e,N est 1.0186 1.0755 1.0177 1.0576 1.0167 1.0440

std 0.0767 0.1099 0.0610 0.0892 0.0537 0.0762

10 λ̂N est 0.3060 0.6142 0.2987 0.6066 0.2998 0.6041
std 0.0905 0.1089 0.0738 0.0836 0.0686 0.0714

ρ̂N est 0.2902 0.5443 0.2930 0.5587 0.2936 0.5710
std 0.0427 0.0523 0.0338 0.0434 0.0299 0.0344

σ̂2
µ,N est 0.9764 1.0688 0.9813 1.0578 0.9888 1.0332

std 0.1363 0.2258 0.1069 0.1898 0.0967 0.1538
σ̂2
e,N est 1.0159 1.0502 1.0170 1.0354 1.0141 1.0325

std 0.0515 0.0894 0.0426 0.0728 0.0375 0.0658

For the first and last elements of εN (t), we took a circular setting such that,

for example, ε1t is directly related to the second and last element of εN (t).

There are only two nonzero elements in each row of WN . We took (N,T ) =

(100, 5), (200, 5), (300, 5), (100, 10), (200, 10) and (300, 10). Each setting was re-

peated 1,000 times.

Conventional cubic splines with uniformly distributed inner knots were as

our base functions. Similar to Wang and Yang (2007), the number of interior

knots M was determined by the total sample size N×T and a tuning constant c,

M = min

{
⌊c(NT )1/5⌋+ 1,

⌊
1

2q
(NT − 2p)

⌋}
,

in which ⌊a⌋ denotes the integer part of a. In our simulation study, we used

c = 0.5, 1.0, and 1.5, found the results are not sensitive to the choice, and reported

just the results with c = 1. The additional constraint M ≤ (NT − 2p)/(2q)

ensures that the number of terms in (1.2) or (3.1) is no greater than NT/2,

which is necessary when the sample size NT is moderate and the dimension q is

high.

For the proposed estimators λ̂N , ρ̂N , σ̂
2
µ,N , σ̂

2
e,N of the error structure param-

eters λ, ρ, σµ, σ
2
e , given a sample size, the average of the estimates (est), and

sample standard deviation(std) are summarized in Tables 1. From Table 1, we
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can see that the proposed estimators of the error structure parameters λ, ρ, σµ,
σ2e worked well, and that their performance improved with increasing sample size.

For the proposedWSLSE (β̂w1,N , β̂
w
2,N )τ of the parametric components (β1, β2)

τ ,
mean estimates (est), sample standard deviation (std), estimated standard de-
viation (estd), and 95% confidence interval coverage (cp) are reported in Table
2 when T = 5. We also present results of the unweighted SLSE (β̂1,N , β̂2,N )τ

that ignores spatial and time-wise correlations, and the benchmark estimator
(β̃w1,N , β̃

w
2,N )τ which has the same definition as the WSLSE except for known er-

ror structure parameters λ, ρ, σν , and σ2e . In every situation, the estimated
standard deviations, estds, matched the Monte Carlo cases, stds, reasonably
well, and the coverage probabilities were close to the nominal level. The pro-
posed WSLSE outperformed the unweighted SLSE (much smaller variance), and
the proposed WSLSE provided comparable estimators with their corresponding
benchmark versions that used the true error structure. These findings then also
support the proposed estimators λ̂N , ρ̂N , σ̂

2
µ,N , and σ̂2e,N .

For the estimators of the nonparametric components, we set a measure of
estimation accuracy as the root average squared error (RASE), with

RASEj =

[
1

NT

N∑
i=1

T∑
t=1

{m̄j,N (Uit)−mj(Uit)}2
]1/2

, j = 1, 2,

where m̄j,N (u) is either m̂j,N (u), or m̂w
j,N (u) or the benchmark estimator m̃w

j,N (u).
The sample mean and standard deviation of the RASEs over 1,000 replications
are summarized at the bottom of Table 2. Corresponding box-plots of these
RASEs are presented in Figure 1. As we can see, the proposed WPSSE m̂w

j,N (u)
outperformed the initial m̂j,N (u), having smaller and stabler RASE. Most im-
portantly, the proposed m̂w

j,N (u) performed nearly as well as benchmark m̌w
j,N (u).

See the box-plots in Figure 1. Similar results can be obtained in case T = 10;
corresponding tables and figures are reported in the supplementary document.
To check the impact on the estimators of misspecifying WN , we conducted some
simulations in which the trueWN was defined as before and the misspecifiedWN

was specified as each element of εN (t) being related to the three elements im-
mediately after and the three elements immediately before it. The finite sample
performances of the WSLSE (β̂∗1,N , β̂

∗
2,N )τ and WPSSE (m̂∗

1,N (u), m̂∗
2,N (u))τ are

summarized in Table 2. From Table 2, we can see that the resultant estimators
of the parametric and nonparametric components were still consistent although
WN was misspecified.

6. Application

We further illustrate our methodology by an analysis of Indonesian rice farm-
ing data. The data were previously analyzed by, for example, Druska and Hor-
race (2004), and detailed discussion about the data can refer to their paper. We
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Figure 1. Box plots of the RASE values for the three nonpara-
metric function estimators (m̂1,N (u), m̂2,N (u))τ , (m̂w

1,N (u), m̂w
2,N (u))τ and

(m̃w
1,N (u), m̃w

2,N (u))τ with T = 5. Each boxplot is based on the 1,000
RASE values for a particular combination. Indices 1, 2, 3, 4, 5 and 6 are
for m̂1,N (u), m̂2,N (u), m̂w

1,N (u), m̂w
2,N (u), m̃w

1,N (u) and m̃w
2,N (u), respectively.

N = 100, (λ, ρ) = (0.3, 0.3) in plot (a); N = 100, (λ, ρ) = (0.6, 0.6) in plot
(b); N = 200, (λ, ρ) = (0.3, 0.3) in plot (c); N = 200, (λ, ρ) = (0.6, 0.6) in
plot (d); N = 300, (λ, ρ) = (0.3, 0.3) in plot (e); And N = 300, (λ, ρ) =
(0.6, 0.6) in plot (f).

have a data set of 171 rice farms over six growing seasons (three wet and three

dry seasons). Those farms are located in six different villages. We applied a par-

tially linear model (special case of the proposed partially linear varying-coefficient

models) for the data to regress the natural logarithm of output (ln(rice), y) on

covariates such as land area (Land, in hectare), seed amount (Sead, in logarithm

of kilogram) and whether high yield or mixed varieties. Specifically,

yi(t) = x1i(t) · β1 + x2i(t) · β2 + Seedi(t) · β3 +m(Landi(t)) + εi(t),

where x1i(t) = 1 if the ith form at tth growing season used high yield varieties,

otherwise x1i = 0; x2 is a similar indicator for using mixed varieties or not.

To describe potential spatial correlations between different villages and time-

wise correlations between different seasons, we took the error vector εN (t) =

(ε1(t), . . . , εN (t))τ as

εN (t) = λWNεN (t) + ηN (t) and ηN (t) = µN + νN (t), t = 1, . . . , T, N = 171.



PANEL DATA MODEL WITH BOTH SPATIAL AND TEMPORAL CORRELATIONS 289

Table 2. Finite sample performances of the proposed WSLSE of regression
coefficient β and WPSSE of nonprarmetric function m(·) under T = 5.

N = 100 N = 200 N = 300

(λ, ρ) (0.3, 0.3) (0.6, 0.6) (0.3, 0.3) (0.6, 0.6) (0.3, 0.3) (0.6, 0.6)

β̂1,N est 1.0002 1.0020 1.0021 0.9995 1.0025 1.0001

std 0.0497 0.0961 0.0412 0.0758 0.0347 0.0638

estd 0.0502 0.1157 0.0404 0.0806 0.0351 0.0678

cp 0.9560 0.9460 0.9410 0.9460 0.9430 0.9460

β̂2,N est -1.5012 -1.4983 -1.5018 -1.5003 -1.5018 -1.5022

std 0.0348 0.0509 0.0295 0.0448 0.0236 0.0395

estd 0.0355 0.0631 0.0288 0.0474 0.0240 0.0401

cp 0.9510 0.9500 0.9450 0.9580 0.9520 0.9530

β̂w
1,N est 0.9992 1.0053 0.9981 0.9997 1.0027 0.9995

std 0.0283 0.0279 0.0237 0.0213 0.0203 0.0182

estd 0.0284 0.0283 0.0236 0.0219 0.0203 0.0183

cp 0.9530 0.9500 0.9510 0.9580 0.9460 0.9540

β̂w
2,N est -1.5017 -1.4964 -1.5006 -1.4990 -1.5016 -1.5023

std 0.0218 0.0167 0.0180 0.0156 0.0145 0.0131

estd 0.0218 0.0183 0.0180 0.0163 0.0149 0.0136

cp 0.9510 0.9600 0.9450 0.9600 0.9590 0.9600

β̃w
1,N est 0.9992 1.0054 0.9981 0.9994 1.0027 0.9996

std 0.0277 0.0274 0.0233 0.0210 0.0201 0.0180

estd 0.0283 0.0268 0.0235 0.0209 0.0202 0.0177

cp 0.9590 0.9390 0.9500 0.9520 0.9460 0.9450

β̃w
2,N est -1.5018 -1.4962 -1.5006 -1.4988 -1.5016 -1.5023

std 0.0215 0.0166 0.0179 0.0155 0.0144 0.0131

estd 0.0217 0.0171 0.0178 0.0156 0.0148 0.0132

cp 0.9560 0.9470 0.9450 0.9530 0.9570 0.9440

β̂∗
1,N est 1.0077 0.9936 0.9971 1.0037 0.9977 0.9950

std 0.0469 0.0489 0.0327 0.0327 0.0268 0.0258

β̂∗
2,N est -1.4977 -1.5022 -1.4981 -1.5007 -1.4993 -1.4991

std 0.0313 0.0289 0.0239 0.0228 0.0198 0.0201

m̂1,N (·) sm(RASE) 0.2540 0.3470 0.2111 0.2933 0.1843 0.2592

std(RASE) 0.0647 0.0971 0.0494 0.0767 0.0393 0.0660

m̂2,N (·) sm(RASE) 0.2381 0.3117 0.2115 0.2659 0.1921 0.2370

std(RASE) 0.0495 0.0774 0.0361 0.0592 0.0293 0.0485

m̂w
1,N (·) sm(RASE) 0.1798 0.1612 0.1541 0.1406 0.1386 0.1319

std(RASE) 0.0378 0.0312 0.0287 0.0228 0.0226 0.0191

m̂w
2,N (·) sm(RASE) 0.1870 0.1755 0.1715 0.1634 0.1596 0.1547

std(RASE) 0.0276 0.0214 0.0193 0.0143 0.0144 0.0116

m̃w
1,N (·) sm(RASE) 0.1790 0.1601 0.1535 0.1401 0.1382 0.1318

std(RASE) 0.0371 0.0310 0.0285 0.0227 0.0225 0.0190

m̃w
2,N (·) sm(RASE) 0.1860 0.1744 0.1710 0.1630 0.1594 0.1544

std(RASE) 0.0270 0.0208 0.0192 0.0140 0.0142 0.0114

m̂∗
1,N (·) sm(RASE) 0.2568 0.2533 0.1971 0.1870 0.1614 0.1621

std(RASE) 0.0660 0.0634 0.0438 0.0423 0.0321 0.0311

m̂∗
2,N (·) sm(RASE) 0.2430 0.2311 0.1928 0.1940 0.1768 0.1767

std(RASE) 0.0507 0.0448 0.0285 0.0287 0.0218 0.0210
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Figure 2. Nonparametric estimation of the effect of the total area that
farmers cultivated with rice, measured in hectares on the output (ln(rice)).
Dashed curve and “o” is based on the unweighted semiparametric least
squares estimation with “o” representing yi(t) − x1i(t)β̂1,N − x2i(t)β̂2,N −
Seedi(t)β̂3,N . Solid curve and “*” is based on our proposed weighted semi-

parametric least squares estimation with “*” representing yi(t)−x1i(t)β̂w
1,N−

x2i(t)β̂
w
2,N − Seedi(t)β̂

w
3,N .

The typical element wij of the spatial weighting matrix WN was positive if

observations i and j belong to farms located in the same village, and the same

growing season. The row sums of WN were standardized to one. In addition,

µN = (µ1, . . . , µN )τ with µi ∼ i.i.d. (0, σ2µ), νN (t) = (ν1t, . . . , νNt)
τ with νit =

ρ1νi(t−1) + · · ·+ ρsνi(t−s) + eit and eit ∼ i.i.d. (0, σ2e).

In applications, the lagged order of the autoregressive process is usually

unknown; based on the estimated ηit, it can be determined by the classic AIC

or BIC criteria. By the AIC criterion, we found the lagged order 1 suitable for

this data set. We estimated λ, σ2µ, ρ and σ2e by λ̂N = 0.7553, σ̂2µ,N = 0.0492,

ρ̂N = 0.0200, and σ̂2e,N = 0.0940. The results for the estimators of (β1, β2, β3)
τ

and m(u) are shown in Table 3 and Figures 2−3. We see that our proposed

weighted estimators β̂w
N had much smaller standard error than the unweighted

estimators β̂N . In particular, in comparison with previous studies where only the

logarithm of seed amount was significant because they did not take the spatial

and time-wise correlations into account, our proposed estimating procedure has

the indicator variables of both high yield and mixed varieties significant. The
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Figure 3. Pointwise std for the estimators of m(u). Dashed curve is based
on the unweighted semiparametric least squares estimation. Solid curve is
based on the weighted semiparametric least squares estimation.

Table 3. Estimates for the parametric components (β1, β2, β3)
τ and corre-

sponding 95% confidence intervals.

Unweighted estimator Our proposed estimator
Parameter Estimate SE Confidence Interval Estimate SE Confidence Interval

β1 0.1165 0.1146 [-0.1081, 0.3411] 0.1806 0.0391 [0.1040, 0.2573]
β2 0.1898 0.0978 [-0.0019, 0.3814] 0.1197 0.0526 [0.0167, 0.2227]
β3 0.3925 0.0540 [0.2865, 0.4984] 0.2883 0.0246 [0.2400, 0.3365]

results imply that large amount of seeds from high yield and mixed varieties

positively affect the output (ln(rice)).

The effect of the total area that farmers cultivated with rice on the output

(ln(rice)) was estimated nonparametrically, with the results given in Figures 2-3.

Again we see that the weighted polynomial spline estimator m̂w
N (u) has smaller

(point wise) standard errors than the unweighted polynomial spline estimator

estimator m̂N (u). More importantly, we see that the output (ln(rice)) increases

very quickly and nonlinearly if the total area that farmers cultivated with rice

is less than one hectare, which the output (ln(rice)) changes not much when the

total area cultivated with rice is greater than one hectare.

7. Concluding Remarks

There are several ways to generalize our methodology. For example, a referee
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noticed that it can be easily adapted to the case where T trends to infinite as

well. We only considered the balanced panel data. One can also consider un-

balanced panel data. Analysis here is more interesting and realistic, particularly

when some subjects drop from an experiment or a survey (Baltagi (1998)). For

unbalanced panel data, as in Section 2 to 4, we can construct estimators of the

parametric and nonparametric components except that T has to be replaced by

Ti. The asymptotic properties of the resultant estimators can be derived simi-

larly, but with more complicated notations. Our model does not contain spatially

lagged dependent variables. How to extend our proposed method to panel data

semiparametric models with both spatially lagged dependent variables and spa-

tially lagged disturbances is an open problem.

Acknowledgement

The authors are grateful to the anonymous referees and Editors for their

constructive comments which led to improve the article. Bai’s research was

supported by National Natural Science Foundation of China (NSFC) Grants

11001162. Hu’s research was supported by NSFC Grants 10971126. You’s re-

search is supported by grants from the Program for New Century Excellent Tal-

ents in University (NCET). The work is also partially supported by Program for

Changjiang Scholars and Innovative Research Team in University (IRT13077),

Shanghai University of Finance and Economics through Project 211 (Phase IV)

and Shanghai Leading Academic Discipline Project(B803).

References

Ahmad, I., Leelahanon, S. and Li, Q. (2005). Efficient estimation of a semiparametric partially

linear varying coefficient model. Ann. Statist. 33, 258-283.

Baltagi, B. H. (1998). Worldwide institutional rankings in econometrics: 1989-1995. Economet-

ric Theory 14, 1-44.

Baltagi, B. H. (2008). Econometric Analysis of Panel Data. Wiley.

Baltagi, B. H., Egger, P. and Pfaffermayr, M. (2007). Estimating models of complex FDI: Are

there third-country effects? J. Econometrics 140, 260-281.

Baltagi, B. H. and Li, Q. (1991). A transformation that will circument the problem of autocor-

relation in an error-component model. J. Econometrics 48, 385-393.

Baltagi, B. H., Song, S. H. and Koh, W. (2003). Testing panel data regression models with

spatial error correlation. J. Econometrics 117, 123-150.

Badinger, H. and Egger, P. (2013). Estimation and testing of higher-order spatial autoregressive

panel data error component models. J. Geograph. Systems 15, 453-489.

Cliff, A. and Ord, J. (1981). Spatial Processes, Models and Applications. Pion, London.

de Boor, C. (1978). A Practical Guide to Splines. Applied Mathematical Sciences 27. Springer-

Verlag, New York-Berlin.



PANEL DATA MODEL WITH BOTH SPATIAL AND TEMPORAL CORRELATIONS 293

Diggle, P. J., Liang, K. Y. and Zeger, S. L. (1994). Analysis of Longitudinal Data. Oxford

University Press, Oxford.

Druska, V. and Horrace, W. C. (2004). Generalized moments estimation for spatial panel data:

Indonesian rice farming. Amer. J. Agricultural Economics 86, 185-198.

Egger, P., Pfaffermayr, M. and Winner, H. (2005). An unbalanced spatial panel data approach

to US state tax competition. Economics Lett. 88, 329-335.

Fan, J., Peng, H. and Huang, T. (2005). Semilinear high-dimensional model for normalization

of microarray data: a theoretical analysis and partial consistency. J. Amer. Statist. Assoc.

100, 781-813.

Fan, J., Huang, T. and Li, R. Z. (2007). Analysis of longitudinal data with semiparametric

estimation of covariance function. J. Amer. Statist. Assoc. 35, 632-641.

Henderson, D. J., Carroll, R. J. and Li, Q. (2008). Nonparametric estimation and testing of

fixed effects panel data models. J. Econometrics 144, 257-276.

Horowitz, J. L. and Markatou, M. (1996). Semiparametric estimation of regression models for

panel data. Rev. Econometric Study 63, 145-168.

Kapoor, M., Kelejian, H. and Prucha, I. R. (2007). Panel data models with spatially correlated

error components. J. Econometrics 140, 97-130.

Kelejian, H. H. and Prucha, I. R. (1998). A generalized spatial two stage least squares proce-

dure for estimating a spatial autoregressive model with autoregressive errors. J. Real Estate

Finance and Economics 17, 99-121.

Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autoregres-

sive parameter in a spatial model. Internat. Economic Rev. 40, 509-533.

Kelejian, H. H. and Prucha, I. R. (2001). On the asymptotic distribution of the Moran I test

statistic with applications. J. Econometrics 104, 219-257.

Kelejian, H. H. and Prucha, I. R. (2004) Estimation of systems of spatially interrelated cross

sectional equations. J. Econometrics 118, 27-51.

Kelejian, H. H. and Prucha, I. R. (2010) Specification and estimation of spatial autoregressive

models with autoregressive and heteroskedastic disturbances. J. Econometrics 157, 53-67.

Kelejian, H. H. and Robinson, D. P. (1992). Spatial autocorrelation: A new computationally

simple test with an application to per capita county police expenditures. Regional Science

and Urban Economics 22, 317-331.

Korniotis, G. (2010). Estimating panel models with internal and external habit formation. J.

Business and Economic Statist. 28, 145-158.

Lee, L. F. (2002). Consistency and efficiency of least square estimation for mixed regressive,

spatial autoregressive models. Econometric Theory 18, 252-277.

Lee, L. F. (2005). GMM and 2SLS estimation of mixed regressive, spatial autoregressive models.

J. Econometrics 137, 489-514

Lee, L. F. and Yu, J. H. (2010). Estimation of spatial autoregressive panel data models with

fixed effects. J. Econometrics 154, 165-185.

Mutl, J. and Pfaffermayr, M. (2011). The Hausman test in a Cliff and Ord panel model. Econo-

metrics J. 14, 48-76.

Pötscher, B. M. and Prucha, I. R. (1997). Dynamic Nonlinear Econometric Models, Asymptotic

Theory. Springer, New York.

Pötscher, B. M. and Prucha, I. R. (2001). Basic elements of asymptotic theory, in A Companion

to Theoretical Econometrics (Edited by B. H. Baltagi), 201-229. Blackwell, Oxford.



294 YANG BAI, JIANHUA HU AND JINHONG YOU

Ruckstuhl, A. F., Welsh, A. H. and Carroll, R. J. (2000). Nonparametric function estimation of

the relationship between two repeatedly measured variables. Statist. Sinica 10, 51-71.

Su, L. (2012). Semi-parametric GMM estimation of spatial autoregressive models. J. Economet-

rics 167, 543-560.

Su, L. and Jin, S. (2010). Profile quasi-maximum likelihood estimation of spatial autoregressive

models. J. Econometrics 157, 18-33.

Ullah, A. and Roy, N. (1998). Parametric and nonparametric panel data models, in Handbook

of Applied Economics and Statistics (Edited by A. Ullah and David E. A. Giles), 579-604.

Marcel Dekker.

Wang, L. and Yang, L. (2007). Spline-backfitted kernel smoothing of nonlinear additive autore-

gression model. Ann. Statist. 35, 2474-2503.

Wang, N., Carroll, R. J. and Lin, X. (2005). Efficient semiparametric marginal estimation for

longitudinal/clustered data. J. Amer. Statist. Assoc. 100, 147-157.

School of Statistics and Management, Shanghai University of Finance and Economics, 777

Guoding Road, Shanghai 200433, China.

Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, China.

E-mail: statbyang@mail.shufe.edu.cn

School of Statistics and Management, Shanghai University of Finance and Economics, 777

Guoding Road, Shanghai 200433, China.

Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, China.

E-mail: frank.jianhuahu@gmail.com

School of Statistics and Management, Shanghai University of Finance and Economics, 777

Guoding Road, Shanghai 200433, China.

Key Laboratory of Mathematical Economics (SUFE), Ministry of Education, China.

E-mail: johnyou07@gmail.com

(Received July 2013; accepted March 2014)

statbyang@mail.shufe.edu.cn
frank.jianhuahu@gmail.com
johnyou07@gmail.com

	1. Introduction
	2. Semiparametric Least Squares Estimation
	3. Estimation of the Spatial and Time-wise Error Structure
	4. Weighted Semiparametric Least Squares Estimation 
	5. Simulation Studies
	6. Application
	7. Concluding Remarks

