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Abstract: Quantile regression is a useful approach to modeling various aspects of

conditional distributions. The Bayesian approach provides a natural framework for

incorporating spatial correlation in a quantile regression model. This paper con-

siders Bayesian spatial quantile regression using empirical likelihood as a working

likelihood. The proposed approach inherits the merits of quantile regression in the

sense that we can work with linear conditional quantile functions without having

to assume a parametric form of the conditional distributions, and we allow each

covariate to have differential impacts on different parts of the conditional distribu-

tions. Put into a Bayesian framework, this approach can incorporate spatial priors

to smooth the conditional quantile functions across locations and across quantiles.

We demonstrate both theoretically and empirically how the proposed approach can

take advantage of spatial correlation to improve efficiency over the usual quan-

tile regression estimators. An application to the statistical downscaling of daily

precipitation in the Chicago area is given to illustrate the merit of our approach.

Key words and phrases: Bayesian empirical likelihood approach, informative priors,

nonparametric spatial regression, spatial data.

1. Introduction

As a complement to least squares regression, quantile regression is a useful

approach for the modeling and inference of conditional quantile functions. By

specifying the τth conditional quantile functions of Y given X as

Qτ (Y |X) = X⊤β(τ), for τ ∈ (0, 1),

this τ -specific quantile regression model allows the association between the re-

sponse Y and the covariate X to vary across quantiles. There is an extensive

literature on estimation and inference for various quantile regression models; see

Koenker (2005) for a comprehensive review. In recent years, quantile regression

has been used in a spatial context, as it allows the effects of covariates on the

response to vary across quantiles as well as spatially. Koenker and Mizera (2004)

considered estimation of spatial quantiles in a triogram model; Hallin, Lu, and

Yu (2009) proposed a local linear spatial quantile regression approach. Refer to

McMillen (2012) for more examples on spatial quantile models.

http://dx.doi.org/10.5705/ss.2013.065w
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The Bayesian approach is a natural way to incorporate spatial correlation in

quantile regression. Several forms of Bayesian quantile regression models have

been proposed; see Kottas and Gelfand (2001), Yu and Moyeed (2001), Kottas

and Krnjajić (2009), Lancaster and Jun (2010), and Yang and He (2012) for inde-

pendent data, and Geraci and Bottai (2006), Reich, Bondell, and Wang (2008),

and Kim and Yang (2011) for clustered data. Recently, Reich, Fuentes, and

Dunson (2011) and Reich (2012) proposed model-based approaches for Bayesian

spatial quantile regression by specifying a semiparamteric model for the entire

quantile process. Both approaches work with linear quantile functions at all quan-

tile levels. In this article, we extend the Bayesian empirical likelihood approach

(BEL) of Yang and He (2012) to spatial data, employing an informative para-

metric prior to account for the spatial correlation. Statistical inference based on

the empirical likelihood is known to enjoy good asymptotic properties (see Owen

(2001), and Chen and Keilegom (2009) for a comprehensive review). The use

of empirical likelihood makes our proposed Bayesian spatial quantile regression

approach appealing in several ways. It allows joint estimation of multiple quan-

tiles that will result in efficiency gains by borrowing strength across quantiles. It

allows us to examine the impact of informative priors accounting for the spatial

correlation on posterior inference in an asymptotic framework. The asymptotic

framework based on shrinking priors explains the efficiency gain from the pro-

posed method by incorporating informative priors on the spatial correlation and

commonality across quantiles, as observed in empirical studies. It can model

selected quantile levels of the conditional distributions without making global

assumptions on the conditional distributions, such as linear quantile functions at

all levels.

Variants of the empirical likelihood have been used in the Bayesian quantile

regression setting by a number of authors, including Lancaster and Jun (2010),

Wang and Zhu (2011), and Kim and Yang (2011), but we focus on a class of

problems with spatially correlated data. We are particularly interested in using

an informative prior to regularize the quantile coefficient estimates across space

and across quantile levels. Because quantile regression estimates are highly vari-

able in data-sparse areas, typically the tails, the proposed use of an informative

prior in the BEL approach aims to borrow strength spatially and across quantiles,

resulting in potentially substantial efficiency gains.

The empirical likelihood is not meant to represent the true likelihood, so

the validity of the resultant posterior does not follow from Bayes formula, see

Monahan and Boos (1992), Lazar (2003), Fang and Mukerjee (2006), and Chang

and Mukerjee (2008) for more detailed discussion; no working likelihood ensures

posterior validity at finite samples. In this paper, we provide the asymptotic dis-

tribution of the posterior from the BEL approach for spatial quantile regression,

which enables us to study the asymptotic validity of the posterior inference.
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The empirical likelihood approach is natural for handling several quantile

levels together. This by itself is not a unique feature of our work, some authors

have considered Bayesian nonparametric spatial regression by estimating all the

quantiles simultaneously, see Wood, Jiang, and Tanner (2002), Gelfand, Kottas,

and MacEachern (2005), Griffin and Steel (2006), and Dunson and Park (2008).

Those methods estimate the entire conditional distributions of the response vari-

able given the location and covariates, while the proposed BEL approach uses

linear models on just a small number of quantiles of interest. With linear quan-

tile functions, we can avoid the curse of dimensionality with high dimensional

covariates and interpret the covariate effects more easily. A novel part of our

work is its ability to employ informative priors to explore commonality across

space and across quantile levels simultaneously for efficiency gains.

The rest of the paper is organized as follows. In Section 2 we introduce the

proposed BEL approach for spatial quantile regression, and discuss the model

assumptions and the formulation of informative priors. The asymptotic proper-

ties of the BEL posteriors are provided in Section 3. The theoretical framework

of shrinking priors enables us to understand the efficiency of the BEL approach

by joint modeling over space and quantile levels. The asymptotic validity of pos-

terior inference is also discussed here. Section 4 demonstrates the finite sample

performance of the BEL approach through a Monte Carlo simulation study with

a focus on efficiency gains from informative priors. In Section 5, we apply the

proposed BEL approach as a useful statistical downscaling method for the pro-

jection of high quantiles of precipitation from large scale climate model outputs

to seven stations in the Chicago area. Some concluding remarks are given in

Section 6. Technical details are provided in the supplementary file.

2. Bayesian Empirical Likelihood Approach

In this section, we introduce a Bayesian quantile regression approach for spa-

tially correlated data, beginning with a description of the underlying model. Let

{sl : l = 1, . . . , L} denote L different spatial sites, L a fixed constant. We

are mainly concerned with problems where L is small or modest, but there

are a large number of observations at each site. Given location sl, we observe

Dl = {(Y (l)
i ,X

(l)
i ) : i = 1, . . . , nl}, where Y

(l)
i is the response, X

(l)
i ∈ Rp+1 is

composed of an intercept and p covariates, and nl is the sample size at location sl.

We assume that at all sites the distribution of the p covariates, GX , has a bounded

support X . If the design points are non-stochastic, the basic conclusions we ob-

tain in this paper hold under appropriate conditions on the design sequence, but

we focus on the case of random designs for simplicity. We specify the τth quantile

of Y
(l)
i given X

(l)
i and location sl, as Qτ (Y

(l)
i |X(l)

i , sl) = X
(l)⊤
i β0(τ, sl), where
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β0(τ, sl) = (β0,I(τ, sl),β
⊤
0,S(τ, sl))

⊤ are the p+1 dimensional spatially varying co-

efficients including the intercept term β0,I(τ, sl). The unknown function β0(τ, s),

if specified over all τ ∈ (0, 1), describes the entire conditional distribution of Y

given X at location s, which is to be denoted as Fs,X . We consider the problem

of estimating K conditional quantiles at τ1 < · · · < τK . In most applications, K

is a small integer. Let β0(sl) = (β0(τ1, sl)
⊤, . . . ,β0(τK , sl)

⊤)⊤ ∈ RK(p+1) be the

true parameter of interest at location sl, and β0 = (β0(s1)
⊤, . . . ,β0(sL)

⊤)⊤ the

collection of all the parameters of interest. To infer about β0 in a Bayesian set-

ting, we assume parametric spatial priors on β(sl) = (β(τ1, sl)
⊤, . . . ,β(τK , sl)

⊤)⊤

across sl to incorporate the spatial correlation, and employ empirical likelihood

as a working likelihood. Possible parametric forms of spatial priors can be found

in the literature of spatial models, see Cressie (1993).

To estimate β0(sl), we use K(p+1)-dimensional estimating functions m(X,

Y , β(sl)), where the components of m are

md(p+1)+j(X, Y,β(sl)) = ψτd+1

(
Y −X⊤β(τd+1, sl)

)
Xj ,

for d = 0, 1, . . . ,K − 1, j = 1, . . . , p+ 1, with ψτ (u) = 1{u<0} − τ for u ̸= 0, and

ψτ (u) = 0 for u = 0, being the quantile score function, where 1{A} is an indicator

function on the set A. For any proposed β(sl), its profile empirical likelihood

ratio is given by

R(β(sl)) = max
{ nl∏

i=1

(nlωi)
∣∣∣ nl∑

i=1

ωim(X
(l)
i , Y

(l)
i ,β(sl)) = 0, ωi ≥ 0,

nl∑
i=1

ωi = 1
}
.

More details about the computation of R(β(sl)) can be found in Yang and He

(2012).

For any proposed β(sl), consider its empirical likelihood function

R(β(sl))/n
nl
l . With a prior specification p0(β̃) on the parameter β̃=(β(s1)

⊤, . . .,

β(sL)
⊤)⊤, we formally have the posterior density

p(β̃|D) ∝ p0(β̃)×
L∏
l=1

R(β(sl)) with D = {D1, . . . , DL}. (2.1)

Unlike the block-wise empirical likelihood used for spatial regression in Nord-

man (2008), we account for the spatial correlation through the priors on β(τd, sl)

in the spirit of Reich, Fuentes, and Dunson (2011). Under our framework, the

observations from different stations are conditionally independent given β(τd, sl)

at all τ ∈ (0, 1) and all l = 1, . . . , L.

We call p(β̃|D) a posterior distribution from the BEL approach for the sake

of convenience, even though it is not one in the strict sense (Lazar (2003)). We
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focus on the asymptotic properties of the posterior distribution in (2.1) within

our framework.

The prior p0(β̃) includes information on β(τd, sl) across both locations sl
and quantiles τd. Denote βI(τd, sl) as the intercept parameter in β(τd, sl), and

βS(τd, sl) as the slope parameters. Let gd,l be a spherically symmetric distribu-

tion with zero as its center as well as its mode, and with a finite second order

derivative at zero. We consider the following priors on β̃.

Ω
−1/2
1,1 (β(τ1, s1)− βp,0) ∼ g1,1, (2.2)

Ω
−1/2
1,l (β(τ1, sl)− β(τ1, s1))|β(τ1, s1) ∼ g1,l for l = 2, . . . , L,

Ω
−1/2
d,l (β(τd, sl)− β(τ1, sl))|β(τ1, sl) ∼ gd,l for l = 2, . . . , L; d = 2, . . . ,K,

for a location vector βp,0 ∈ R(p+1) and scatter matrices Ωd,l of appropriate

dimensions. These priors imply that each component in β̃(τd, sl) is correlated

across locations sl and quantile levels τd. Let Ωd,l = diag(Ωd,l,I ,Ωd,l,S), where

Ωd,l,I and Ωd,l,S represent the components of Ωd,l corresponding to the intercept

and slope parameters in β(τd, sl), respectively, for d = 1, . . . ,K and l = 1, . . . , L.

We usually choose Ωd,l,I sufficiently large for d ≥ 2, but with Ω1,l for l ≥ 2, and

Ωd,l,S for d ≥ 2 relatively small. This implies that the priors in (2.2) regularize

the slope parameter βS(τd, sl) across locations and quantiles, but regularize the

intercept parameter βI(τd, sl) only across locations. The specification of priors

in (2.2) relies on the choice of a reference station s1, a reference quantile level τ1
and a prior center βp,0. By choosing Ω1,1 to grow with sample sizes and Ωd,l to

be small for d ̸= 1 or l ̸= 1, the choices of s1, τ1 and βp,0 have no asymptotic

effects in the posterior. We recommend choosing s1 to be the location in the

center of the region of interest or the location with the largest sample size, and

τ1 to be the quantile level closest to the median.

In general, the matrices Ωd,l for d ̸= 1 or l ̸= 1 represent our prior belief

on the correlations across locations or quantiles. In the rest of the paper, we

treat them as given without hyper-parameters. In our empirical investigations in

Sections 4 and 5, we describe a specific procedure of choosing the Ωd,l matrices.

We also note that if gd,l in the prior specification is Gaussian, then our priors

are consistent with Gaussian process priors but with a particular choice of its

covariance function.

We take the BEL estimate β̃BEL of the parameters as the posterior mean

from the Bayesian empirical likelihood approach. Numerically, it can be ob-

tained from a Markov Chain Monte Carlo algorithm. For the specific Metropolis–

Hastings algorithm used in our empirical studies, we refer to the supplementary

file.
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3. Asymptotic Properties of BEL

For convenience, we assume that n =
∑L

l=1 nl and each nl increases at the

same rate as n for l = 1, . . . , L. We restrict L to be a finite constant. To obtain

the asymptotic results,we make assumptions similar to those of Yang and He

(2012) applied to each site sl.

(A1) For each l, there exists a neighborhood N of β0(sl) such that P (R(β(sl)) >

0) → 1 for any β(sl) ∈ N , as nl → ∞.

(A2) The distribution function GX has bounded support X .

(A3) The conditional distribution FX,l(t) of Y given X and sl is twice continu-

ously differentiable in t for all X ∈ X .

(A4) At any X ∈ X , the conditional density function F ′
X,l(t) = fX,l(t) > 0 for t

in a neighborhood of F−1
X,l(τd) for each d = 1, . . . , k.

(A5) For each l, E{m(X, Y,β0(sl))m(X, Y,β0(sl))
⊤} is positive definite.

(A6) For the prior p0(β̃), the logarithm of gd,j is twice continuously differentiable,

and ||βp,0|| = O(1).

Let β̂(sl) be the maximum empirical likelihood estimate of β0(sl), β̃EL=(β̂⊤(s1),

. . . , β̂⊤(sL))
⊤, and JEL = diag(J (1), . . . , J (L)), with J (l) = nlV

(l)⊤
12 V

(l)
11

−1
V

(l)
12 ,

V
(l)
11 = Ψ ⊗ E(X(l)X(l)⊤), Φ =

(
Φij

)
∈ RK×K ,Φij = τi ∧ τj − τiτj , and

V
(l)
12 = −∂E

{
m(X(l),Y (l),β(τ,sl))

}
∂β(τ,sl)

∣∣∣
β(τ,sl)=β0(τ,sl)

. In the prior p0(β̃), the prior mode

is β̃p,0 = βp,0 ⊗ 1KL and the prior information is −α2 log p0(β̃|D)

αβ̃2

∣∣∣∣
β̃=β̃p,0

= Jp,0.

Theorem 1. Under Assumptions (A1)−(A6), the posterior density of β̃ has the

following expansion on any sequence of sets
{
||β̃ − β̃0|| = O(n−1/2)

}
:

p(β̃|D) ∝ exp
{
− 1

2
(β̃ − β̃post)

⊤Jn(β̃ − β̃post) +Rn

}
, (3.1)

where Jn = Jp,0 + JEL, β̃post = J−1
n (Jp,0β̃p,0 + JELβ̃EL), Rn = op(1).

The results of Theorem 1 extend Theorem 3.2 of Yang and He (2012) to spa-

tially correlated priors. Based on Theorem 1, for any fixed prior (for which Jp,0
is bounded), the estimation efficiency of the BEL estimates are asymptotically

equivalent to that of the usual quantile regression estimates. By using a shrink-

ing prior p0(β̃), such that the largest eigenvalue of Jp,0 grows with the sample

size, the additional terms Jp,0 and β̃p,0 in both Jn and β̃post show when and how
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an informative prior can complement the empirical likelihood in large samples.

When ||Jp,0|| = o(n), the empirical likelihood dominates the prior asymptoti-

cally. If Jp,0 increases at a faster rate than n, the prior dominates the empirical

likelihood. The framework of shrinking priors helps in the identification of effi-

ciency gain from employing informative priors accounting for spatial correlation

and commonality across quantiles in a joint modeling of multiple stations.

The empirical likelihood framework allows the joint estimation of multiple

quantiles with or without a common parameter across quantiles. The assump-

tion of a common parameter across quantiles or across sites can be viewed as

an extreme case of using a dominatingly strong prior. The introduction of a

common parameter reduces the number of unknown parameters to be smaller

than the number of estimating functions and, correspondingly, the definition of

V
(l)
12 is taken to be the derivative with respect to the reduced parameter space.

Therefore, the posterior variance may no longer take the same form as the asymp-

totic variance of the usual quantile regression estimates, and improvements in the

asymptotic variances become possible.

Corollary 1. Under the assumptions of Theorem 1, there is (i) Var (β̃|D) =

J−1
n + op(n

−1), and (ii) Var (β̃BEL) = J−1
n − J−1

n Jp,0J
−1
n + op(n

−1).

Corollary 1 is useful when the posterior chain is used for inference on the

posterior estimate β̃BEL. If the prior information Jp,0 is dominated by the em-

pirical likelihood, then Var (β̃BEL) can be approximated by J−1
n . Otherwise a

simple adjustment using Jp,0 is needed. In either case, it is clear that Var (β̃BEL)

is smaller than J−1
EL, so the BEL estimate has lower variance than the maximum

empirical likelihood estimator (MELE) or the usual regression quantile estimator.

However, a strong shrinking prior could lead to bias. In Theorem 1, the prior

mode β̃p,0 plays a role in the posterior mean. To benefit from the shrinking priors,

the amount of shrinking should depend on the evidence from preliminary studies

or from external information. For example, in the proposed prior (2.2), we would

choose Ω1,l to be in the order of n only when we believe that β(τ1, sl)−β(τ1, s1) is

nearly zero (or in the order of o(n−1/2) to be exact). To strike the right balance,

it is often helpful to do a preliminary BEL estimate of the parameters and their

standard errors using a nearly flat priors on all the parameters, and then use

the standard error estimates to construct a shrinking prior. If two parameters

are indeed identical, the standard error of their estimated difference would be

shrinking towards zero at the rate of n−1, providing a natural way to impose

shrinking priors.

There is no easy way to choose optimal priors for any given problem. Our

theory and the empirical experience show that we do not have to aim for opti-

mality; the BEL approach is advantageous for any reasonably chosen priors. We
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caution that the validity of posterior inference is based on a correctly specified

model; because our model accounts for spatial correlation through the prior dis-

tribution, it is difficult to perform model diagnostics in any given application.

The impact of model mis-specification on posterior inference needs to be care-

fully examined before we recommend any formal inference to be made based on

the proposed BEL method. We focus now on using the BEL method for efficient

estimation of the quantile parameters.

4. Simulation Study

We used Monte Carlo simulations to investigate the estimation efficiency of

the BEL methods, estimation efficiency measured by the estimated mean squared

error (MSE). We compared the performance of the BEL estimates with those of

the approximate spatial quantile regression estimates proposed in Reich, Fuentes,

and Dunson (2011), denoted as ASQR. We adopted the approximate method of

Reich, Fuentes, and Dunson (2011) rather than their full Bayesian modeling

approach. The latter is computationally expensive if not infeasible for many

applications. The usual quantile regression estimate at each τ , denoted simply

as RQ, was also included in our comparisons.

We considered a joint modeling of quantiles τ = 0.9, 0.95, or quartiles τ =

0.25, 0.5, 0.75. In the joint modeling of τ = 0.9, 0.95, we used the fixed site

indices s1 = 0.5, s2 = 0.3, s3 = 0.7, s4 = 0.1, s5 = 0.9 and equal sample size

nl = 100 at each site. The location index dl could be multi-dimensional, but

in our simulation model, only the relative distances between sites matter. Two

covariates x and z were generated from half of the χ2 distribution with 2 degrees

of freedom, independently over space and time. To generate spatially correlated

data, we took the strategy of Reich, Fuentes, and Dunson (2011). We generated

Ul (l = 1, . . . , 5) from the multivariate normal with mean zero and exponential

spatial covariance exp(−|sl − sl′ |/0.5) for l, l′ = 1, . . . , 5; at each site sl, we

computed τ = Φ(Ul), and obtained y from the quantile function (4.1) using

the randomly generated τ . The data generated in this way have the specified

conditional quantile functions at each site, but the spatial correlations come from

how the Ul are generated. The data generating mechanism here does not match

our framework of conditionally independent data given the quantile parameters;

we adopted this simulation setting to show that the proposed BEL approach

gains efficiency over RQ even when our framework provides only a reasonable

working model.

The conditional quantile functions used in our study were

Qτ (y|x, z, s) = a(τ, s) + bx(τ, s)x+ bz(τ, s)z, (4.1)
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Table 1. Estimated MSE’s of several estimators for the intercept and the
slope parameters at τ = 0.9, 0.95. The numbers in the parentheses are
standard error estimates.

a(0.9) bx(0.9) bz(0.9) a(0.95) bx(0.95) bz(0.95)

BEL 0.339 0.156 0.168 0.503 0.190 0.217
(0.022) (0.010) (0.010) (0.034) (0.012) (0.014)

ASQR 0.623 0.798 0.370 0.579 0.601 0.421
(0.063) (0.055) (0.022) (0.054) (0.044) (0.024)

RQ 0.635 0.333 0.317 0.786 0.331 0.391
(0.042) (0.038) (0.023) (0.055) (0.027) (0.029)

where a(τ, s) = 2s + (τ + 1)Φ−1(τ), bx(τ, s) = −4
√
0.75− τ1{τ<0.75}, bz(τ, s) =

2sτ2, Φ(·) the distribution function of the standard normal.

The covariate x influenced the outcome variable y only at lower quantiles

τ < 0.75, bx(τ, s) was zero at all sites for τ ≥ 0.75. Consider the estimation

of quantiles at τ = 0.9, 0.95. Let β(τd, sl) = (a(τd, sl), bx(τd, sl), bz(τd, sl)). The

conditional standard deviations of the priors used in the BEL, Ωd,l in Section

2, are listed in Table 1 of the supplementary file. The priors used in the ASQR

were those used in the simulation study of Reich, Fuentes, and Dunson (2011).

More computational details including the prior choices can be found in the sup-

plementary file. The mean squared errors (MSE) of the competing estimators of

β(τ, s) are given in Table 1. By using informative priors to regularize the quan-

tile coefficients across quantiles and across location, the BEL method improves

on RQ quite noticeably. The ASQR estimators lose efficiency relative to RQ in

this study, especially in the estimation of bx. The poor performance of ASQR

could be attributed to its reliance on the asymptotic normality of the regression

quantile estimates, which may not work well at the quantiles with this sample

size. Similar results were obtained when the prior parameters used in Table 1

of the supplementary file were moderately varied, and the advantage of the BEL

method was rather insensitive to the choice of the prior variances.

Consider the joint modeling of quartiles at τ = 0.25, 0.5, 0.75. We took the

setting in Reich, Fuentes, and Dunson (2011), but with five sites of equal sample

size nl = 20 at each site. The site indices are uniformly generated from [0, 1]

with the constraint that the minimum difference between the station indices

be no smaller than 0.05. The quantile coefficients in (4.1) were taken to be

a(τ, s) = 2s+ (τ + 1)Φ−1(τ), bx(τ, s) = 0, and bx(τ, s) = 5sτ2. The covariates x

and z were generated uniformly from [0, 1]. More computational details can be

found in the supplementary file. The MSE of the competing estimators of β(τ, s)

are given in Table 2, from which we observed that both BEL and ASQR improve

on RQ quite noticeably, and BEL performs better than ASQR.
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Table 2. Estimated MSE’s of several estimators for the intercept and the
slope parameters at τ = 0.25, 0.5, 0.75. The numbers in the parentheses are
standard error estimates.

a bx bz a bx bz a bx bz

τ = 0.25 τ = 0.5 τ = 0.75

BEL 0.458 0.728 0.989 0.642 0.902 1.143 1.034 0.915 2.509
(0.037) (0.056) (0.072) (0.073) (0.101) (0.124) (0.097) (0.092) (0.171)

ASQR 0.960 1.287 1.878 1.085 1.747 2.314 1.450 2.531 3.366
(0.146) (0.180) (0.189) (0.182) (0.251) (0.219) (0.153) (0.278) (0.286)

RQ 1.249 2.373 2.646 2.041 4.756 3.987 3.351 6.422 7.349
(0.106) (0.185) (0.230) (0.159) (0.267) (0.317) (0.219) (0.448) (0.520)

5. A Data Example

In this section, we consider the BEL method for statistical downscaling of

daily precipitation in the Chicago area. We used the observed daily precipita-

tion (PRCP) of seven stations (Midway, Aurora, O’Hare, Wheaton, Elgin, Park

Forest, Joliet) in Illinois from 1976 − 2002 as the response variable. We fo-

cused on the rainy days only; they account for around 30% in the Chicago area.

The predictors are the simulated daily precipitation (RP), daily humidity (RH),

and daily maximum temperature (RT) from the ERA-40 reanalysis model in-

troduced in Uppala et al. (2005). We used the linear quantile regression model:

Qτ (PRCP |RP,RH,RT, si) = a(τ, si)+b1(τ, si)RP+b2(τ, si)RH+b3(τ, si)RT at

quantiles τ1 = 0.95, τ2 = 0.99, with station index si for i = 1, . . . , 7. To construct

informative priors using external data information, e.g., neighboring stations, we

constructed the priors using a preliminary chain on data from Joliet and Park For-

est, which are south of the five other stations. We chose the Midway station as the

reference station s1 and let β(τd, si) = (a(τd, si), b1(τd, si), b2(τd, si), b3(τd, si)),

for d = 1, 2 and i = 1, . . . , 5.

For the preliminary chain on two stations, Park Forest (as i = 6) and

Joliet (as i = 7) has priors on each component of β(τ1, s6), as well as a(τ1, s7)−
a(τ1, s6)|a(τ1, s6), bj(τ1, s7)− bj(τ1, s6)|bj(τ1, s6), bj(τ2, s7)− bj(τ1, s6)|bj(τ1, s6)
for j = 1, 2, 3, and a(τ2, s7)− a(τ1, s7)|a(τ1, s6) as independent N(0, 1002). The

prior variances are so large here that the empirical likelihood is meant to domi-

nate.

We used the posterior chain from the preliminary run to update the prior

variances, and used them for the primary analysis of the first five stations. Table

3 contains the prior standard deviations used. We note that no shrinking priors

were used for the intercept parameters or for the coefficients of τ1 = 0.9 at the
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Table 3. The conditional standard deviations of the multivariate normal
priors used in BEL; the first row in the left columns (Stations) provides
the standard deviations of each parameter in β(τ1, s1); the second row pro-
vides the conditional standard deviation of each parameter in β(τ1, si) given
β(τ1, s1) for i = 2, . . . , 5. The right columns (Quantiles) provides the con-
ditional standard deviation of each parameter in β(τ2, si) given β(τ1, si) for
i = 1, . . . , 5.

BEL Stations (si|s1) Quantiles (τ2|τ1)
a b1 b2 b3 a b1 b2 b3

s1 100 100 100 100 100 0.125 0.079 0.103
si(i = 2, . . . , 5) 0.030 0.044 0.025 0.041 100 0.125 0.079 0.103

reference station Midway (as i = 1), but shrinking priors across stations and

across quantile levels were used.

The data are split into a training period (odd years) and a validation period

(even years), of sizes 13,026 and 12,713. An MCMC chain, as described in the

supplementary file, of length 100,000 was obtained for the BEL estimate of the

model parameters for the training data. The model estimates were then applied

to the validating data to predict the 0.95th and 0.99th quantiles of PRCP .

Table 4 reports performance validation measure d = (O − E)/
√
τ(1− τ)n,

where n is the total number of days for prediction, O is the number of days

when the observed PRCP exceeds the predicted τth quantile of PRCP , and

E indicates the expected number of days, i.e., E = n(1 − τ). The normalized

differences are shown for the full testing period at τ = 0.95 and 0.99. The

BEL method is compared to RQ, the quantile regression estimate at individual

τ , and ASQR, the approximate spatial quantile regression method at the same

quantile levels. Normalized differences greater than 3 in absolute values are

marked as bold in Table 4. By using informative priors across stations and

quantiles, we see that the BEL performs better than RQ overall, especially for

the station Wheaton, where the RQ estimate at τ2 = 0.99 was unstable. The

ASQR predictions are quite good at τ1 = 0.95, but inaccurate at τ2 = 0.99. The

normal approximations of ASQR at high quantiles are risky even at this sample

size, and it assumes linear conditional quantile functions at all quantile levels,

when examination of the data suggests that lower quantiles are nonlinear. We do

not include the method of Reich (2012) in this example, because it also assumes

linear quantiles at all levels.

Based on Corollary 1, we can use the posterior chain obtained in the study

to test the hypothesis of equal quantile coefficients at different quantile levels or

different stations. For example, the standardized differences (or t-statistics) for

b3(0.99, sl)− b3(0.95, sl) from the BEL method are 2.75 and 2.47 at Midway and
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Table 4. The table gives the normalized performance measures in the vali-
dation data when the quantiles are predicted using the parameters obtained
from the training data with three different methods.

Midway Ohare Wheaton Elgin Aurora

τ = 0.95

BEL -0.844 0.682 0.655 1.616 0.761
ASRQ -2.418 -1.974 -0.456 0.277 -0.242
RQ -0.931 -0.115 0.841 1.521 0.488

τ = 0.99

BEL 0.665 -0.167 0.531 2.509 2.131
ASRQ 5.645 4.487 7.247 6.700 6.324
RQ 1.431 -0.555 3.787 2.509 2.530

O’Hare Stations, respectively. This indicates that the daily maximum tempera-

ture is likely to have more impact on precipitation at the τ = 0.99 quantile than

at the 0.95 quantile there. This difference could not be detected by hypothesis

testing of RQ at each individual station, noting that the p-values from the F-test

for the null hypothesis of equal slope coefficients b3 at these two high quantiles

are 0.21 and 0.10, respectively at the two stations.

6. Discussion

We propose an empirical likelihood approach for spatial quantile regression.

This directly targets a small number of quantile levels of interest. It is possible

that the estimated quantiles may cross, but the use of informative priors toward

common slopes helps avoid this since the intercept parameters are always ordered

in the MCMC chain. If prediction at several quantile levels is a goal, estimated

quantiles can be re-ordered through monotonization, and estimation accuracy

enhanced, see Chernozhukov, Fernández-Val, and Galichon (2010).

The proposed method is not strictly Bayesian and we are open to prior

construction based on preliminary estimates. It is also possible to rely on external

data or data from some of the locations to construct informative priors on other

locations, as in the example in Section 5. In our experience, such informative

priors are helpful in the estimation of tail quantiles and the improvement is not

sensitive to the scaling of the priors within a reasonable range.

Our approach have the following limitations. The joint modeling of data and

priors may not be completely consistent with a frequentist approach, and our

approach is not Bayesian due to the use of a working likelihood and a shrinking

prior. We view our working model as a means of generating efficient estimation

of quantiles when data from several stations in a local region can be pooled.



SPATIAL QUANTILE REGRESSION 273

The proposed approach does not predict the response in a location without data

unless a prior is specified to include the location of interest. Our main objective

is to make use of spatial correlation through the priors to enhance estimation

of quantiles at each location where data is available. We have not considered

modeling spatial data when a large number of sites are spread across a large

area but few observations at each site. The specification of the priors could

be challenging in such cases, and an asymptotic theory would be different. We

hope that future research can address this general form of spatial data under the

framework of Bayesian empirical likelihood.
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