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Abstract: The Spatial Scan Statistic is one of the most important methods for de-

tecting and monitoring spatial disease clusters. Usually it is assumed that disease

cases follow a Poisson or Binomial distribution. In practice, however, case count

datasets frequently present an excess of zeroes and/or overdispersion, resulting in

the violation of those commonly used models, increasing type I error occurrence.

This paper describes a modification of the Spatial Scan Statistic with the Zero

Inflated Double Poisson (ZIDP) model to reduce type I error, accommodating si-

multaneously an excess of zeroes and overdispersion. The null and alternative

model parameters are estimated by the Expectation-Maximization algorithm and

the p-value is obtained through the Fast Double Bootstrap Test. An application is

presented for Hanseniasis data in the Brazilian Amazon.

Key words and phrases: Double Poisson, EM-algorithm, overdispersion, spatial

scan statistics, zero inflated.

1. Introduction

The Spatial Scan Statistics (Kulldorff (1997)) is a popular method for the

detection and inference of spatial disease clusters. Recently, several extensions

have been devised to accommodate correlation (Loh and Zhu (2007)), covariate

adjustment (Jung (2009)), log-linear modeling (Zhang and Lin (2009)), overdis-

persion (Zhang, Zhang, and Lin (2012)) and zero inflation (Cançado, da-Silva,

and da Silva (2011, 2014)). In public health surveillance, the disease count vari-

ability is often greater than allowed by the Poisson model, which assumes that

the mean and variance have the same value. This variability excess is called

overdispersion and has been widely discussed in the literature. Disregarding the

presence of overdispersion in the model may lead to the inflation of type I error

and consequent erroneous inference for the model parameters. In the presence of

overdispersion, the Generalized Poisson (Consul and Jain (1973)) and the Dou-

ble Poisson (Efron (1986)) are more adequate data models. Another commonly

occurring problem in count data, unexpected from the employed model, is that

the dataset exhibits an excess of zeroes, or zero inflation. Overdispersion may

sometimes occur as a consequence of zero inflation; in this case the Zero-Inflated
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Poisson (ZIP) model offers a good adjustment to data. However, when overdis-

persion still persists, after adjusting for zero inflation modeling, a more robust

model must be considered to accommodate additional overdispersion in positive

count values.

Zero inflated models have been used in many areas (Hall (2000); Cheung

(2002); Yau, Lee, and Carrivick (2004)). The estimation of parameters employ-

ing ZIPmay also be severely biased when the positive counts exhibit significantly

larger variability than expected. Then, good alternatives, modeling simultane-

ously zero inflation and overdispersion, are the Zero-Inflated Generalized Poisson

(ZIGP), Double Poisson (ZIDP), or Negative Binomial (ZINB) models. In the

context of spatial cluster detection, a common cause for overdispersion is spatial

correlation (Houssian and Lawson (2006)); on the other hand, zero inflation oc-

curs due to underreporting or absence of disease risk exposure for some groups

of individuals.

Excessive false alarm may occur due to the simultaneous presence of zero in-

flation and overdispersion. In a simulated study, Perumean-Chaneya et al. (2012)

verified that the Poisson based model estimates are inefficient, and statistically

significant results may be lost when zero inflation is neglected. Likewise, when

overdispersion is ignored, type I error estimates are inflated.

In the non-spatial context, a score test was proposed (Xiang et al. (2007))

to detect overdispersion based on a mixed ZINB model. The same type of score

test was used through ZIGP (Yang, Harding, and Addyb (2010)). Another score

test considered zero inflation and overdispersion simultaneously (Deng and Paul

(2005)) in regression models (ZINB).

In the spatial context, a Spatial Scan Statistic for zero-inflated models ZIP

was proposed (Cançado, da-Silva, and da Silva (2011, 2014)). Further, a Spatial

Scan Statistic developed for overdispersion models was presented (Zhang, Zhang,

and Lin (2012)), based on a Poisson-Gamma mixture.

In this paper, a modified Spatial Scan Statistics is developed, based on

the ZIDP model, incorporating simultaneously zero inflation and overdisper-

sion. The null and alternative model parameters are estimated by the EM

(Expectation-Maximization) algorithm and the p-value is obtained through the

Fast Double Bootstrap Test (Davidson and MacKinnon (2001)).

The paper is organized as follows. Section 2 reviews the Zero-Inflated Overdis-

persed Poisson model and the Spatial Scan Statistics. Section 3 presents the

modified Spatial Scan Statistic with overdispersion and inflated zeros. Numer-

ical studies with simulated data are reported in Section 4. Section 5 shows an

application for Hanseniasis data in the Brazilian Amazon. Final remarks are in

Section 6.
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2. Background

2.1. Zero inflated overdispersed Poisson-ZIOP

Consider L locations with counts given by Y = (Y (s1), . . . , Y (sL))
′, where

Yi ≡ Y (si) is a random variable representing the number of disease cases at

location si, with population at risk ni and observed count value yi. Zero-inflated

models for Yi are employed when the observed zero counts exceed the zero counts

expected by the standard model. A typical example is given by the ZIP model,

which assumes

Yi ∼

{
0 with probability p,

P(µi) with probability 1− p,

where P denotes the Poisson distribution. The resulting distribution is

P (Yi = yi) =

{
p+ (1− p)e−µi yi = 0,

(1− p)P(µi) yi = 1, 2, . . . .

It can be shown generally that

E(Yi) = (1− p)µi and V(Yi) = (1− p)σ2
i + p(1− p)µ2

i , (2.1)

where (µi, σ
2
i ) denotes, respectively, the mean and variance of the standard model

and p is the zero inflated parameter. If the zero inflation is ignored in the model,

estimators will be inconsistent with the parameters.

Overdispersion appears when data variance is greater than predicted by the

probabilistic model. Two mechanisms can cause overdispersion: data is generated

by a process consisting of a mixture of two or more distributions; the observed

data are not independent, but positively correlated. To treat overdispersion,

Negative Binomial (BB), Generalized Poisson (GP) and Double Poisson (DP)

models are utilized. Within the zero inflation context, ZIGP and ZIDP can

be used to accommodate overdispersion in the ZIP model. Consider here the

overdispersion DP model, with probability function

f̃DP (yi|µi, ϕ) = c(µi, ϕ)fDP (yi|µi, ϕ), (2.2)

where the normalization constant satisfies the relation
1

c(µi, ϕ)
= 1 +

1− ϕ

12µiϕ

(
1 +

1

µiϕ

)
,

and

fDP (yi|µi, ϕ) = (ϕ1/2e−ϕµi)

(
e−yiyyii
yi!

)(
eµi

yi

)ϕyi

. (2.3)

(By convention, 00 = 1 and 0 log(0) = 0). Efron (1986) shows that

E(Yi)
.
= µi , V(Yi)

.
=

µi

ϕ
, (2.4)
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and (2.3) is an approximation for (2.2). The approximate distribution has been

used with success in temporal series modeling under overdispersion (Heinen

(2003); Xu et al. (2012)) and easily accommodates covariate adjustment. In

(2.4), it can be seen that ϕ is the parameter controlling overdispersion when

0 < ϕ < 1. If ϕ = 1, then DP is the Poisson distribution.

To model simultaneously the zeroes excess and overdispersion in data, we

propose the use of ZIDP(µi, ϕ, p) with probability function

P (Yi = yi|p, µi, ϕ) =

{
p+ (1− p)fDP (0|µi, ϕ) yi = 0,

(1− p)fDP (yi|µi, ϕ) yi = 1, 2, . . . .
(2.5)

with µi = θni. Combining (2.1) with (2.4),

E(Yi) = (1− p)µi e V(Yi) = E(Yi)
(
pµi +

1

ϕ

)
. (2.6)

Clearly, ϕ measures the overdispersion in the Zero-Inflated Poisson model. When

p = 0 and ϕ = 1, the model ZIDP(µi, 1, 0) is the standard Poisson P(µi); when

p ̸= 0 and ϕ = 1, the model ZIDP(µi, 1, p) is the ZIP model.

2.2 Spatial scan statistics

Given a study region represented by a geographic map divided into areas,

each with an assigned population at risk and number of disease cases, the Spatial

Scan Statistic (Kulldorff (1997)) is a test devised to identify a cluster (subset of

the study area) with elevated incidence of cases compared to the rest of the

map. This is a likelihood ratio test and makes use of a scanning procedure (the

spatial scan) to search for the most likely cluster among the many candidate

clusters in space or space-time. The simplest spatial version imposes circularly

or elliptically shaped moving windows over the study region looking for compact

clusters (Duczmal, Kulldorff, and Huang (2006), Duczmal et al. (2011)).

Specifically, let S be a study region projected in the Cartesian plane with

L areas {s1, . . . , sL}, population at risk n(si) = ni. It is usual to determine,

in the interior of each area si, a point (or centroid) ai in the plane. Under the

assumption of completely random distribution of cases (the null hypothesis H0),

let Yi ∼ P(θni) for every si ∈ S. Let Z be a candidate cluster. Under the

alternative hypothesis H1, let Yi ∼ P(θ1ni) for every si ∈ Z and Yi ∼ P(θ2ni)

for every si /∈ Z with θ1 > θ2. The likelihood function for Z is given by

LZ(θ1, θ2;y) =
( L∏

i=1

nyi
i

yi!

)
θyz1 e−θ1nzθ

(y+−yz)
2 e−θ2(n+−nz), (2.7)

where

kaymo
鉛筆
刪

kaymo
鉛筆
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y+ =

L∑
i=1

yi, yz =
∑
si∈Z

yi, n+ =

L∑
i=1

ni e nz =
∑
si∈Z

ni.

The likelihood ratio function for H0 : θ1 = θ2 = θ versus H1 : θ1 > θ2 is

(Kulldorff (1997)):

ΛZ =

max
θ1>θ2

LZ(θ1, θ2;y)

max
θ1=θ2

LZ(θ1, θ2;y)
=

(
yz/nz

y+/n+

)yz ((y+ − yz)/(n+ − nz)

y+/n+

)(y+−yz)

,

if yz/nz > (y+ − yz)/(n+ − nz) and ΛZ = 1 otherwise. With Z the collection of

all cluster candidates Z, the Spatial Scan Statistics is defined as

Λ = max
Z∈Z

ΛZ , (2.8)

and the most likely cluster is Ẑ = arg
(
max
Z∈Z

ΛZ

)
. A Monte Carlo procedure is

usually employed to obtain the test p-value. The Circular Scan is the most

popular variant of the Spatial Scan Statistic (Kulldorff (1999)): given the area

si1 = si with centroid ai1 = ai, consider the L areas (si1 , . . . , siL) with the

respective centroids (ai1 , . . . , aiL) sorted by their increasing order of distance

from the centroid ai. The candidate clusters zim = {si1 , . . . , sim}, i = 1, . . . , L,

m = 1, . . . , S (not all distinct) form the collection of circular clusters of maximum

size S, S = 1, . . . , L.

3. Spatial Scan Statistics with Overdispersion and Inflated Zeros

3.1. Spatial scan statistics for ZIDP models

In order to accommodate simultaneously an excess of zeroes and overdis-

persion, suppose that the data Y = (Y (s1), . . . , Y (sL))
′ are modeled by the

ZIDP(µi, ϕ, p) model, with distribution given by (2.5). Following Kulldorff’s

(1997) cluster model, assume that µi = θ1ni when si ∈ Z, and µi = θ2ni when

si /∈ Z. Consider testing H0 : θ1 = θ2 = θ against H1 : θ1 > θ2. For a given Z,

under H1, the likelihood function is

LZ(p, θ1, θ2, ϕ;y)

=
∏
si∈Z

(p+ (1− p)fDP (0|θ1ni, ϕ))
1−I(yi>0) ((1− p)fDP (yi|θ1ni, ϕ))

I(yi>0)

×
∏
si /∈Z

(p+ (1− p)fDP (0|θ2ni, ϕ))
1−I(yi>0) ((1− p)fDP (yi|θ2ni, ϕ))

I(yi>0) ,

where I(yi > 0) is the indicator function of positive value occurrence. Under H0

the likelihood function is
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L0(p, θ, ϕ;y)

=

L∏
i=1

(p+ (1− p)fDP (0|θni, ϕ))
1−I(yi>0) ((1− p)fDP (yi|θni, ϕ))

I(yi>0) .

Let (p̂1, θ̂1, θ̂2, ϕ̂1) and (p̂0, θ̂0, ϕ̂0) be respectively the maximum likelihood estima-

tors for the parameters of the model under H1 and H0. Then the likelihood ratio

statistic and the Spatial Scan Statistics for the ZIDP model are, respectively,

Λ̂Z =
LZ(p̂1, θ̂1, θ̂2, ϕ̂1;y)

L0(p̂0, θ̂0, ϕ̂0;y)
and Λ̂ = max

Z∈Z
Λ̂Z , (3.1)

with estimated cluster Ẑ = arg
(
max
Z∈Z

Λ̂Z

)
. By inspecting LZ(.;y) and L0(.;y) it

may be noted that there is no independence between the parameter p and the

remaining parameters. This fact complicates the maximization of the likelihood

function, especially when there are covariates involved. Thus, the inclusion of

a latent vector of variables is necessary to factorize the likelihood to facilitate

the maximization process, making use of the EM (Expectation-Maximization)

algorithm. Let U = (U1, . . . , UL), where Ui = 1 when Yi occurs due to a zero

state, and Ui = 0 when Yi occurs due to a DP model. Assume that Ui ∼
Bernoulli(p). Then the augmented likelihood is

La
Z(p, θ1, θ2, ϕ;y,u)

=
∏
si∈Z

pui [(1− p)fDP (yi|θ1ni, ϕ)]
1−ui ×

∏
si /∈Z

pui [(1− p)fDP (yi|θ2ni, ϕ)]
1−ui .

Marginally, Yi ∼ ZIDP(µi, ϕ, p). The logarithm of the likelihood ratio for the

ZIDP model under H1 is

laZ(p, θ1, θ2, ϕ;y,u)

=

L∑
i=1

(ui log p+ (1− ui) log(1− p)) +
∑
si∈Z

(1− ui) log fDP (yi|θ1ni, ϕ)

+
∑
si /∈Z

(1− ui) log fDP (yi|θ2ni, ϕ)

= laZ(p;u) + laZ(θ1, ϕ;y,u) + laZ(θ2, ϕ;y,u), (3.2)

and under H0 is

la0(p, θ, ϕ;y,u) =

L∑
i=1

(uilogp+(1−ui) log(1−p))+

L∑
i=1

(1−ui) log fDP (yi|θni, ϕ)

= la0(p;u) + la0(θ, ϕ;y,u). (3.3)
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Here the likelihood is easily maximized and the estimators (p̂1, θ̂1, θ̂2, ϕ̂1) and

(p̂0, θ̂0, ϕ̂0) may be independently obtained. The estimator for ϕ in H1 is ob-

tained by maximizing laZ(ϕ;y,u) = laZ(θ̂1, ϕ;y,u) + laZ(θ̂2, ϕ;y,u), and for H0

it is obtained by maximizing la0(θ̂0, ϕ;y,u). To maximize (3.2) and (3.3) the

EM algorithm is used. In this case the logarithm of the likelihood function

is maximized iteratively in two steps until convergence. The maximization of

laZ(p, θ1, θ2, ϕ;y,u) is obtained as follows.

• Step E: Initialize the iterative process with γ(0) = (p
(0)
1 , θ

(0)
1 , θ

(0)
2 , ϕ

(0)
1 ). At the

(k+1)th iteration the estimate of u
(k)
i is the conditional mean over y and the

current estimates γ(k) = (p
(k)
1 , θ

(k)
1 , θ

(k)
2 , ϕ

(k)
1 ). Thus compute E{laZ(p, θ1, θ2, ϕ;

y,u)|y,γ(k)} with respect to the conditional distribution of u. As laZ(p, θ1, θ2,

ϕ;y,u) is linear in u, this is laZ(p, θ1, θ2, ϕ;y,u
(k)), where u(k)=EH1(u|y,γ(k)),

with the ith element

u
(k)
i = PH1(ui = 1|yi,γ(k))

=
PH1(Yi = yi|ui=1,γ(k))PH1(ui=1|p(k)1 )

PH1(Yi=yi|ui=1,γ(k))PH1(ui=1|p(k)1 )+PH1(Yi=yi|ui=0,γ(k))PH1(ui=0|p(k)1 )

and

uki =



(
1 + exp{− log(

p
(k)
1

1−p(k)1

)−ϕ
(k)
1 θ

(k)
1 ni +

1
2 log ϕ

(k)
1 }
)−1

if yi = 0, si ∈ Z,(
1 + exp{− log(

p
(k)
1

1−p(k)1

)−ϕ
(k)
1 θ

(k)
2 ni +

1
2 log ϕ

(k)
1 }
)−1

if yi = 0, si /∈ Z,

0 if yi > 0.

• Step M: Maximize laZ(p, θ1, θ2, ϕ;y,u
(k)).

1. Step M for p : In the (k + 1)th iteration maximize laZ(p, θ1, θ2, ϕ;y,u
(k))

with respect to p, equivalently maximize laZ(p;u) as (3.3) considering

u = u(k). Analytically, p
(k+1)
1 =

∑L
i=1 u

(k)
i /L and p̂1 is the value p

(k+1)
1

satisfying |p(k+1)
1 − p

(k)
1 | < ϵ.

2. Step M for θ1: In the (k + 1)th iteration maximize laZ(p, θ1, θ2, ϕ;y,u
(k))

with respect to θ1, equivalently to maximize laZ(θ1, ϕ;y,u) as (3.3) con-

sidering u = u(k). Analytically, θ1
(k+1) =

∑
si∈Z(1 − u

(k)
i )yi/

∑
si∈Z(1 −

u
(k)
i )ni and θ̂1 is the quantity θ1

(k+1) satisfying |θ1(k+1) − θ1
(k)| < ϵ.

3. Step M for θ2: Similar to Step M for θ1 subtitute l
a
Z(θ1, ϕ;y,u) by laZ(θ2, ϕ;

y,u). Then θ2
(k+1) =

∑
si /∈Z(1− u

(k)
i )yi/

∑
si /∈Z(1− u

(k)
i )ni and θ̂2 is the

quantity θ2
(k+1) satisfying |θ2(k+1) − θ2

(k)| < ϵ.

4. Step M for ϕ: In the (k + 1)th iteration maximize laZ(θ
(k+1)
1 , ϕ;y,u) +
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laZ(θ
(k+1)
2 , ϕ;y,u) with respect to ϕ considering u = u(k). Analytically,

ϕ
(k+1)
1 =

L∑
i=1

(1− u
(k)
i )

2

{ ∑
si∈Z

(1−u
(k)
i )yi log(θi/θ

(k+1)
1 )+

∑
si /∈Z

(1−u
(k)
i )yi log(θi/θ

(k+1)
2 )

} ,

where θi = yi/ni and ϕ̂1 = min{1, ϕ(k+1)
1 } with ϕ

(k+1)
1 satisfying |ϕ(k+1)

1 −
ϕ1

(k)| < ϵ.

The maximization of la0(p, θ, ϕ;y,u) is processed similarly to the maximiza-

tion of laZ(p, θ1, θ2, ϕ;y,u
(k)) with the following modification. At step E, under

H0, use

uki =


(
1+exp{− log(

p
(k)
0

1−p(k)0

)−ϕ
(k)
0 θ

(k)
0 ni +

1
2 log ϕ

(k)
0 }
)−1

if yi=0, i=1, . . . , L,

0 if yi > 0.

Now maximize la0(p, θ, ϕ;y,u
(k)) with respect to the parameters, obtaining

at the (k + 1)th iteration,

p
(k+1)
0 =

∑L
i=1 u

(k)
i

L
, θ

(k+1)
0 =

∑L
i=1(1− u

(k)
i )yi∑L

i=1(1− u
(k)
i )ni

,

ϕ
(k+1)
0 =

∑L
i=1(1− u

(k)
i )

2
{∑L

i=1(1− u
(k)
i )yi log(θi/θ

k+1
0 )

} .
After the convergence of the algorithm, denote the estimates via the EM algo-

rithm by (p̂1, θ̂1, θ̂2, ϕ̂1), (p̂0, θ̂0, ϕ̂0) and compute (Λ̂Z , Λ̂) given in (3.1). Now,

using Λ̂, the spatial cluster may be identified under an excess of zeroes and

overdispersion.

3.2. Fast Double Bootstrap-EM for the p-value computation

As the distribution of Λ̂ is not available analytically, the statistic p-value

is computed using the Fast Double Bootstrap Test (Davidson and MacKinnon

(2001)), jointly with the application of the EM algorithm for each new dataset

generated under the null hypothesis. The Fast Double Bootstrap procedure is

necessary in this situation because the parameters of the Λ̂ distribution are un-

known under the null hypothesis.

Under H0, Yi is a Bernoulli(p)-DP(θni, ϕ) mixture. By Efron (1986),

Xi ∼ P(θni × ϕ) =⇒
(
Xi

ϕ

)
∼̇DP(θni, ϕ).
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Given (p0, θ0, ϕ0), Yi is generated from the ZIDP(niθ0, ϕ0, p0) model as fol-

lows.

• Algorithm ZIDP(niθ0, ϕ0, p0)

1. Generate xi ∼ P(θ0ni × ϕ0) and vi ∼ Uniform(0, 1).

2. If vi ≤ p0 let yi = 0. Else yi = xi/ϕ0.

The p-value is computed as follows.

• Fast Double Bootstrap-EM algorithm for Λ̂.

1. Based on data y = (y1, . . . , yL), use the EM algorithm and compute

(p̂0, θ̂0, ϕ̂0). Derive the observed value Λ̂ and denote it by λ̂.

2. Generate y∗
b = (y∗1,b, . . . , y

∗
L,b) using the EM-algorithm ZIDP with (p0, θ0,

ϕ0) substituted by (p̂0, θ̂0, ϕ̂0).

3. Based on generated data y∗
b , use the EM algorithm and compute the

pseudo-estimators (p̂∗0,b, θ̂
∗
0,b, ϕ̂

∗
0,b) for (p0, θ0, ϕ0). Derive the pseudo-value

of Λ̂∗
b and denote it by λ̂∗

b .

4. Repeat Steps 2 and 3 for b = 1, . . . , B, compute the usual p-value for Λ̂ as

p∗value $ p∗value(Λ̂) =

B+1∑
b=1

I(λ̂ ≥ λ̂∗
b)

(B + 1)
, with λ̂∗

B+1 = λ̂.

5. Generate y∗∗
b = (y∗∗1,b, . . . , y

∗∗
L,b) using the ZIDP algorithm with (p0, θ0, ϕ0)

substituted by (p̂∗0,b, θ̂
∗
0,b, ϕ̂

∗
0,b). Using Steps 3 and 4, derive Λ̂∗∗

b and denote

it by q∗∗1−p∗value
, the 1− p∗value-quantile of the empirical distribution of Λ̂∗∗

b .

This quantile is the solution of the equation

1

B

B∑
b=1

I(Λ̂∗∗
b > q∗∗1−p∗value

) = p∗value.

6. Compute the fast double bootstrap p− value for Λ̂ by

p∗∗value $ p∗∗value(Λ̂) =
1

B

B∑
b=1

I(Λ̂∗
b > q∗∗1−p∗value

).

The convergence of the ZIDP EM algorithm is studied through simulations,

and a proof of the convergence is also given (see the Supplementary Materials

Section). A program implementing the ZIOP algorithm was written in C lan-

guage, and can be requested from the corresponding author.

4. A Simulation Study

The zero inflation and overdispersion effects on type I error probability and

power of detection for the four Poisson based Spatial Scan Statistic models are
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evaluated in this section, namely the Poisson (ScanP), Zero Inflated Poisson

(ScanZIP), Overdispersed Poisson (ScanOP), and Zero Inflated Overdispersed

Poisson (ScanZIOP). The ScanZIOP is represented by the ZIDP model and

the ScanOP is obtained from the ZIDP model by using p = 0.

The study region is the Amazonas state in Brazil with L = 62 municipalities

(Figure 1). The populations at risk consist of children under 15 years living in

2010. Alternative hypotheses models with artificial clusters were simulated to

evaluate the power of detection, and null hypothesis model maps were simulated

to evaluate the type I error. For each model, 1,000 Monte Carlo replications

were generated. An artificial circularly shaped (Kulldorff (1999)) spatial cluster

Z = {Anori, Coari, Codajás, Tefé, Tapauá} is located in the central part of the

study region (Figure 1(D)).

Under null hypothesis, µi = niλ0, where λ0 = 0.001 is a global rate reference

for the disease; under the alternative model, µi = niλ0(1 + θ) for every si ∈ Z

and µi = niλ0 otherwise, where θ > 0 indicates the cluster intensity. Note that

θ = 0 under the null model.

The simulation procedure was given by

• (1) Generate 1,000 Monte Carlo replications under H0, with data gener-

ated by P(niλ0) and estimate the upper 5% quantile for each one of the

four empirical distributions of the methods ScanP, ScanZIP, ScanOP,

and ScanZIOP.

• (2) Generate 1,000 Monte Carlo replications under the null (θ = 0) and alter-

native (θ = {0.5, 1.0, 2.0}) models with overdispersion 1/ϕ = {1, 1.5, 2.0, 3.0},
zero inflation p = {0, 0.1, 0.2, 0.3}; estimate empirically the type I error and

power of detection using the critical value given by the previously obtained

upper 5% quantile.

Let the detected most likely cluster Ẑ(q) obtained in the qth simulation be

the estimator of the artificial cluster Z (#{A} indicates the cardinality of the

set A).

• The precision for the cluster detection was evaluated by the following mea-

sures:

- Sensitivity-(SS)= the average ratio of the number of locations correctly

detected by the number of locations belonging to the artificial cluster:

SS =
1

1, 000

1,000∑
q=1

(
#{Ẑ(q) ∩ Z}

#Z

)
,

- Positive Predicted Value-(PPV)= the average ratio of the number of lo-

cations correctly detected by the number of locations belonging to the

detected cluster:
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PPV =
1

1, 000

1,000∑
q=1

(
#{Ẑ(q) ∩ Z}
#{Ẑ(q)}

)
,

The measures SS and PPV evaluate the performance of the methods according

to their ability to locate the cluster, when it exists.

The simulation results are summarized on Tables 2, 3 and 4 in the Supple-

mentary Materials Section.

In the absence of zero inflation (p = 0) and overdispersion (ϕ = 1), type I er-

ror probability is adequate for all four methods (see Table 2 in the Supplementary

Materials Section). With zero inflation (p > 0) but no overdispersion (ϕ = 1),

the type I error probability for the ScanZIP and ScanZIOP stay below 5%,

whereas the corresponding values for ScanP and ScanOP are elevated, showing

their inefficiency in this situation. In the absence of zero inflation (p = 0) and in

the presence of overdispersion (1/ϕ > 1), the ScanOP and ScanZIOP attain

the lowest type I error probability; those values are somewhat larger than 5% due

to the fact that their null hypothesis critical values 5% quantiles were obtained

under the assumption that the true model is Poisson. However, these probabili-

ties decrease when the overdispersion increases. The ScanP and ScanZIP attain

large type I error probability values, making both of them inadequate for this

scenario. When zero inflation and overdispersion occur simultaneously (p > 0

and 1/ϕ > 1), the three first methods, ScanP, ScanOP and ScanZIP, exhibit

large values of type I error probability; only the ScanZIOP method presents an

adequate performance.

According to Table 3 of the Supplementary Materials Section, the power of

detection is greater in the presence of overdispersion and zero inflation for the

ScanP and ScanZIP, as expected, as these methods attained high values of

probability of type I error. The only reliable power estimate in this scenario

is the one for the ScanZIOP. In the simulations, it was also observed that

ScanZIOP’s power increases rapidly with small increases in cluster cases inten-

sity (θ > 0). When the cluster intensity and zero inflation remain fixed, power

decreases. The same effect is observed when the cluster intensity and overdis-

persion remain fixed. This is evidence that the ScanZIOP is better suited to

detect spatial clusters for small values of zero inflation and overdispersion.

From the results in Table 4 of the Supplementary Materials Section, SS and

PPV are low for the ScanOP under zero inflation and overdispersion but in-

crease as the cluster intensity increases. The ScanP attains low PPV values

and sensitivity decreases when the cluster intensity increases, an indication that

the ScanP tends to detect larger clusters than the true cluster. The methods

ScanZIP and ScanZIOP behave similarly in terms of precision: the SS and
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PPV measures increase when the cluster intensity increases. When cluster in-

tensity is small (θ = 0.5) the ScanZIP has more precision than the ScanZIOP.

However, as the cluster intensity increases, the differences are negligible.

The artificial cluster Z1 = {Anori, Coari, Codajás, Tefé, Tapauá} of Figure

1(D) is located in the central part of the map, including about 8% of the total

population. On the other hand, the small population artificial cluster Z2 =

{Fonte Boa, Japurá Jutáı Maraã Tonantins} to the west contains only 3.5% of

the total population. The power of detection of ScanZIOP was compared for

those two population clusters. The results for those alternative model sets, with

1,000 simulations each, are presented in Tables 5 and 6 of the Supplementary

Materials Section. The power is almost the same, except for θ = 0.5, when there

is a slight reduction of power for Z2, compared to the Z1 cluster.

5. Application: Hanseniasis Clusters

This study uses data for new Hanseniasis cases in children under 15 years old

in the Amazonas state, Brazil, from 2008 to 2010 for each of their 62 municipali-

ties. The dataset was divided into two periods: 2008/2009 (207 new cases in two

years, 0.0000831 cases per child per year) and 2010 (190 new cases, 0.0001525

cases per child per year), see Figure 1 (A and B). Hanseniasis is an endemic

contageous disease related to extreme poverty. In the 2008/2009 period, 20 mu-

nicipalities (32%) registered zero new cases, compared with 30 municipalities

(48%) that registered zero new cases in 2010 alone. In the 2008/2009 period, the

average of the 62 municipalities’ rates of new cases for 10,000 persons was 2.944,

with variance equal to 6.776 (in the two years period). In the 2010 period, the

corresponding mean and variance values were respectively 2.706 and 7.421 in the

one year period. Figure 2 A and B displays the rates for the 62 municipalities.

As the variance is substantially greater than the mean for those two scenarios,

the ZIDP model seems quite plausible.

In this application, the Circular Scan employs the collection of circular clus-

ters with maximum size S = 15 (25% of the municipalities), for the four models

of Section 3: ScanP, ScanZIP, ScanOP and ScanZIOP.

The results are shown in Table 1.

In the 2008/2009 period, ScanZIOP and ScanOP did not detect significant

clusters (p-value=0.114 and 0.112, respectively). The estimated overdispersion

by ScanZIOP was 1/ϕ̂0 = 2.325, the zero inflation was below 1% (p̂0 = 0.009),

and the cases rate was 1.67 per 10,000 persons (θ̂0 = 0.000167). However,

ScanZIP and ScanP detected a significant cluster (both with p-value=0.001).

The zero inflation estimated by ScanZIP was p̂1 = 0.013, with estimated rates

inside and outside the cluster given by θ̂1 = 0.000427, and θ̂2 = 0.000149, respec-

tively (the estimated relative risk was 2.866). Taking into account that ScanZIP
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Figure 1. Spatial distribution of Hanseniasis cases: 2008/2009 (A) and 2010
(B). Detected Cluster in 2010 (C). Artificial cluster used in the simulations
(section 4) (D).

Table 1. Spatial Clusters of new cases of Hanseniasis for 2008/09 and 2010.

Year Scan log Λ̂ p-value (p̂0, ϕ̂0, 1000× θ̂0) (p̂1, ϕ̂1, 1000× θ̂1, 1000× θ̂2)

ScanP 12.510 0.001 (0.000, 1.000, 0.166) (0.000, 1.000, 0.427, 0.148)
2008/09 ScanZIP 11.074 0.001 (0.010, 1.000, 0.167) (0.013, 1.000, 0.427, 0.149)

ScanOP 5.886 0.122 (0.000, 0.428, 0.166) (0.000, 0.518, 0.427, 0.148)
ScanZIOP 5.882 0.114 (0.009, 0.430, 0.167) (0.013, 0.521, 0.427, 0.149)

ScanP 16.785 0.001 (0.000, 1.000, 0.152) (0.000, 1.000, 0.518, 0.134)
2010 ScanZIP 15.955 0.001 (0.224, 1.000, 0.171) (0.013, 1.000, 0.597, 0.154)

ScanOP 7.696 0.034 (0.000, 0.406, 0.152) (0.000, 0.520, 0.517, 0.134)
ScanZIOP 8.849 0.006 (0.224, 0.442, 0.171) (0.258, 0.689, 0.597, 0.154)

does not accommodate overdispersion in the positive counts, this cluster signifi-

cance value is doubtful.

In the 2010 period, the four methods detected the same cluster (Figure 1

(C)), with 30 new cases when the expected number was (1 − p̂1)nẐ θ̂1 = 25.67.

The zero inflation and overdispersion estimated by ScanZIOP was p̂1 = 0.258

and 1/ϕ̂1 = 1.471 respectively. The cluster is situated in a region well known for
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Figure 2. New cases of Hanseniasis in the Brazilian Amazon, 2008/2009 (A)
and 2010 (B).

its high social vulnerability index.

6. Final Remarks

A modification of the Spatial Scan Statistics, the Zero Inflated Double Pois-
son Scan (ZIPD), is proposed to accommodate simultaneously an excess of ze-
roes and overdispersion. It might also be useful in disease surveillance, where
the excessive variation for positive counts is frequent.

Sometimes, when the usual scan statistic is used under the null hypothe-
sis of constant rate, a small p-value may result due to the high variability in
the number of cases among a reduced number of areas or, alternatively, a small
variability among many areas. This may cause in turn the existence of a false
positive cluster; this anomaly could be avoided by changing the usual Poisson
model by an overdispersed model. This kind of problem was evident in Section 4
(simulations) and Section 5 (applications). The simulations show that account-
ing for the presence of overdispersion and zero inflation in the ZIDP model
reduces substantially the probability of type I error, compared to the Poisson,
overdispersed Poisson, and zero inflated Poisson, shown here to be inadequate in
those scenarios. That means that when a cluster is not detected by the ZIDP,
and detected by the other methods, it should be carefully analyzed before being
recognized as a legitimate cluster.

In the presence of overdispersion for positive count values, the detection of
spatial clusters based on the zero-inflated model may be not the best option.
In this situation the ZIDP Spatial Scan is a more flexible approach, but not
the only one. The Binomial Negative (NB), Beta-Binomial (BB), and Gener-
alized Poisson (GP) can also treat overdispersion and, similarly to the ZIPD,
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it is possible to detect and evaluate spatial clusters based on the ScanZINB,

ScanZIBB and ScanZIGP models. The significance of clusters found using

those methods may be also assessed using the same strategy based on the Fast

Double Bootstrap employed in this paper.

Spatial correlations could also be modeled with the proposed approach.

These may be present due to the contagious nature of the disease, heteroge-

neous distribution of phenotypic traits, environmental causes, or to some latent

variables that are related to the disease but not included in the data collection or

in the model (Loh and Zhu (2007)). In fact, the objective of the cluster detection

process is to see whether the counts from different locations are spatially corre-

lated or not. The existence of a spatial cluster is an indication of the presence of

spatial correlation, it signals the presence of a subregion with anomalous counts

compared to the rest of the study region. Two approches can be used to tackle

this problem, depending on how easily one can identify the spatial correlation

factors.

Spatial correlation can be added to the model in order to include some known

specific feature related to the population. As example, female population age is

known to be strongly related to the occurrence of breast cancer, and a covariate

may be added to the model in order to take into account this feature: the usual

procedure is to stratify the population of each area by age and recompute the

spatial counts, thus reducing the case counts for locations with older than average

population. If eventually some breast cancer cluster is found in the modified

study region, then it is not due to the age effect (supposing that the stratification

was carefully done!). If the study region is not corrected for the age covariate,

a cluster may be found that is simply consequence of the concentration of older

people in some part of the study region. The ZIOP model allows the introduction

of covariates in a straightforward manner, similarly to the other models compared

in our work.

When the factors causing the spatial correlation cannot be easily identified,

the algorithm of Section 2.3 of (Loh and Zhu (2007)) is a good option. In this

case, the number of expected cases in the area i can be rewritten as

µi = exp(log(ni) + θiI{si∈Z} + vi),

where log(ni) is the populational adjustment, θi is the parameter measuring the

intensity of cases in the cluster Z compared to the exterior of Z, and vi is the

random effect used to capture the spatial dependence. The ZIOP model could

be adapted to use this modification without additional problems, similarly to the

other models compared in our work.
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