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Abstract: Clustered spatial point processes are popular models for spatial point

pattern data that contain clusters of events. For regression purposes, however, sta-

tistically rigorous methods for model selection appear to be lacking and are the

focus of this paper. Here, an unbiased estimating equation is considered for pa-

rameter estimation to simplify computation and in addition, a weighted estimating

equation is adopted to improve statistical efficiency. In particular, both regular-

ized unweighted and regularized weighted estimating equations are developed for

simultaneous variable selection and parameter estimation. Asymptotic properties

of the proposed method are established and finite sample properties are assessed in

a simulation study. For illustration, our method is applied to evaluate and quan-

tify the relationship between the locations of a tropical tree species and over 200

covariates in a forest plot on the Barro Colorado Island.

Key words and phrases: Ecological application, spatial interaction, spatial point

patterns, spatial statistics, variable selection, weighted estimating equations.

1. Introduction

Spatial point pattern data that contain clusters of events arise often in prac-

tice. For example, a particular tree species may grow in clusters within a forest

stand due to various species characteristics and environmental factors. Another

example is an infectious disease that may be contracted by susceptible individu-

als coming into contact with an infected individual, resulting in disease clusters

in space. Clustered spatial point processes with regression account for spatial

dependence and, in some situations, are more realistic than the inhomogeneous

Poisson point processes that assume statistical independence among events. In

many such studies, it is of interest to identify important factors underlying such

spatial point patterns as species distributions or disease patterns. Identifying too

few of the important factors can result in biased estimation of species or disease

incidence maps, and false selection of extraneous factors can result in higher esti-

mation variance. Statistically rigorous methods for selection of covariates appear

to be lacking and are investigated in this paper.

http://dx.doi.org/10.5705/ss.2013.208w
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A popular class of models for spatial point pattern data with clus-

ters are the Cox processes (or, doubly stochastic Poisson processes) (Møller

and Waagepetersen (2004)). These processes are Poisson point processes condi-

tional on intensity functions that are nonnegative random fields. For parameter

estimation and statistical inference, maximum likelihood estimation is possible

but requires Markov chain Monte Carlo (MCMC) methods to approximate the

likelihood function (Møller and Waagepetersen (2004)). Instead, an estimating

equation based on the inhomogeneous Poisson point process has been developed

by Waagepetersen (2007). Although this method is simpler and faster to im-

plement than maximum likelihood estimation for clustered spatial point process

models, the estimators are not as efficient. Thus, a weighted estimating equation

has been proposed to regain some of the lost efficiency (Guan and Shen (2010)).

Despite these methodological advances, it remains unclear how to perform model

selection and in particular variable selection that identifies an appropriate subset

of covariates in a clustered spatial point process with regression.

For spatial Poisson point processes, Thurman and Zhu (2014) developed pe-

nalized maximum likelihood estimation for variable selection. Here we extend

this regularization method to simultaneous variable selection and parameter es-

timation for clustered spatial point processes in general. The main idea is to

impose a penalty function on the objective functions associated with both un-

weighted and weighted estimating equations. While we focus our attention on an

adaptive Lasso penalty function (Tibshirani (1996); Zou (2006)), comparison is

made with the smoothly clipped absolute deviation (SCAD) (Fan and Li (2001))

and adaptive elastic net (Zou and Zhang (2009)) penalty functions. We establish

asymptotic properties of our proposed method as to consistency, sparsity, and a

central limit theorem.

The remainder of the paper is organized as follows. Section 2 defines spa-

tial point processes and gives two examples. Section 3 describes methods based

on estimating equations for the inference of these processes and develops a new

method for variable selection and parameter estimation using regularized es-

timating equations. Section 4 gives the asymptotic properties, and Section 5

investigates the finite-sample properties of the proposed method in a simulation

study. Section 6 illustrates the proposed method by a data example in ecology,

followed by conclusions and discussion in Section 7.

2. Model

Let (Ω,A, P ) denote a probability space andD ⊂ Rd denote a spatial domain

of interest. We consider the two-dimensional case d = 2. Let Y denote a mapping

from (Ω,A, P ) to ND, where ND denotes the set of locally finite configurations

that are realizations y ⊂ D such that y∩A is a finite set of spatial coordinates in
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D for every bounded Borel set A ⊂ D. Let N(A) = NY (A) = N(Y ∩A) denote

the random number of events of Y in A. Then the mapping Y is said to be a

spatial point process on D (Gaetan and Guyon (2010)).

First-order properties of a spatial point process indicate the spatial distribu-

tion of events in D. The moment measure of order one (or, intensity measure),

µY , is defined as µY (B) = E{NY (B)} = E
{∑

s∈Y I
(
s ∈ B

)}
, where B is a

bounded Borel set inD and I(·) in an indicator function. Often it is assumed that

there exists a first-order intensity function, λY (s), such that µY (B) is the integral

of λY over the set B with respect to the Lebesgue measure µY (B) =
∫
B λY (s)ds.

Essentially, µY (ds) = λY (s)ds can be interpreted as the probability that an event

occurs in an infinitesimal Borel set ds.

2.1. Poisson process

Let y1, . . . , yn denote the observed spatial point pattern data comprising a

set of n locations of events in D, and let µ(B) =
∫
B λ(s)ds denote the intensity

measure of the bounded Borel set B ⊂ D. A fundamental statistical model

for spatial point pattern data is the spatial Poisson point process (henceforth,

Poisson process), which is characterized by its intensity function λ(·). A formal

definition of the Poisson process is given in supplementary materials.

Let x(s) = (1, x1(s), . . . , xp(s))
T denote a (p + 1) × 1 covariate vector at

location s ∈ D. The intensity function λ(·) can be used to model the relationship

between locations of events and covariates x(·). One commonly-used model has

a log-linear specification λ(s;β) = exp
{
x(s)Tβ

}
,where β = (β0, β1, . . . , βp)

T is a

(p+ 1)× 1 regression coefficient vector.

2.2. Cox process

Let Λ = {Λ(s) : s ∈ D} denote a nonnegative random field so that, with

probability one,
∫
B Λ(s)ds < ∞ for all bounded B ⊂ D. If the conditional

distribution of X given Λ is a Poisson process on D with intensity function Λ,

then X is said to be a Cox process driven by Λ (Møller and Waagepetersen

(2004)). For an example of a type of Cox process, the Neyman-Scott process, see

the supplementary materials.

3. Statistical Inference

3.1. Estimating equations

The log-likelihood function, up to a constant, for the Poisson process is in

closed-form

ℓ(β) =

n∑
i=1

log λ(yi;β)−
∫
D
λ(s;β)ds. (3.1)
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Let u(β) denote the first-order derivative of ℓ(β) with respect to β. The maximum

likelihood estimate (MLE) of β is the solution to the estimating equation

u(β) =

n∑
i=1

x(yi)−
∫
D
x(s)λ(s;β)ds = 0. (3.2)

For the Cox process described in Section 2.2, Monte Carlo methods can

be applied for approximating the maximum likelihood estimates, but they are

computationally prohibitive and rarely used in practice. In contrast, estimating

equations provide a computationally simple and attractive alternative for esti-

mating parameters of a clustered point process. It can be shown that (3.2) based

on a Poisson process is an unbiased estimating equation for β in a Cox process

(Waagepetersen (2007)). Let β̃EE denote the solution to (3.2), referred to as the

estimating equation (EE) estimate for a general clustered spatial point process.

The EE approach to estimating β produces a less efficient estimate than the

MLE because information about the interaction of events is ignored. To regain

some of the lost efficiency, a weighted estimating equation

u(β,w) =
n∑

i=1

w(yi)x(yi)−
∫
D
w(s)x(s)λ(s;β)ds = 0 (3.3)

has been proposed (Guan and Shen (2010)), which corresponds to a weighted

quasi-log-likelihood function

ℓW(β) =
n∑

i=1

w(yi) log λ(yi;β)−
∫
D
w(s)λ(s;β)ds. (3.4)

Let β̃WEE denote the solution of (3.3), referred to as the weighted estimating

equation (WEE) estimate.

To solve for β in (3.2), a quadrature approximation of (3.1) is employed,

ℓ(β) ≈
n+M∑
i=1

vi

{
v−1
i ∆i log λ(si;β)− λ(si;β)

}
, (3.5)

where vi is a quadrature weight for point i, and ∆i indicates if the point is an event

or a dummy point. Because (3.5) is of the form of the log-likelihood for a weighted

Poisson generalized linear model, the EE estimate β̃EE can be computed using

standard software packages for generalized linear models (Berman and Turner

(1992)).

Similarly, to solve for β in (3.3), a quadrature approximation of (3.4) is

ℓW(β) ≈
n+M∑
i=1

wivi

{
v−1
i ∆i log λ(si;β)− λ(si;β)

}
, (3.6)
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where wi is the value of the weight function at point i. The similarity between

(3.5) and (3.6) allows us to compute β̃WEE using standard software packages for

generalized linear models as well.

We divide the domain into a grid of rectangular pixels, and dummy points

are centroids of these pixels. Then we set the quadrature weights vi = a/ni,

where a is a common pixel area, and ni is the number of events and dummy

points in the same pixel as point i. Equations (3.5) and (3.6) become Riemann

sum approximations of the integrals in (3.1) and (3.4), so the accuracy of the

approximations depends on the pixel area a. For comparisons of the accuracy

of different quadrature approximations see Baddeley and Turner (2000) and, for

alternative approximations, see Rathbun (1996) and Waagepetersen (2008).

3.2. Regularized estimating equations

We define a regularized (or, penalized) quasi-log-likelihood function of β to

be

ℓP(β) = −ℓ(β) + n

p∑
j=1

pγj (|βj |), (3.7)

where ℓ(β) is the quasi-log-likelihood function given in (3.1) and γj is a tuning

parameter corresponding to βj for j = 1, . . . , p. Similarly, we define a penalized

weighted quasi-log-likelihood function of β to be

ℓPW(β) = −ℓW(β) + n

p∑
j=1

pγj (|βj |), (3.8)

where ℓW(β) is given in (3.4). For example, the penalty term pγj (|βj |) = γj |βj |
produces estimates that are possibly exactly zero, enabling variable selection

and estimation simultaneously. It is also in the form of an adaptive Lasso, as

the tuning parameters {γj} vary for different regression coefficients {βj} (Zou

(2006)). We call the values that minimize (3.7) and (3.8) penalized EE and

penalized WEE estimates of β, and denote them by β̂EE and β̂WEE, respectively.

To minimize ℓPW(β), we use a Laplace approximation of ℓW(β) in (3.4):

ℓ∗W(β) = (β−β̂(m−1))T
∂ℓW(β̂(m−1))

∂β
+
1

2
(β−β̂(m−1))T

∂2ℓW(β̂(m−1))

∂β∂βT
(β−β̂(m−1)),

where β̂(m−1) is the minimizer of ℓPW(β) at the previous (m − 1)th step, m =

1, 2, . . ., and the initial value is set to β̂(0) = β̃WEE. The intercept β0 is left

unpenalized, and we use the initial intercept estimate β̂
(0)
0 as β̂

(m−1)
0 for every m.

Next, the terms of ℓ∗W(β) are rearranged. Let

y∗ = (A−1)T
{
∂ℓW(β̂(m−1))

∂β
− ∂2ℓW(β̂(m−1))

∂β∂βT
β̂(m−1)

}
,
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X∗ = Adiag{γ−1
j }pj=1, and β∗ = diag{γj}pj=1β, where A is the Cholesky factor of

the negative Hessian of ℓW

−∂2ℓW(β̂(m−1))

∂β∂βT
= ATA.

Then ℓ∗W(β) can be rewritten as ℓ∗W(β∗) = −(1/2)(y∗ −X∗β∗)T (y∗ −X∗β∗) and

thus, in the case of adaptive Lasso penalization, the estimate can be obtained via

a least angle regression (LARS) algorithm (Efron et al. (2004)). Moreover, we let

γj = γlog(n)(n|β̃WEE
j |)−1 for j = 1, . . . , p, where γ is a common tuning parameter

(Zou (2006)). Alternative algorithms are available to obtain the estimates under

SCAD (Fan and Li (2001)) and adaptive elastic net (Zou and Zhang (2009))

penalizations.

Define a weighted quasi-Bayesian information criterion (WQBIC) in this con-

text by WQBIC(γ) = −2ℓW(β̂(γ))+e(γ) log(n), where e(γ) =
∑p

j=1 I{β̂j(γ) ̸= 0}
is the number of selected covariates with nonzero regression coefficient estimates.

We fix a path of γ ≥ 0 and select the tuning parameter γ and estimate β̂(m) that

minimize WQBIC(γ). We replace β̂(m−1) with β̂(m) for m = 1, 2, . . . in ℓ∗W(β)

and iterate this procedure until some convergence criterion is met. After each

iteration, w(s) is re-estimated, since the selected covariates could be different

from the previous iteration.

When data follow a Poisson process and the weights w(s) ≡ 1 for all s,

WQBIC is exactly the Bayesian information criterion (BIC) corresponding to the

log-likelihood function of a Poisson process. Zhang et al. (2010) gave conditions

under which generalized information criteria, such as WQBIC, consistently selects

the true model. These include conditions on the asymptotic behavior of the

penalty function and goodness-of-fit measure, which in our case is −2ℓW(β̂).

We have preliminary numerical evidence that WQBIC satisfies these conditions

under an appropriately chosen penalty function. However, further investigation

is needed that we discuss in Section 7.

The development and derivation above are for the WEE method. The EE

method may be viewed as a special case of the WEE method and thus the

estimation procedure can be applied with the weights w(s) ≡ 1. For further

computational details including estimation of the weight function and standard

errors, see the supplementary materials.

4. Asymptotic Properties

We adopt an increasing spatial domain framework (Guan and Loh (2007)).

Let X denote a two-dimensional spatial point process observed over a spatial

domain Dn with boundary ∂Dn, area |Dn|, and length of the boundary |∂Dn|.
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Let β0 =
(
(β0

1)
T , (β0

2)
T
)T

denote a p-dimensional vector of true coefficient

values, where β0
1 is the s-dimensional vector of nonzero coefficients and β0

2 = 0 is

(p− s)-dimensional, and x1 and x2 denote, respectively, the s and (p− s) vectors

of covariates. Let β(j) denote the jth component of the vector β. Write the

penalized WEE estimate as β̂ =
(
β̂T
1 , β̂

T
2

)T
. Let an = max{γj : j = 1, . . . , s} and

bn = min{γj : j = s+ 1, . . . , p}.

Theorem 1. Assume (A.1)−(A.5), given in the supplementary materials, hold

and let an = O(|Dn|−1/2).

(a) With probability tending to 1, there is a local maximizer β̂ of ℓPW (β) such

that ∥β̂ − β0∥2 = Op(|Dn|−1/2 + an).

(b) If, in addition, |Dn|1/2bn → ∞ as n → ∞, then P (β̂2 = 0) → 1.

(c) If, in addition, an = o(|Dn|−1/2), then

|Dn|1/2Σn(w, β
0
1)

−1/2(β̂1 − β0
1)

d−→ N
(
0, Is×s

)
,

where Σn(w, β
0
1) = |Dn|An(w, β

0
1)

−1{Bn(w, β
0
1)+Cn(w, β

0
1)}An(w, β

0
1)

−1 and

An(w, β
0
1) =

∫
Dn

w(s)x1(s)x1(s)
Tλ(s;β0

1)ds,

Bn(w, β
0
1) =

∫
Dn

w(s)2x1(s)x1(s)
Tλ(s;β0

1)ds,

Cn(w, β
0
1) =∫
Dn

w(s)x1(s)λ(s;β
0
1)

[ ∫
Dn

w(u)x1(u)
Tλ(u;β0

1){g(u− s)− 1}du
]
ds.

In Theorem 1, part (a) establishes the existence of the penalized WEE esti-

mate β̂ and consistency at the rate |Dn|1/2. Part (b) ensures the sparsity of β̂,

the estimate correctly sets β2 to zero with probability tending to 1 as |Dn| → ∞.

Part (c) establishes the asymptotic normality of β̂1 at rate |Dn|1/2. The proof of

Theorem 1 is given in the supplementary materials.

5. Simulation Study

5.1. Simulation set-up

We conducted a simulation study with a setup similar to a previous study by

Waagepetersen (2007). The spatial domain wasD = [0, 1,000]× [0, 500]. We cen-

tered and scaled the 201×101 pixel images of elevation (z1) and slope (z2), which

are contained in the bei data set of the spatstat library in R (R Development

Core Team (2011)), and used them as two covariates to generate point pattern
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data from a Thomas process, a type of Neyman-Scott process. See the supple-

mentary materials for more on the Thomas process. In addition, twenty 201×101

pixel images of covariates were generated as noise covariates with regression coef-

ficients zero. Each noise covariate (zj) was first generated as standard Gaussian

white noise but transformed, together with z1 and z2, to have multicollinear-

ity. We took x(s) = V T z(s), where z(s) = (z1(s), z2(s), z3(s), . . . , z22(s))
T ,

Σ = V TV , and (Σ)ij = (Σ)ji = 0.5|i−j| for i = 1, 2, . . . , 22, j = 1, . . . , 22, except

(Σ)12 = (Σ)21 = 0, to preserve the correlation between z1 and z2 from the data

set. Sample variograms indicated that x1 and x2 were spatially dependent which

appears to induce some spatial dependence in x3 but little in x4, . . . , x22. Two

values of the expected number of children events, µ = 400 and 1,600, were used

to represent relatively small and large spatial point patterns. The true intensity

function of the Thomas process was set to λ(s) = exp
{
β0 + β1x1(s) + β2x2(s)

}
,

where β1 = 2 represents a relatively large effect of elevation, β2 = 0.5 reflects a

relatively small effect of slope, and β0 was chosen so that µ was 400 or 1,600.

Three values of κ (κ = 5× 10−5, 1× 10−4, and 5× 10−4) were used for different

levels of spatial interactions while we let ω = 10. The three values of κ correspond

to 25, 50, and 250 expected number of parent events in D, respectively. For each

of the six combinations of κ and µ, 500 spatial point patterns were generated

from the corresponding Thomas process.

In each simulation scenario, the EE and WEE methods under the adaptive

Lasso (AL) penalty were applied, as described in Section 3.2. We focused on one

iteration and used β̂(1) as the final estimate. For comparison, we considered two

alternative penalty functions. For the SCAD penalty, we replaced the penalty

term in (3.7) and (3.8) with n
∑p

j=1 p
S
γ (|βj |), where

pSγ (β) = γ

{
I (β ≤ γ) +

(aγ − β)+
(a − 1 )γ

I (β > γ)

}
,

for β > 0, γ and a are the tuning parameters. We applied a one-step locally

linear approximation (LLA) of the SCAD penalty (Zou and Li (2008)) and set

a = 3.7 (Fan and Li (2001)). For the adaptive elastic net (AENET) penalty, the

penalty term in (3.7) and (3.8) was replaced with n
∑p

j=1 p
E
γj (βj) where

pEγj (βj) = γ
{1
2
(1− α)β2

j + αŵj |βj |
}
,

γ is a tuning parameter, ŵj is a data adaptive weight similar to adaptive Lasso,

and 0 ≤ α ≤ 1. For solving (3.7) and (3.8), the glmnet library in R was used.

Specifically, a decreasing sequence of γ was identified first, in which the starting

value γmax is the γ such that the entire vector (β̂1, . . . , β̂p)
T = 0. For each

value of γ, a quadratic approximation was formed to the negative log-likelihood
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evaluated at the current estimates. Then, a coordinate descent method was

applied to solve a penalized weighted least squares problem (Friedman, Hastie,

and Tibshirani (2010)). Finally, the WQBIC(γ) was minimized to obtain γ.

5.2. Simulation results

Table 1 presents the selection properties of the penalized EE and penalized

WEE methods under different penalty functions. For different values of µ and κ,

we report the proportion of times when the individual covariates, elevation x1,

and slope x2 were correctly kept in the selected model, and the average proportion

of times when the noise covariates x3 to x22 were correctly selected. Also given

is the proportion of times when the entire correct model (comprising only x1 and

x2) was correctly selected.

For the EE and WEE methods, under larger values of κ, which indicate

weaker spatial dependence, x1 and x2 are selected and x3 to x22 are eliminated

more frequently from the model. However, WEE tends to underfit models, leav-

ing out x2, which has a smaller regression coefficient, while EE tends to overfit

models, incorrectly selecting covariates among x3 to x22. As µ and thus the sam-

ple size n increases, WEE improves in selecting x2, and hence the entire model,

while EE continues to select covariates among x3 to x22, resulting in poorer se-

lection of the entire model. While the solution paths under the penalized EE and

WEE methods are comparable, the selected tuning parameter (γ̂) tends to be

smaller with EE, leading to an overselection by EE. We conjecture that overselec-

tion by EE is a way to compensate for initially ignoring the additional variation

due to spatial clustering of events. Among different penalties, for EE, the selec-

tion properties of AL and AENET are similar, but the SCAD penalty can have

quite poor selection properties when µ = 1, 600 due to selecting among x3 to x22.

For WEE, all three penalties perform similarly, with the AL correctly selecting

the entire model with somewhat higher frequencies than AENET or SCAD.

Tables 2 and 3 give properties of the estimates for β1 and β2, respectively, in

terms of bias, standard deviation (SD), and root mean squared error (RMSE),

based on the first 100 nonzero estimates. Under the oracle where the correct

model containing x1 and x2 is assumed to be known, WEE tends to have some-

what larger bias but smaller SD and RMSE than EE. When penalties are applied,

similar results are observed except for β1 under AL. These results reflect a bias-

variance trade-off and, for the most part, an overall improvement of WEE over

EE in terms of smaller RMSE. Further, as expected, with larger values of µ or

κ, the bias, SD, and RMSE values tend to be smaller due to larger sample size

or weaker spatial dependence. Among the different penalties, EE has similar

RMSE values. In contrast, for estimates of β1, WEE with AL penalization tends

to have the largest RMSE values, followed by SCAD, with AENET having the
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Table 1. For different values of the model parameters µ (×100) and κ
(×10−5), the proportion of times when the covariates x1 and x2 were se-
lected, the average proportion of times when the noise covariates x3 to
x22 (x3 ∼ x22) were not selected, and the proportion of times when the
entire correct model (x1, x2) was correctly selected, under adaptive Lasso
(AL), smoothly clipped absolute deviation (SCAD), and adaptive elastic
net (AENET) penalties, using either estimating equations (EE) or weighted
estimating equations (WEE).

AL SCAD AENET
µ κ x1 x2 x3 ∼ x22 x1, x2 x1 x2 x3 ∼ x22 x1, x2 x1 x2 x3 ∼ x22 x1, x2

EE
4 5 1.00 0.78 0.91 0.24 1.00 0.76 0.83 0.05 1.00 0.78 0.91 0.15

10 1.00 0.87 0.95 0.41 1.00 0.83 0.88 0.08 1.00 0.86 0.95 0.38
50 1.00 1.00 0.98 0.71 1.00 0.98 0.94 0.33 1.00 0.87 0.98 0.65

16 5 1.00 0.90 0.73 0.05 1.00 0.92 0.45 0.00 1.00 0.89 0.81 0.08
10 1.00 0.92 0.87 0.18 1.00 0.95 0.54 0.00 1.00 0.91 0.89 0.18
50 1.00 1.00 0.97 0.53 1.00 1.00 0.69 0.00 1.00 0.99 0.98 0.75

WEE
4 5 0.95 0.33 1.00 0.32 0.95 0.21 1.00 0.20 0.96 0.23 1.00 0.22

10 0.98 0.53 1.00 0.51 0.98 0.39 1.00 0.37 0.98 0.47 1.00 0.46
50 1.00 0.87 0.99 0.76 1.00 0.78 0.97 0.57 1.00 0.50 1.00 0.48

16 5 0.97 0.42 1.00 0.42 0.98 0.21 1.00 0.21 0.97 0.25 1.00 0.25
10 0.99 0.62 1.00 0.62 0.99 0.46 1.00 0.45 0.99 0.45 1.00 0.45
50 1.00 0.96 1.00 0.94 1.00 0.92 0.99 0.83 1.00 0.92 1.00 0.91

smallest RMSE values. For estimates of β2, the RMSE values are similar among

the different penalties.

The standard error estimation properties for estimates of β1 and β2 are

shown in Tables S1 and S2 in the supplementary materials, respectively. For the

penalized methods, in Table S1, x1 was always included in the model but x2 to

x22 were subject to penalty and, in Table S2, x2 was always included in the model

but x1 and x3 to x22 were penalized. The medians of the estimated standard

errors were compared with the nominal standard errors. The results suggest that

the standard error estimates under different penalties perform reasonably well for

each scenario.

The computation was carried out using R on a 64 bit Linux operating system

with 8 cores and 48-64 GB of RAM. The average computing time for different

penalties and different parameter values ranged from 0.4 to 6.7 seconds.

6. Data Example

In a 50 hectare region (D = 1,000m × 500m) of the Barro Colorado Island

(BCI) in central Panama, all free-standing woody stems at least 1 cm diameter at
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Table 2. For different values of the model parameters µ (×100) and κ
(×10−5), the bias, standard deviation (SD), and root mean squared error
(RMSE) values for estimates of β1, under adaptive Lasso (AL), smoothly
clipped absolute deviation (SCAD), adaptive elastic net (AENET) penal-
ties and the true model (Oracle), using either estimating equations (EE) or
weighted estimating equations (WEE).

AL SCAD AENET Oracle
µ κ Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

EE
4 5 -0.04 0.46 0.46 -0.09 0.48 0.48 -0.11 0.48 0.49 -0.09 0.51 0.52
10 0.01 0.43 0.43 -0.03 0.45 0.44 -0.06 0.39 0.40 0.00 0.44 0.43
50 0.00 0.18 0.18 -0.03 0.19 0.19 -0.10 0.37 0.38 -0.01 0.18 0.18

16 5 -0.03 0.45 0.45 -0.05 0.46 0.46 -0.08 0.44 0.45 -0.04 0.47 0.47
10 -0.06 0.36 0.37 -0.08 0.37 0.37 -0.10 0.36 0.37 -0.07 0.37 0.37
50 0.01 0.16 0.16 -0.01 0.16 0.16 -0.01 0.16 0.16 0.00 0.16 0.16

WEE
4 5 -0.36 0.50 0.61 -0.21 0.41 0.46 -0.21 0.38 0.43 -0.15 0.47 0.49
10 -0.24 0.37 0.44 -0.16 0.33 0.36 -0.15 0.30 0.33 -0.05 0.30 0.30
50 -0.09 0.27 0.28 -0.09 0.22 0.24 -0.13 0.30 0.32 -0.03 0.20 0.20

16 5 -0.32 0.38 0.50 -0.23 0.34 0.41 -0.20 0.30 0.36 -0.07 0.30 0.31
10 -0.21 0.29 0.36 -0.15 0.27 0.31 -0.12 0.24 0.27 -0.05 0.25 0.26
50 -0.10 0.19 0.21 -0.11 0.16 0.19 -0.06 0.14 0.15 -0.04 0.12 0.12

breast height were tagged, measured, mapped, and identified to the species level,

resulting in maps of over 300 different species of trees (Condit (1998); Hubbell

et al. (1999, 2005)). It is of interest to determine how the presence of a given

tree species is related to the presence of other tree species and various environ-

mental factors. Because the number of tree species and environmental factors

is large, the methodology developed here is well-suited to selecting covariates

and estimating regression coefficients in a computationally efficient manner. The

selected covariates could produce more precise mapped estimates of species oc-

currence and suggest important ecological relationships.

Here we focus the analysis on the locations of 4,026 B. pendula tree stems.

We model the intensity of B. pendula trees as a log-linear function of elevation,

slope, 13 soil characteristics, and the intensities of 214 other tree species. Figure 1

contains maps of the locations of the B. pendula tree stems, elevation, slope, and

concentration of nitrogen. B. pendula trees seem to appear in greater abundance

in areas of high elevation and steep slope, but do not appear to be closely related

to the level of soil nitrogen concentration.

We applied six approaches to variable selection and estimation to the B. pen-

dula data set. Each of the six approaches was a combination of either the EE or

WEE method under AL, SCAD, or AENET penalty. Out of the 229 covariates,
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Table 3. For different values of the model parameters µ (×100) and κ
(×10−5), the bias, standard deviation (SD), and root mean squared error
(RMSE) values for estimates of β2, under adaptive Lasso (AL), smoothly
clipped absolute deviation (SCAD), adaptive elastic net (AENET) penal-
ties and the true model (Oracle), using either estimating equations (EE) or
weighted estimating equations (WEE).

AL SCAD AENET Oracle
µ κ Bias SD RMSE Bias SD RMSE Bias SD RMSE Bias SD RMSE

EE
4 5 0.01 0.31 0.31 0.03 0.32 0.32 0.05 0.32 0.32 -0.11 0.40 0.41

10 0.02 0.19 0.19 -0.01 0.19 0.19 0.04 0.16 0.16 0.00 0.23 0.23
50 -0.08 0.13 0.15 -0.11 0.13 0.17 0.03 0.14 0.14 -0.03 0.13 0.13

16 5 0.02 0.30 0.30 0.02 0.33 0.32 0.04 0.29 0.29 -0.05 0.36 0.36
10 -0.01 0.23 0.23 -0.03 0.23 0.23 0.02 0.21 0.21 -0.12 0.28 0.30
50 -0.02 0.12 0.12 -0.04 0.12 0.12 -0.01 0.11 0.11 0.00 0.11 0.11

WEE
4 5 0.01 0.28 0.28 0.09 0.31 0.32 0.15 0.31 0.34 -0.07 0.30 0.31

10 -0.04 0.15 0.15 -0.01 0.15 0.15 0.10 0.12 0.15 0.00 0.18 0.18
50 -0.10 0.12 0.15 -0.13 0.12 0.18 0.07 0.12 0.14 -0.04 0.15 0.15

16 5 0.03 0.19 0.19 0.14 0.25 0.28 0.18 0.25 0.30 -0.05 0.28 0.28
10 -0.03 0.13 0.13 -0.01 0.14 0.14 0.10 0.11 0.15 -0.04 0.20 0.21
50 -0.09 0.09 0.13 -0.13 0.10 0.16 -0.01 0.08 0.08 -0.02 0.08 0.08

61 covariates were selected using the penalized EE method against only 6 using

the penalized WEE method under the AL penalty. In comparison, 86 and 97

out of 229 covariates were selected using penalized EE and 0 and 3 covariates

using penalized WEE under SCAD and AENET penalties. A total of 56 covari-

ates selected using penalized EE were common among the three penalties. The

penalized WEE method chose far fewer covariates than the EE method under

each penalty. To save space, Table 4 reports the parameter estimates and their

standard errors for the 7 covariates selected by penalized WEE method under

the AL, SCAD, and AENET penalties. Although the magnitudes of the penal-

ized EE and penalized WEE estimates can be quite different, the signs all agree

with each other. Also, the standard errors of the penalized WEE estimates are

consistently smaller than those of the penalized EE estimates, demonstrating the

gain of statistical efficiency achieved by WEE.

These results suggest that B. pendula trees are more likely to occur in areas

of higher elevation and slope. Further, higher levels of manganese (Mn) and

lower levels of phosphorus (P) and zinc (Zn) concentrations in soil are associated

with higher incidence of B. pendula trees. Two of the 214 tree species, O. whitei

and P. panamense, were selected and appear to be positively associated with the

occurrences of B. pendula trees. Figure 2 contains plots of these two covariates.
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Table 4. Estimates and standard errors (SE) of regression coefficients un-
der adaptive Lasso (AL), smoothly clipped absolute deviation (SCAD), and
adaptive elastic net (AENET), using either estimating equations (EE) or
weighted estimating equations (WEE).

AL SCAD AENET
Coefficient Estimate SE Estimate SE Estimate SE

EE

Intercept -11.60 3.69 -11.06 3.63 -10.51 3.48
Elevation 0.05 0.02 0.04 0.02 0.04 0.02
Slope 4.56 2.89 4.24 2.81 3.69 2.68
Mn 0.0011 0.0012 0.0012 0.0012 0.0011 0.0011
P -0.34 0.13 -0.31 0.13 -0.28 0.12
Zn -0.11 0.11 -0.07 0.11 -0.07 0.10
O. whitei 4.25 7.21 4.66 6.86 4.00 6.68
P. panamense 5.91 5.66 5.59 5.55 4.87 5.27

WEE

Intercept -12.94 2.10 -5.51 0.43 -5.32 0.30
Elevation 0.05 0.01 0.00 – 0.00 –
Slope 8.83 1.96 0.00 – 2.40 1.83
Mn 0.0009 0.0007 0.00 – 0.00 –
P -0.33 0.08 0.00 – -0.14 0.07
Zn -0.07 0.04 0.00 – 0.00 –
O. whitei 0.00 – 0.00 – 8.24 6.07
P. panamense 1.31 4.28 0.00 – 0.00 –

Notice that the locations of O. whitei and P. panamense trees coincide with

the locations of B. pendula trees, especially in the far right and far left regions

of the domain, respectively. Figure S1 in the supplementary materials contains

plots of the log intensity functions for each of the six approaches. The intensity

function using the penalized WEE method is smoother than that using EE,

possibly because many of the 214 tree species were selected using the penalized

EE method, and these covariates can be highly spatially variable.

7. Conclusions and Discussion

We have developed a regularized method to perform variable selection and

parameter estimation for spatial point process models with clusters using pe-

nalized unweighted and weighted estimating equations. The simulation results

indicated that, as the number of events increased, the selection and estimation

properties of the penalized WEE method tended to improve; the estimation prop-

erties of the penalized EE method tended to improve as well, but the selection

properties weakened for larger spatial point patterns. In addition, a theoretical

result showed that the proposed methods produce estimates that are consistent,

sparse, and asymptotically normal. An application in forest ecology demon-

strated that, for over 200 covariates, our method can be applied to perform vari-
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Figure 1. Map of locations of B. pendula stems (upper left), elevation (up-
per right), slope (lower left), and soil nitrogen concentration (lower right).
Darker colors indicate larger values.

Figure 2. Maps of locations of O. whitei (left) and P. panamense (right)
stems.

able selection and estimate regression coefficients in a computationally efficient

manner.

The simulation study in Section 5 provided evidence that the penalized WEE

method, compared to the penalized EE method, has superior selection properties

and among the nonzero estimates, has slightly larger biases but smaller variances

with an overall improved estimation. Further, when applying the penalized EE

method to large spatial point patterns, we suspect that covariates were overse-

lected in the forest ecology example. In contrast, the penalized WEE method

tends to downweigh areas with many events when interactions are strong, so

covariates unrelated to the response tended to be correctly ignored.
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The theoretical results in Section 4 have been established under increasing

domain asymptotics, building upon results established for unpenalized EE (Guan

and Loh (2007)) and unpenalized WEE estimation (Guan and Shen (2010)).

While Waagepetersen (2007) considered infill asymptotics for unpenalized EE

estimation, the class of processes is more restrictive, but it would be interesting

to investigate the theoretical properties of penalized EE and WEE under infill

asymptotics. Further, the WQBIC measure used to select the tuning parameter

is a special case of the generalized information criterion (Zhang et al. (2010)).

We have preliminary numerical evidence that the regularity conditions necessary

for selection consistency are satisfied, but further investigation is needed. We

leave this for future work.
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