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Abstract: We consider variable selection for high-dimensional multivariate regres-

sion using penalized likelihoods when the number of outcomes and the number of

covariates might be large. To account for within-subject correlation, we consider

variable selection when a working precision matrix is used and when the precision

matrix is jointly estimated using a two-stage procedure. We show that under suit-

able regularity conditions, penalized regression coefficient estimators are consistent

for model selection for an arbitrary working precision matrix, and have the oracle

properties and are efficient when the true precision matrix is used or when it is

consistently estimated using sparse regression. We develop an efficient computa-

tion procedure for estimating regression coefficients using the coordinate descent

algorithm in conjunction with sparse precision matrix estimation using the graphi-

cal LASSO (GLASSO) algorithm. We develop the Bayesian Information Criterion

(BIC) for estimating the tuning parameter and show that BIC is consistent for

model selection. We evaluate finite sample performance for the proposed method

using simulation studies and illustrate its application using the type II diabetes

gene expression pathway data.

Key words and phrases: BIC, consistency, correlation, efficiency, model selection,

multiple outcomes, oracle estimator.

1. Introduction

Correlated multivariate responses are often observed in health science stud-

ies where the number of responses per subject may be large and correlated, and

numerous covariates may be observed for each subject. For instance, in genetic

pathway studies, one is often interested in associating gene expressions in a ge-

netic pathway to such clinical covariates as exposure, treatment, and individual

characteristics. A pathway may have tens and hundreds of genes and only a

small number of gene expressions are likely to be associated with exposures. A

question of particular interest is to identify a subset of genes that are associated

with exposures while accounting for the fact that the gene expressions with the

same pathway are likely to be correlated and the number of genes is large relative

to the sample size. In this paper, we consider the problem of variables selection

in the presence of multivariate outcomes. We allow the numbers of outcomes and

covariates to be large and the outcomes to be correlated.
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There is a vast literature on variable selection for independent data with

methods often based on penalized likelihoods. Examples include LASSO (Tib-

shirani (1996)), SCAD (Fan and Li (2001)), adaptive LASSO (Zou (2006)), SELO

(Dicker, Huang, and Lin (2013)) and MC+ (Zhang (2010)). A desirable prop-

erty for variable selection is the oracle property (Fan and Li (2001)). It is known

that LASSO is often not consistent for variable selection, while SCAD, Adaptive

LASSO, SELO and MC+ all enjoy the oracle property. These methods have

been extended to the situations where the number of independent variables in-

creases with sample size (Fan and Peng (2004)). Tuning parameter selection is

important for variable selection. BIC has been proposed for selecting the tuning

parameter and has been shown to be consistent for variable selection (Wang, Li,

and Leng (2009); Dicker, Huang, and Lin (2013)).

Compared to independent data, a challenge in variable selection for multi-

variate outcomes is that multiple outcomes of each subject are generally corre-

lated. If outcomes have the same unknown mean, sparse precision matrix (in-

verse covariance matrix) estimation has been a fertile research area. For instance,

Schäfer and Strimmer (2005) proposed shrinkage estimators, while Meinshausen

and Buhlmann (2006) and Yuan and Lin (2007) proposed Lasso penalized esti-

mators for the covariance or precision matrix. Lam and Fan (2009) established

asymptotic theory for inverse covariance estimation when the outcomes have

mean zero. In general, this work dealt with mean zero outcome variables, and

did not consider the effect of diverging number of mean parameters on the esti-

mation of the precision matrix.

Limited research has been done on variable selection for regression coeffi-

cients for multiple outcomes. Several authors have proposed methods for vari-

able selection under the assumption that a covariate either affects all or none

of the outcomes predictors (Brown, Frean, and Vannucci (1999); Turlach, Ven-

ables, and Wright (2005); Peng et al. (2010)). These authors implicitly assumed

working independence among outcomes by ignoring between-outcome correlation

in their procedure, and did not present large sample properties of the resulting

estimators. Rothman et al. (2010) proposed an iterative algorithm for variable

selection and estimation in high-dimensional multivariate regression that alter-

nately estimates the inverse covariance matrix and regression parameters under

the ℓ1 penalty. Asymptotic properties of these estimators were not provided.

We develop variable selection and estimation procedures for regression coef-

ficients in a multivariate regression model when the number of outcomes and the

number of regression coefficients are likely to be large. We first propose variable

selection for a given working precision matrix, that allows the within-subject cor-

relation to be misspecified. We then propose a “two-stage” estimation procedure



VARIABLE SELECTION FOR MULTIVARIATE REGRESSION 1635

to jointly estimate regression coefficients and the precision matrix using penal-

ized likelihood methods, that results in efficiency gains in regression coefficient

estimators.

We focus on variable selection for regression coefficients in multivariate re-

gression while most existing literature has focused on covariance estimation. Sec-

ond, unlike Rothman et al. (2010) who primarily focused on the LASSO penalty

for variable selection of regression coefficients, we can accommodate a wide range

of concave penalty functions. We show that our regression parameter estimator

is consistent for an arbitrary working precision matrix, has the oracle property,

if an appropriate penalty is used, when the true precision matrix is used or is

consistently estimated, and that the number of parameters might diverge to ∞.

We propose a BIC criterion for tuning parameter selection in the multivariate

penalized regression problem, and show that it is consistent for selecting the true

regression model even if the number of parameters diverges. Our “two-stage” al-

gorithm is computationally more efficient than the MRCE algorithm introduced

in Rothman et al. (2010).

The rest of the paper is organized as follows. We describe the model in Sec-

tion 2. In Section 3.1, we discuss sparse multivariate regression estimation using

an arbitrary working precision matrix. In Section 3.1.1, we propose a two-stage

joint estimation procedure for regression parameters and the precision matrix,

and a computationally efficient estimation algorithm. We study its properties

and show model selection consistency can be achieved using BIC. In Section 6,

we present simulation studies that evaluate the finite sample performance of the

proposed methods, compare the use of different penalties in penalized multivari-

ate regression, and demonstrate the performance of the BIC. In Section 7, we

apply the proposed method to the analysis of type II diabetes gene expression

data, and there is a discussion in Section 8.

2. The Model

Consider a multivariate regression model for the ith subject

yi = Xiβ + ϵi, i = 1, . . . , n, (2.1)

where yi and ϵi are m-dimensional vectors of outcomes and (unobserved) er-

rors, respectively, Xi = xT
i ⊗ Im is a m × p dimensional matrix of covariates,

where p = mp0, and xi is a p0 × 1 covariate vector. Let βok be a vector of

p0-dimensional regression parameters for the kth outcome, so (βT
01, . . . ,β

T
0m)T =

β = (β1, . . . , βp)
T is a p-dimensional vector of unknown regression parameters.

We assume that ϵ1, . . . , ϵn are iid, with E(ϵi) = 0 and Cov(ϵi) = Σm, for some

unknown m ×m covariance matrix Σm. The total number of subjects is n and



1636 TAMAR SOFER, LEE DICKER AND XIHONG LIN

the total number of observations is N = nm. We will take n → ∞. Our asymp-

totic framework will also allow m → ∞ and p0 → ∞. We first require in Section

4 that p grows more slowly than n, and then extend the asymptotic results to

p > n in Section 5. Since p changes with n, it is implicit that β may vary with

n as well.

Let A = {j; βj ̸= 0} be the subset of {1, . . . , p} corresponding to the

nonzero entries of β. We sometimes refer to A as the “true model.” Let

Y = (yT
1 , . . . ,y

T
n )

T ∈ RN , X = (XT
1 , . . . ,X

T
n )

T , and ϵ = (ϵT1 , . . . , ϵ
T
n )

T ∈ RN ,

then (2.1) may be rewritten as Y = Xβ + ϵ, where Y and ϵ are N × 1 vectors,

β is a p× 1 vector and X is a N × p matrix. Let Σ be the N ×N block diagonal

matrix whose i-th diagonal component is Σm (1 ≤ i ≤ n). We write the true

precision matrix Ωm = (ωij) = Σ−1
m and Ω = Σ−1.

If ϵi ∼ N(0,Σm), the joint log-likelihood for estimating β and Ωm is, apart

from a constant,

ℓ(β,Ωm) = ln |Ωm| − 1

n

N∑
i=1

(yi −Xiβ)
TΩm(yi −Xiβ)

= ln |Ωm| − tr
{
Σ̂m(β)Ωm

}
, (2.2)

where Σ̂m(β) = n−1
∑n

i=1(yi − Xiβ)(yi − Xiβ)
T . We do not need to assume

that the ϵi are normally distributed, but (2.2) is basic to our method.

3. Estimation Procedures for Variable Selection

In Section 3.1, we propose an estimation procedure for variable selection

given a working precision matrix that might be misspecified; in Section 3.1.1 we

introduce joint estimation of the regression parameters and the precision matrix;

in Section 3.1.2, we propose a two-stage joint estimation procedure.

3.1. Estimation of regression parameters using a working precision

matrix

Let

Q(β|Λm) =
1

n
(Y −Xβ)TΛ(Y −Xβ) + 2

p∑
j=1

Pλ(|βj |), (3.1)

where Pλ : R+ → R+ is a concave and differentiable penalty function indexed

by a nonnegative tuning parameter λ ≥ 0 satisfying P
(1)
λ (0) = 0, with Λ a

working precision matrix that might misspecify the true precision matrix Ω.

This objective function might be referred to as a penalized general likelihood.

By transforming outcomes and covariates using Ỹ = Λ1/2Y and X̃ = Λ1/2X,

we can minimize Q(β|Λm) = n−1(Ỹ− X̃β)T (Ỹ− X̃β) + 2
∑p

j=1 Pλ(|βj |) by the

penalized likelihood methods for independent data.
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Several penalty functions have been proposed for variable selection and es-

timation for independent data. Examples are as follows:

(P1) The L1 penalty, Pλ(|θ|) = λ|θ|, also known as the Lasso (Tibshirani (1996)).

(P2) The Adaptive Lasso, Pλ(|θ|) = λw−1|θ| for some data-dependent weight w

(Zou (2006)).

(P3) The SCAD penalty has Pλ(0) = 0 and the derivative

P ′
λ(|θ|) = λ

{
I(|θ| ≤ λ) +

(aλ− |θ|)+

(a− 1)λ
I(|θ| > λ)

}
,

where a > 0 is another tuning parameter often taken to be a = 3.7 (Fan

and Li (2001)).

(P4) The seamless-L0 (SELO) penalty

Pλ(θ) =
λ

log(2)
log

{ |θ|
|θ|+ τ

+ 1
}
,

where τ > 0 is another tuning parameter often taken to be τ = 0.01 when

x’s are standardized (Dicker, Huang, and Lin (2013)).

All these penalties satisfy lim
|θ|→0

P ′
λ(|θ|) > 0 provided λ > 0, a property that

ensures sparsity of the estimated parameters.

To estimate standard errors for the regression parameters, we used a quadratic

approximation of the penalty function (Fan and Li (2001)). Standard errors are

estimated only for the parameters that are estimated as non-zeros, and are set

to be zero if the estimates are zero. Let Â be a set of indices with estimated

non-zero parameters. Let βÂ be the parameter sub-vector and XÂ be the covari-

ate sub-matrix that corresponds to these indices. Given λ, one can show that

the estimated covariance matrix of β̂Â is given by the sandwich estimator (Liang

and Zeger (1986))

ĉov(β̂Â) =
{
XT

Â
ΛXÂ + nΣλ(β̂Â)

}−1 { n∑
i=1

XT
Â,i

ΛΣ̂iΛXÂ,i

}
×
{
XT

Â
ΛXÂ + nΣλ(β̂Â)

}−1
, (3.2)

where Σ̂i = Σ̂i(β̂Â) = (yi −XÂ,iβ̂Â)(yi −XÂ,iβ̂Â)
T and, for a set of indices K

of size k, Σλ(βK) = diag{P ′
λ(|βK,(1)|)/|βK,(1)|, . . . , P ′

λ(|βK,(k)|)/|βK,(k)|}.
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3.1.1. Joint estimation of regression coefficients and precision matrix

Results in Section 4.1 show that misspecification of the precision matrix leads
to less efficient estimators of regression coefficients. To improve the efficiency, we
propose to estimate β and Ω simultaneously. It is well known that although the
MLE of the error covariance matrix

S = Σ̂(β̂) =
1

n

n∑
i=1

(yi −Xiβ̂)(yi −Xiβ̂)
T

is consistent, it is not positive definite when the number of outcomes m is larger
than the number of observations, m > n, and even if m < n and the number of
parameters is large, the MLE is unstable (Schäfer and Strimmer (2005)). Likewise
the estimator of the precision matrix S−1, is unstable, if it exists. This motivates
regularized estimation of the precision matrix Ω as well as of β. Let Pγ : R+ →
R+ be a concave, differentiable penalty function, γ ≥ 0, Pγ(0) = 0. We jointly
estimate β and Ω by minimizing the objective function

Q(β,Ωm) = − ln |Ωm|+ tr
[
Σ̂m(β)Ωm

]
+ 2

p∑
j=1

Pλ(|βj |) + 2
∑

1≤i<j≤m

Pγ(|ωij |),

where P
(2)
γ (·) is a penalty for Ωm.

3.1.2. Two-stage joint estimation

Minimizing Q(β,Ω) simultaneously over β andΩ is computationally difficult
as the number of parameters is very large. As an alternative, consider an objective
function for estimation of Ω given β:

Q(Ω|β) = − ln |Ωm|+ tr
[
Σ̂m(β)Ωm

]
+ 2

∑
1≤i<j≤m

Pγ(|ωij |) (3.3)

to maximize (3.3) to obtain an estimator of Ω if the L1 penalty is used. We
propose a two-stage procedure for estimation of Ω by iteratively minimizing
Q(Ω|β̂) in (3.3) by setting β = β̂, and estimating β by minimizing Q(β|Ω̂) in
(3.1) by setting Λ = Ω̂.

Suppose the tuning parameters λ and γ are known. At the first stage, using

the results in Section 3.1, we estimate a consistent estimator β̂
(1)

by assuming
a working independent precision matrix; we then estimate Ω using the obtained

β̂
(1)

in minimization of Q(Ω|β̂) and call this estimator Ω̂
(1)

. At a second stage,

we improve efficiency of estimation of β using the consistently-estimated Ω̂
(1)

from stage 1 and call this estimator β̂. We further improve upon estimation
of Ω by using the efficient estimate of β̂. Hence, at the first stage consistent
estimators of β and Ω are calculated; at the second, their efficient counterparts
are obtained.
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The tuning parameters are not known and can be estimated e.g, using BIC

or data validation procedure (see Section 3.2). We propose a two-stage joint esti-

mation procedure that is computationally efficient and show that it has desirable

properties.

Stage 1. Set Ω̂
(0)

m = Im.

• Let β̂
(1)

= β̂
(1)

(λ̂) be a model selection consistent working indepen-

dence estimator of β, where the penalty satisfies the regularity con-

ditions in Section 3, and λ̂ is estimated by some selection criterion,

see Section 3.2.

• Set Ω̂
(1)

= Ω̂(γ̂) to be the sparse consistent estimator of Ω given β̂
(1)

by minimizing Q(Ω|β̂
(1)

), where the tuning parameter γ̂ = γ̂(λ̂) is

estimated using a selection criterion, see Section 3.2.

Stage 2. For each tuning parameter λ:

• Set β̂(λ) to be the minimizer of Q(β|Ω̂
(1)

), with Pλ(·) an oracle

penalty function.

• Set Ω̂(λ) = Ω̂{γ̂(λ)} to be the minimizer of Q{Ω|β̂(λ)} with Pγ(·),
where γ̂(λ) for given λ is selected using a selection criterion.

Choose “the best” estimator (β̂, Ω̂) = (β̂(λ̂), Ω̂(γ̂(λ̂))) by estimating λ

using a selection criterion, see Section 5.

The first stage provides simple consistent estimators of β and Ω, the second

stage calculates their efficient counterparts. The proposed “profile” tuning pa-

rameter estimation at the second stage mimics the profile likelihood idea and is

computationally efficient. For instance, when performing a double grid search,

one has to iteratively estimate both β and Ω for each combination of tuning

parameters (λ, γ). Here, not all combinations of tuning parameter values need

to be searched, and less iterations are required for each estimated combination

of the tuning parameter values.

We can use the GLASSO procedure (Friedman, Hastie, and Tibshirani (2008))

to minimize Q(Ω|β̂) if the L1 penalty is used. Tuning parameter selection is dis-

cussed in Section 3.2. Standard errors of β̂ can be estimated by a formula similar

to (3.2). Rothman et al. (2010). In Section 4.2, we show that the two-stage pro-

cedure produces the oracle estimators of (β,Ω).

3.2. Tuning parameter selection

We propose BIC criteria for selecting the tuning parameter when a working

(possibly misspecified) precision matrix is used, or when β and Ω are jointly

estimated.
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Denote by β̂(λ) the estimated regression coefficient given the tuning param-

eter λ. Let ŝ be the number of estimated non-zero coefficients, |{j : β̂j ̸= 0}|,
and kn → ∞. When a known working precision matrix Λ is used for estimating

β as in Section 3.1., the BIC for choosing λ is

BIC{β̂(λ)} = tr
[
Σ̂m(β̂(λ))Λm

]
+ ŝ

kn
n
. (3.4)

This BIC is also appropriate when Λ is a consistent estimator of Ω, rather

than a fixed matrix. This is relevant, for instance, when one first estimates Ω

based on some consistent estimator of β and then uses the single initial estimator

of Ω, denoted by Λ, to estimate β without iterations or a two dimensional grid

search.

When β is jointly estimated with Ω for a given λ, Ω̂ = Ω̂{γ̂(λ)} is a function

of λ. This since, given β̂(λ), the tuning parameter γ is estimated as a function

of β̂(λ) by minimizing with respect to γ(Gao et al. (2009))

BIC(Ω̂m(γ)|λ) = − log |Ω̂m(γ)|+ tr
[
Σ̂m{β̂(λ)}Ω̂m(γ)

]
+ t̂

log(n)

n
, (3.5)

where Σ̂m is the sample covariance matrix and t̂ is the estimated number of non-

zero entries in the upper off-diagonal matrix of Ω̂m(γ). We denote the resulting

estimator as γ̂(λ) and Ω̂m(λ) = Ω̂m{γ̂(λ)}. Hence we define the BIC for λ when

Ω is estimated together with β as

BIC(β̂(λ)) = − log(|Ω̂m(λ)|) + tr

[
Ω̂m(λ)Σ̂(β̂(λ̂)

]
+ ŝ

kn
n
. (3.6)

The optimal tuning parameter λ is estimated by minimizing (3.6).

4. Asymptotic Results When p < n

We first study the properties of the penalized multivariate regression esti-

mator of β assuming an arbitrary working precision matrix, when the penalty

function satisfies the oracle properties (Fan and Peng (2004)). We then extend

the results to joint estimation of β and Ω. The proofs are given in the supple-

mentary material.

4.1. Estimation of regression coefficients when the working precision

matrix is given

We show that for an arbitrary working precision matrix, β̂ is consistent

and sparsistent, where “sparsistency” means that every true zero parameter is

estimated as zero with probability tending to 1, uniformly over all parameters

(Lam and Fan (2009)). We first provide results for the case where the number
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of parameters is smaller than the sample size, p/n → 0; in this case we also

show that β̂ is asymptotically normally distributed and is most efficient when

the working precision matrix Λ is correctly specified as Ωm. We first outline the

regularity conditions.

(C1) n → ∞, p = p0m may vary with n, and p/n → 0.

(C2) There exists a positive constant R such that

0 < 1/R <
λmin(Λm), λmin(Ωm), λmin(n

−1XTX)

λmax(Λm), λmax(Ωm), λmax(n
−1XTX)

< R < ∞,

where λmin(B) and λmax(B) are the smallest and largest eigenvalues of a

matrix B.

(C3) If ρ = ρn = min{|βj |; j ∈ A}. ρ/
√

p/n → ∞.

(C4) max
1≤i≤n

n−1||xix
T
i ||2 → 0, where ||xix

T
i ||2 = ||xi||22.

(C5) There exists a δ such that E(ϵ2+δ
ij ) < ∞, i = 1, . . . , n, j = 1, . . . ,m.

(C6) The function Pλ is concave on [0,∞) and differentiable on (0,∞), with

Pλ(0) = 0, Pλ(θ) = Pλ(−θ) and lim
θ→∞

Pλ(θ) ≤ 1/n.

(C7) If rn/
√

p/n → ∞, then P ′
λ(rn) = o(1/

√
np).

(C8) Let kn be such that p/k
(2+δ)/2
n → 0. If rn = O(

√
p/n), then

lim
n→∞

(
√

n/max(p, kn))P
′
λ(rn) → ∞.

Conditions (C1)−(C5) are related to the likelihood function. Conditions

(C6)−(C8) are related to the penalty function. The latter two conditions are

specified so that the behavior of the derivative of the penalty function that is

“close to zero” and “far from zero” in some rate sense behaves according to the

rate of convergence of the estimators. These requirements are guaranteed to hold

for the oracle penalty SELO, for instance, for some specifications of sequences of

the tuning parameters.

Specifically, condition (C1) bounds the rate of the number of covariates p.

Condition (C2) guarantees the stability of the estimator. Condition (C3) sets

a required bound on the smallest parameter in the model and permits model

selection consistency. Condition (C4) gives a very weak bound on the covariates.

Notice that it could equivalently be written as max1≤i≤n n
−1xT

i xi → 0 which

is not restrictive as covariates, for instance, are often naturally bounded. The

last requirement on the likelihood function, (C5) is important for asymptotic

normality of the regression coefficient estimators.

Under these conditions, the estimator β̂ of the regression parameters ob-

tained by minimizing Q(β|Λ) in (3.1) has the oracle properties.
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Theorem 1. Suppose (C1)−(C8) hold. More specifically, if β∗ is the true vector

of regression parameters, then the following hold.

(a) (Consistency) For every c > 0, there exists a positive constant M such that

lim inf
n→∞

P
[
There exists a local minimum β̂ of Q(β|Λm) such that

||β̂ − β∗|| < M

√
p

n

]
> 1− c.

Further, a global minimizer of Q(β|Λm) is
√
p/n consistent for β∗.

(b) (Sparsistency) For every fixed M > 0,

lim
n→∞

P
[{

β̂ is a local minimum of L(β) and

||β̂ − β∗|| ≤ M

√
p

n

}
∩
{
β̂Ac ̸= 0

}]
= 0.

(c) (Asymptotic normality) Let s = |A| = |{j;β∗
j ̸= 0}. Let q ∈ N be fixed and

B = Bn be a sequence of q × s matrices such that BBT → G, for some

q × q symmetric matrix G. There exists a sequence of local minima, β̂, of

Q(β|Λm) such that limn→∞ P ({j; β̂j ̸= 0} = A) = 1. And

BΥ̌
−1/2

(β̂A − β∗
A)

D→ N(0,G),

where Υ̌ = (XT
AΛXA)

−1XT
AΛΣΛXA(X

T
AΛXA)

−1. If Λ = Ω, then Υ =

(XT
AΩXA)

−1, and β̂ is the most efficient estimator.

4.2. Joint estimation of regression coefficients and precision matrix

We show consistency and sparsistency of the two-stage estimator (β̂, Ω̂). We

first state additional regularity conditions required for estimation of the precision

matrix. Here Pγ(·) is the penalty function used for the entries ωij , i ̸= j =

1, . . . ,m of the precision matrix. Let B = {(i, j)| ωij ̸= 0, i < j}, the set of true

non-zero entries in Ω, and t = |B|. Let τ = τn = min{|ωij | : (i, j) ∈ B}. Assume

that Pγ(·) is an oracle penalty function that satisfies condition (C6), and the

following.

(C9) pm,m2/n → 0.

(C10) sup
j,k

E(ϵijϵik)
2 < ∞.

(C11) If rn/
√

(m+ p)m/n → ∞, then mP ′
γ(rn) = O(1).

(C12) If rn = O(
√

(m+ p)m/n), then lim
n→∞

√
(m+ p)m/nP ′

γ(rn) = ∞.
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Conditions (C11) and (C12) are satisfied under a proper selection of the

sequence γn = γ. Let ||A||F be the Frobenius norm of the matrix A.

Lemma 1. Suppose that β̂ = β̂n is a sequence of estimators such that ||β̂−β∗|| =
OP (

√
p/n), and that (C1)−(C8) hold.

(a) If

Σ̂m =
1

n

n∑
i=1

(yi−Xiβ̂)(yi−Xiβ̂)
T , then ||Σ̂m−Σm||F = OP

{√
(m+ p)

m

n

}
.

(b) If (C9)−(C12) also hold. There exists a
√

(m+ p)m/n consistent local min-

imizer, Ω̂m of Q(Ωm|Σ̂m).

(c) Any local minimizer of Q(Ω|Σ̂) satisfies ||Ω̂−Ω||2F = OP ((m+ p)m/n), and

ω̂jj′ = 0 with probability 1 if ωjj′ = 0, for all (i, j) ∈ B.

Our results show that estimation of regression coefficients β increases the

rate of convergence of the precision matrix estimator compared to that in non-

regression settings (assuming mean 0 for y). We make a more robust assumption

on the error distribution, and thus the estimator Ω̂ requires a smaller rate on the

number of outcomes that could otherwise be achieved.

Theorem 2. Let (β̂, Ω̂) be the estimators of (β,Ω) obtained by the two-stage

procedure.

(i) If (C1)−(C8) hold, then β̂ is
√

p/n-consistent for β, β̂j = 0 with probability

tending to 1 for all j such that βj = 0, also, β̂ is asymptotically normally

distributed with parameters as in Theorem 1(c).

(ii) If also (C9)−(C12) hold, then Ω̂ is
√

(m+ p)m/n- consistent for Ω, and

ω̂ij = 0 with probability tending to 1 for all i, j such that ωij = 0. If B is a

sequence of matrices as in Theorem 1, then BΥ−1/2(β̂A − β∗
A)

D→ N(0,G),

where Υ = (XT
AΩXA)

−1.

4.3. Model selection consistency of the BIC criteria for regression

parameters

We show that, under regularity conditions, minimization of the BIC criterion

leads to selection of the true model for β asymptotically, either when Λm is an

arbitrary working precision matrix or when Λm = Ω̂m is jointly consistently

estimated. Let xn = Θ(yn) denote sequences satisfying xn/yn → ∞.
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Theorem 3.

(a) Suppose (C1)−(C8) hold, with βj ̸= 0 ⇔ |βj | = Θ(
√

max{kn, p}/n). Let β̂Â
be a minimizer of Q(β|Λ) for any tuning parameter value λ such that the

non-zero entries in β̂Â correspond to a model Â ̸= A. Then if Λ is a fixed

positive definite matrix,

P

{
sup

Â̸=A,Â∈A

(
BIC(β̂A)−BIC(β̂Â)

)
< 0

}
→ 1 as n → ∞.

(b) If Λm is a consistent estimator of Ωm, obtained using any
√

p/n-consistent

estimator of the mean Xβ̂ of Y.

P

{
sup

Â̸=A,Â∈A

(
BIC(β̂A)−BIC(β̂Â)

)
< 0

}
→ 1 as n → ∞.

This result shows that the BIC in (3.4) gives an estimator of β that is

consistent for model selection when an arbitrary working precision matrix Λ is

used, and in case Λ is a consistent estimator of the precision matrix.

5. Asymptotic Results When p > n

The use of a working covariance matrix leads to an estimator of the regression

coefficient vector that is consistent under suitable regularity conditions. We

modify the conditions for the rate that p/n → 0 to the following.

(C1′) With m < n < p, log(p)/n → 0. The true model size s = |A| satisfies
s < n and s/log(p) → 0.

(C2′) The eigenvalues of the positive definite matrices (1/n)XXT , (1/n)XT
AXA

satisfy

0 < R−1 < λmin

(
1

n
XT

AXA

)
, λmin

(
1

n
XXT

)
< λmax

(
1

n
XT

AXA

)
,

λmax

(
1

n
XXT

)
< R < ∞.

(C3′) min
j:βj ̸=0

βj√
log(p)/n

→ ∞.

(C7′) If lim
n

rn√
log(p)/n

= ∞, then n
√

log(p)/nP ′
λ(rn) = o(1).

(C8′) If lim
n

rn√
log(p)/n

≤ c, then P ′
λ(rn)/m → ∞.

(C10′) The errors are normal, ϵ ∼ N (0,Σ).

Theorem 4. Suppose that Λm is given, and that conditions (C1’)−(C8’) hold.

with the above modifications. Let β∗ be the true vector of regression parame-

ters.
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(a) (Consistency) For every c > 0, there exists a positive constant M such that

lim inf
n→∞

P

[
There exists a local minimum β̂ of Q(β|Λm)

such that ||β̂ − β∗|| < M

√
log(p)

n

]
> 1− c.

(b) (Sparsistency) For every fixed M > 0,

lim
n→∞

P

[{
β̂ is a local minimum of L(β) and

||β̂ − β∗|| ≤ M

√
log(p)

n

}
∩
{
β̂Ac ̸= 0

}]
= 0.

If the number of outcomes satisfies m2/n → 0, then these asymptotic proper-

ties readily extend to joint estimation of β and Ω. Let (C9)−(C12) be modified,

with p replaced by log(p), to get conditions (C9′)−(C12′).

Corollary 1. Let (β̂, Ω̂) be the estimators of (β,Ω) obtained by the two-stage

procedure.

(i) If (C1′)-(C8′) hold, then β̂ is a
√

log(p)/n-consistent for β, and β̂j = 0 with

probability tending to 1 for all j such that βj = 0.

(ii) If (C1′)−(C12′) hold, then Ω̂ is
√

(m+ log(p))m/n-consistent for Ω, and

ω̂ij = 0 with probability tending to 1 for all i, j such that ωij = 0.

6. Simulation Studies

We present simulation results as evaluation of the finite sample performance

of the proposed methods. Additional simulation results are provided in the sup-

plementary material.

6.1. Small-p simulations

We consider two types of correlation structures between outcomes: autore-

gressive (AR) and exchangeable (EX) outcome correlations. In both scenarios

the correlation parameter was ρy = 0.5, and the variance was 9. The precision

matrix is thus sparse in the AR case (tridiagonal) and dense in the EX case.

In each of the simulations we generated five outcomes and five covariates, so

p = 25. The parameter vector β25×1 was generated such that three entries were

non-zeros, and their value were 3, 2, and 1.5 (as in Tibshirani (1996)). The

predictor X was simulated by assuming its covariance to be autoregressive with

ρx = 0.7.
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For each scenario, n = 50, 100, and 200 simulations were run for each sample

size. We estimated β using the Lasso, adaptive Lasso, SCAD (with a = 3.7) and

SELO (with τ = 0.01). The precision matrix Ω was estimated using GLASSO

with the Lasso penalty. (The Lasso penalty does not satisfy (C11)−(C12).

Tuning parameters were selected either by BIC or by a validation data set.

For the latter, we minimized prediction error. Thus, for Xvalid and Yvalid inde-

pendent validation data sets, we estimated λ by minimizing

||Yvalid −Xvalidβ̂(λ)||2. (6.1)

Given β(λ), to select the tuning parameter γ for estimating Ω, we chose the γ

that maximizes the loglikelihood of the validation data as

log
∣∣∣Ω̂(γ)

∣∣∣− tr{Ω̂(γ)Σ̂valid}, (6.2)

where Ω̂(γ) = Σ̂
−1

(γ) is estimated from the training data, and Σ̂valid is the

sample covariance matrix estimated from the validation data set. The same val-

idation data set was used to calculate (6.1) and (6.2). For tuning parameters

selection using a validation data set, we used twice the number of observations

so that, for n = 100, we used 100 observations for parameters estimation and

additional 100 observations for validation. For the BIC, we used only 100 obser-

vations.

To evaluate the performance of variable selection procedures, we summarize

the results with averages of the following measures across the 200 simulations.

Model size: |{β̂ij ̸= 0}|; the true model size in all simulations was 3. True

model chosen: 1({i, j : β̂ij ̸= 0} = A). False positives: |{β̂ij ̸= 0, βij = 0}|.
False negatives: |{β̂ij = 0, βij ̸= 0}|. Model error (Yuan and Lin (2007)): tr[(β̂−
β)TΣXX(β̂−β)]. Prediction error: for Xnew,Ynew validation data sets, ||Ynew−
Xnewβ̂||2.

For comparison, we also used the MRCE algorithm (Rothman et al. (2008))

to estimate the regression parameters. This algorithm performs a double grid

search over the tuning parameter values for the regression parameters and the

precision matrix using the Lasso penalty. To select the best combination of tun-

ing parameters, cross validation was used. As such, the results of the MRCE

are most appropriately compared to the results of the two-stage algorithm im-

plemented with the Lasso penalty. Since cross validation was used for tuning

parameter selection with MRCE, the total sample size used in each simulation

was identical to that used with the two-stage algorithm with BIC, while the

two-stage algorithm with validation used twice the sample size.

The simulation results in Table 1 show that selecting the tuning parameter

by minimizing prediction error using independent validation data yields larger
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Table 1. Simulation results over 200 simulations using the two-stage joint
estimation procedure with the penalties LASSO, adaptive LASSO, SCAD,
and SELO. The precision matrix was estimated using GLASSO with the
LASSO penalty. Sample sizes were n = 50, 100. The number of outcomes
was five and the number of covariates was five. The correlation structures
considered were: AR(1) and exchangeable (EX). The tuning parameters
was selected either using a validation data set with the same sample size,
or by BIC. The average selected model size, percentage of times the true
model being selected, average number of false positives, average number of
false negatives, average model error and prediction error are reported. The
results are compared to the MRCE algorithm.

Simulation Method size
True false false

ME
pred

model pos neg err

AR cov, n=50

LASSO - BIC 5.31 0.14 2.39 0.08 1.70 9.53

Adaptive LASSO - BIC 3.88 0.32 1.26 0.38 1.59 9.60

SCAD - BIC 4.22 0.19 1.71 0.48 2.06 9.71

SELO - BIC 3.82 0.38 1.14 0.32 1.68 9.66

LASSO - validation 9.13 0.04 6.17 0.04 1.41 9.51

Adaptive Lasso - validation 6.46 0.08 3.69 0.24 1.39 9.56

SCAD - validation 5.18 0.10 2.54 0.36 1.52 9.62

SELO - validation 3.75 0.46 1.10 0.35 1.39 9.60

MRCE 8.35 0.01 5.41 0.06 1.71 11.59

AR cov, n=100

Lasso - BIC 4.88 0.19 1.88 0.00 0.88 9.42

Adaptive LASSO - BIC 3.66 0.48 0.80 0.14 0.63 9.45

SCAD - BIC 3.54 0.60 0.73 0.18 0.59 9.46

SELO - BIC 3.65 0.57 0.76 0.10 0.58 9.46

LASSO - validation 9.80 0.02 6.80 0.00 0.73 9.42

Adaptive LASSO - validation 6.45 0.14 3.50 0.06 0.60 9.44

SCAD - validation 5.22 0.30 2.31 0.09 0.51 9.45

SELO - validation 4.00 0.65 1.09 0.10 0.50 9.44

MRCE 8.74 0.02 5.74 0.00 0.82 11.41

EX cov, n=50

LASSO - BIC 5.25 0.17 2.29 0.05 1.54 9.36

Adaptive LASSO - BIC 4.13 0.30 1.43 0.30 1.37 9.28

SCAD - BIC 3.81 0.30 1.21 0.40 1.51 9.36

SELO - BIC 3.79 0.44 1.04 0.25 1.36 9.27

LASSO - validation 9.53 0.02 6.54 0.02 1.33 9.29

Adaptive LASSO - validation 6.54 0.10 3.73 0.19 1.30 9.25

SCAD - validation 5.34 0.16 2.63 0.28 1.26 9.25

SELO - validation 3.75 0.50 1.04 0.30 1.15 9.23

MRCE 8.26 0.01 5.29 0.03 1.39 10.98

EX cov, n=100

LASSO - BIC 4.88 0.20 1.88 0.00 0.82 9.11

Adaptive LASSO - BIC 3.92 0.50 1.01 0.10 0.54 9.13

SCAD - BIC 3.42 0.66 0.54 0.12 0.44 9.11

SELO - BIC 3.54 0.63 0.58 0.04 0.42 9.10

LASSO - validation 10.29 0.02 7.29 0.00 0.68 9.11

Adaptive LASSO - validation 6.80 0.18 3.83 0.03 0.54 9.12

SCAD - validation 5.16 0.36 2.23 0.07 0.45 9.12

SELO - validation 4.12 0.71 1.18 0.06 0.40 9.11

MRCE 8.91 0.01 5.92 0.00 0.78 10.90
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Table 2. Median estimated SEs, denoted by SE EST for the four simulation
configurations described in Table 6.1 over 200 simulations. The SE estima-
tors were calculated using the sandwich formula. Empirical SEs calculated
using the median absolute deviation of the parameter estimates (SE EMP)
are provided in parenthesis.

Simulation Method
β1 = 3 β2 = 1.5, β3 = 2,

SE EST(SE EMP) SE EST(SE EMP) SE EST(SE EMP)

AR cov, n=50

LASSO - BIC 0.39 (0.43) 0.33 (0.37) 0.35 (0.34)

Adaptive LASSO - BIC 0.41 (0.55) 0.33 (0.71) 0.35 (0.41)

SCAD - BIC 0.48 (0.62) 0.44 (1.05) 0.38 (0.37)

SELO - BIC 0.5 (0.49) 0.49 (0.59) 0.38 (0.36)

LASSO - validation 0.44 (0.38) 0.43 (0.36) 0.37 (0.35)

Adaptive LASSO - validation 0.44 (0.49) 0.43 (0.6 ) 0.37 (0.37)

SCAD - validation 0.46 (0.59) 0.46 (0.93) 0.38 (0.38)

SELO - validation 0.46 (0.52) 0.45 (0.69) 0.35 (0.3 )

AR cov, n=100

LASSO - BIC 0.32 (0.25) 0.29 (0.25) 0.27 (0.24)

Adaptive LASSO - BIC 0.33 (0.34) 0.3 (0.33) 0.27 (0.26)

SCAD - BIC 0.37 (0.32) 0.38 (0.36) 0.27 (0.19)

SELO - BIC 0.38 (0.27) 0.38 (0.31) 0.28 (0.2 )

LASSO - validation 0.34 (0.26) 0.34 (0.26) 0.29 (0.24)

Adaptive LASSO - validation 0.34 (0.3 ) 0.34 (0.34) 0.28 (0.25)

SCAD - validation 0.35 (0.31) 0.36 (0.34) 0.26 (0.19)

SELO - validation 0.35 (0.29) 0.35 (0.32) 0.26 (0.19)

EX cov, n=50

LASSO - BIC 0.35 (0.37) 0.3 (0.36) 0.32 (0.33)

Adaptive LASSO - BIC 0.36 (0.48) 0.28 (0.61) 0.32 (0.36)

SCAD - BIC 0.42 (0.52) 0.42 (0.8 ) 0.33 (0.36)

SELO - BIC 0.43 (0.43) 0.43 (0.48) 0.34 (0.32)

LASSO - validation 0.4 (0.36) 0.39 (0.33) 0.34 (0.31)

Adaptive LASSO - validation 0.4 (0.46) 0.39 (0.53) 0.33 (0.36)

SCAD - validation 0.42 (0.53) 0.42 (0.75) 0.33 (0.33)

SELO - validation 0.41 (0.47) 0.4 (0.6 ) 0.31 (0.29)

EX cov, n=100

LASSO - BIC 0.27 (0.23) 0.26 (0.21) 0.25 (0.21)

Adaptive LASSO - BIC 0.29 (0.29) 0.27 (0.32) 0.24 (0.22)

SCAD - BIC 0.33 (0.26) 0.33 (0.27) 0.24 (0.19)

SELO - BIC 0.33 (0.23) 0.33 (0.24) 0.25 (0.2 )

LASSO - validation 0.3 (0.21) 0.31 (0.23) 0.27 (0.21)

Adaptive LASSO - validation 0.31 (0.27) 0.31 (0.3 ) 0.25 (0.21)

SCAD - validation 0.31 (0.27) 0.32 (0.28) 0.23 (0.18)

SELO - validation 0.31 (0.24) 0.32 (0.24) 0.23 (0.18)

models than that selected using BIC. Similarly, model error was usually better

when using validation data for model selection. However, BIC selected a higher

proportion of true models. Lasso tended to select larger models, and SCAD

and SELO selected the true model more often. In terms of variable selection,

MRCE performed better than the two-stage approach using the Lasso penalty

when the tuning parameter was selected using validation, but worse when the
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tuning parameter was selected using BIC. The prediction error with MRCE was

worse than when using Lasso with validation.
In addition to estimating Ω sparsely using GLASSO, we also examined the

effect of other estimators of the precision matrix on the estimator of β. We
compared the estimator of Ω using ridge, and the shrinkage estimator of Schäfer
and Strimmer (2005). The GLASSO yielded the most stable results compared
to other regularized methods of Ω. In addition, we also compared the GLASSO
to a parametric estimator of the precision matrix, when the true covariance
structure was assumed, and when independent correlation structure was assumed.
Results for these scenarios are provided in the supplementary material. When
using a parametric estimator of the precision matrix, model selection results were
comparable to those using GLASSO in both EX (dense precision matrix) and AR
(sparse precision matrix) settings. When assuming working independence, the
estimated models were slightly larger, with the true model selected fewer times
on average.

Table 2 compares the empirical SEs with the estimated SEs using the sand-
wich formula for the non-zero estimated regression parameters. The results show
that the standard error estimates had mixed performance. When n = 100, usu-
ally they were slightly larger than the empirical SEs and, in general, closer to
the empirical ones when the β coefficients were larger. When n = 50, the pat-
tern was less uniform, with especially larger differences between the estimated
and empirical SEs when β = 1.5, suggesting when β is relatively small, the SE
estimates tend to underestimate the true variability.

6.2. Large-p simulations

We adapt the small-p simulations to large-p scenarios. In all simulations
we had n = 50 observations. The number of covariates and the number of
outcomes in {5, 20} × {5, 20}. With (p0,m = 5) this is a “small-p” (25 co-
efficients) scenario; two scenarios were with 100 coefficients, and one had 400
coefficients to estimate. We simulated AR and EX outcome correlations, each
with ρy = cor(Yk, Yk−1) = 0.5 and var(Yk) = 3. The covariates X had an au-
toregressive covariance structure, with cor(Xk, Xl) = 0.3, k, l = 1, . . . , p. We
conducted 200 simulations for each scenario, and applied the penalty functions
Lasso, adaptive Lasso (with the initial estimator of β estimated as the weight us-
ing ridge regression with the General Cross Validation criterion (GCV)), SCAD
(with a = 3.7), and SELO (with τ = 0.01).

Tuning parameters were selected using data validation, with minimization
of prediction error. Thus, 50 additional observations were sampled from the
same distribution and used for tuning parameter selection. Here BIC was not
used for tuning parameter selection. The true model consisted of three non-zero
parameter values, (3, 1.5, 2). Table 3 provides the proportion of the true model
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Table 3. Large-p simulation results averaged over 200 simulations using the
two-stage joint estimation procedure with LASSO, adaptive LASSO, SCAD,
and SELO, with the precision matrix estimated using GLASSO with the
Lasso penalty. The sample size was n = 50. The number of covariates and
the number of outcomes were, independently, 5 and 20. The true model size
were three. EX and AR correlations were considered. The tuning parameters
were selected using an independent validation data set with the same sample
size by minimizing the prediction error. The percentage of times the true
model being chosen (mean T), the number of variables that were selected as
false positives (mean FP), the average number of variables that were selected
as false negatives (mean FN), and the average model error (mean ME) are
reported.

penalty mean T mean FP mean FN mean ME

AR cov

p0 = 5, m = 5

LASSO 0.01 8.65 0.00 0.57

Adaptive LASSO 0.00 16.05 0.05 1.39

SCAD 0.31 3.41 0.00 0.29

SELO 0.67 0.76 0.00 0.21

p0 = 20, m = 5

LASSO 0.00 13.83 0.00 0.80

Adaptive LASSO 0.00 26.68 0.16 2.21

SCAD 0.14 6.19 0.00 0.30

SELO 0.72 0.51 0.00 0.24

p0 = 5, m = 20

LASSO 0.00 18.36 0.00 1.03

Adaptive LASSO 0.00 45.55 0.11 3.03

SCAD 0.07 7.21 0.00 0.39

SELO 0.56 1.38 0.00 0.37

p0 = 20, m = 20

LASSO 0.00 23.81 0.00 1.37

Adaptive LASSO 0.00 41.94 0.48 4.12

SCAD 0.03 14.63 0.00 0.58

SELO 0.65 0.87 0.01 0.36

penalty mean T mean FP mean FN mean ME

EX cov

p0 = 5, m = 5

LASSO 0.01 9.01 0.00 0.52

Adaptive LASSO 0.00 15.63 0.06 1.24

SCAD 0.29 3.42 0.00 0.25

SELO 0.66 0.86 0.00 0.19

p0 = 20, m = 5

LASSO 0.00 14.12 0.00 0.75

Adaptive LASSO 0.00 26.56 0.19 2.19

SCAD 0.16 6.24 0.00 0.28

SELO 0.70 0.61 0.00 0.23

p0 = 5, m = 20

LASSO 0.00 17.41 0.00 0.75

Adaptive LASSO 0.00 44.29 0.06 1.97

SCAD 0.12 6.43 0.00 0.28

SELO 0.62 1.52 0.00 0.27

p0 = 20, m = 20

LASSO 0.00 22.50 0.00 0.98

Adaptive LASSO 0.00 52.02 0.21 2.83

SCAD 0.09 12.53 0.00 0.36

SELO 0.61 1.31 0.00 0.29

chosen, the average numbers of false positives and false negatives, and the average
squared model error defined as tr[(β̂ − β)TΣXX(β̂ − β)].

The size of the precision matrix was larger when m = 20 then when m = 5.
Therefore, the simulation results were better when m = 5, p0 = 20 than when
m = 20, p0 = 5, with a higher proportion of true models chosen and lower
numbers of false positives.

The outcome correlations lead to roughly similar results. Comparing the
performance of different penalties, SELO had the best results, SCAD performed
the second best with more false positive detections, and the Lasso and adaptive
Lasso had considerably higher numbers of false positives. Adaptive Lasso had
the worst results, with the highest false positive rate and model error.

Results from additional simulations, in which parametric and working in-
dependent correlation structures were used, are provided in the supplementary
material. The results show similar patterns to those in Table 3.
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7. Analysis of the Type 2 Diabetes Data

The type 2 diabetes data set (Mootha (2003)) consists of gene expression
profiles of 43 males of similar age with three levels of Glucose Tolerance: Normal
(NGT, 17 subjects), Impaired (IGT, 9 subjects) and type 2 Diabetes Mellitus
(DM2, 17 subjects). The authors provided a list of gene sets, and performed gene
set analysis by testing for the global effect of glucose tolerance levels on each gene
set. As many genes in a gene set are likely not affected by glucose levels, we are
interested in selecting a subset of genes in a gene set that are associated with
glucose tolerance levels. We focused on the porphyrin and chlorophyll metabolism
pathway, which has gene expressions of 35 probes of genes. After removing
unexpressed probes, 18 of them were used for analysis. We treated the expresses
probes as outcomes whereas the covariates were two dummy variables for glucose
tolerance levels, with NGT as the baseline. We considered the model

yij = β0j + β1j1IGTi + β2j1DMi + eij ,

where yij is the jth outcome (probe expression) of subject i, IGTi = 1 if a
subject has impaired glucose tolerance and 0 otherwise, and DMi takes value 1
if a subject has DM2 and 0 otherwise. Hence m = 18, p = 18 × 3 = 54 and
n = 43. We applied the proposed two-stage procedure with the penalties Lasso,
adaptive Lasso, SCAD, and SELO for estimation of β. The 18 × 18 precision
matrix was estimated using the Lasso penalty via the GLASSO algorithm. The
tuning parameters were selected using BIC for both regression coefficients and
precision matrix estimation.

Table 4 presents the results of the four penalized regression models. Esti-
mates of the β1j and β2j , the effects of glucose tolerance groups IGT and DM2
on probe expression relative to the baseline NGT group, are presented. The P -
values of non-zero estimated coefficients are given in parentheses. The baseline
effect (intercept estimates) are omitted. There are more non-zero estimates for
the coefficients of DM than those for the coefficients of IGT. This makes sense
biologically, as IGT is more similar to NGT than DM.

With all penalties, DM was found to be a significant predictor of the expres-
sions of EPRS(1), HMBS, and ADH6, IGT is a significant predictor for HMBS
and CP. IGT was also a significant predictor of BLVRB in the models selected
by SELO, Lasso, SCAD, but not by adaptive Lasso. DM was found to be signif-
icantly associated with HMOX2 using SELO. The gene HMBS was found to be
associated with with IGT and DM.

Lasso produces a large number of non-zero parameter estimates compared
to the oracle penalties. The Lasso parameter estimates are shrunk more than
those estimated by the oracle penalties and the P -values are relatively high. The
SELO penalty produced the smallest number of non-zero parameter estimates.

The data set and code used in this analysis are provided in the journal
website.



1652 TAMAR SOFER, LEE DICKER AND XIHONG LIN

G
en

e
(p
ro
b
e)

L
a
sso

A
d
a
p
tiv

e
L
a
sso

S
ca
d

S
E
L
O

IG
T

D
M

IG
T

D
M

N
G
T

D
M

IG
T

D
M

E
P
R
S
(1
)

0
.0
1
(0
.8
8
)

0
.6
2
(0
.0
1
)

0
0
.6
9
(0
.0
0
5
)

0
0
.7
3
(0
.0
0
4
)

0
0
.7
9
(0
.0
0
2
)

E
P
R
S
(2
)

0
.2
7
(0
.1
9
)

0
.1
5
(0
.4
1
)

0
.2
9
(0
.1
8
)

0
.1
2
(0
.4
9
)

0
.1
1
(0
.4
9
)

0
(0
.8
3
)

0
0

E
P
R
S
(3
)

0
0
.0
6
(0
.5
3
)

0
<

0
.0
1
(0
.8
8
)

0
0
.0
2
(0
.7
5
)

0
0

B
L
V
R
B

0
.3
5
(0
.0
0
7
)

-0
.0
7
(0
.6
1
)

0
.3
6
(0
.4
7
8
)

-0
.0
3
(0
.9
8
)

0
.4
4
(0
.0
0
3
)

0
0
.5

(0
.0
0
1
)

0

G
U
S
B

-0
.0
2
(0
.8
6
)

-0
.1
3
(0
.5
)

0
-0
.1
1
(0
.8
2
)

0
-0
.0
7
(0
.6
7
)

0
0

U
R
O
S

-0
.0
8
(0
.5
6
)

0
-0
.0
6
(0
.8
4
)

0
-0
.0
2
(0
.7
6
)

0
0

0

H
M
B
S

-0
.1
6
(0
.1
5
)

-0
.2
3
(0
.0
5
)

-0
.1
8
(0
.1
7
)

-0
.2
6
(0
.0
5
)

-0
.1
3
(0
.2
7
)

-0
.2
6
(0
.0
4
)

-0
.2
5
(0
.0
3
)

-0
.3
2
(0
.0
0
6
)

F
E
C
H

-0
.0
3
(0
.6
3
)

0
0

0
0

0
0

0

H
M
O
X
1

0
.0
3
(0
.7
6
)

0
0

0
0

0
0

0

H
C
C
S
(1
)

0
-0
.0
3
(0
.6
9
)

0
0

0
0

0
0

H
C
C
S
(2
)

0
-0
.1
4
(0
.3
9
)

0
-0
.0
8
(0
.7
8
)

0
-0
.0
7
(0
.6
2
)

0
0

B
L
V
R
A

(1
)

0
-0
.1
5
(0
.1
9
)

0
-0
.1
6
(0
.2
7
)

0
-0
.1
3
(0
.2
9
)

0
-0
.1
8
(0
.1
4
)

C
P

0
.5
2
(0
.0
3
)

0
0
.5
7
(0
.0
1
)

0
0
.5
7
(0
.0
1
)

0
0
.6
9
(0
.0
0
3
)

0

U
R
O
D

(1
)

0
0

0
0

0
0

0
0

U
R
O
D

(2
)

0
0

0
0

0
0

0
0

B
L
V
R
A

(2
)

-0
.0
3
(0
.6
8
)

0
0

0
0
(0
.8
2
)

0
0

0

A
D
H
6

-0
.2
4
(0
.4
1
)

0
.5
3
(0
.0
3
4
)

-0
.2
2
(0
.6
3
)

0
.5
8
(0
.0
4
)

0
0
.7
8
(0
.0
0
1
)

0
0
.7
6
(0
.0
0
1
)

H
M
O
X
2

0
0
.2
5
(0
.2
2
)

0
0
.2
9
(0
.3
4
)

0
0
.2
4
(0
.2
6
)

0
0
.4
3
(0
.0
4
)

T
ab

le
4.

A
n
a
ly
sis

resu
lts

o
f
th
e
d
iab

etes
d
ata

set
(n

=
43)

w
ith

th
e
p
orh

p
h
y
rin

an
d
ch
lorop

h
y
l
m
etab

olism
p
ath

w
ay,

w
h
ich

h
as

18
gen

es
(m

=
18).

V
ariab

le
selection

w
as

p
erform

ed
u
sin

g
th
e
p
en

alized
m
u
ltivariate

regression
regression

w
ith

th
e

tw
o-stage

join
t
estim

a
tion

p
ro
ced

u
re

w
ith

th
e
p
en

alties
L
A
S
S
O
,
ad

ap
tiv

e
L
A
S
S
O
,
S
C
A
D

an
d
S
E
L
O
.

T
h
e
b
aselin

e
ex
p
-

ression
valu

es
(in

tercep
ts),

rep
resen

tin
g
th
e
m
ean

ex
p
ression

lev
els

of
th
e
n
orm

al
glu

cose
toleran

ce
grou

p
are

n
ot

p
resen

ted
.

IG
T

an
d
D
M

corresp
on

d
to

th
e
m
ean

ex
p
ression

d
iff
eren

ces
b
etw

een
su
b
jects

w
ith

Im
p
aired

G
lu
cose

T
oleran

ce
(IG

T
)
an

d
su
b
jects

w
ith

ty
p
e
II

d
ia
b
etes

(D
M
)
com

p
ared

th
e
n
orm

al
grou

p
.
T
h
e
n
u
m
b
er

of
regression

co
effi

cien
ts

w
as

p
=
18×

3
=
54.

T
h
e
tu
n
in
g
p
a
ram

eter
w
as

estim
a
ted

u
sin

g
th
e
B
IC

.
T
h
e
P
-valu

es
are

in
p
aren

th
eses.



VARIABLE SELECTION FOR MULTIVARIATE REGRESSION 1653

8. Discussion

We proposed two BIC criteria for selecting the tuning parameter. The first

resembles the one used in univariate variable selection, and is used in estimating

β with a fixed, or consistently estimated precision matrix. It is consistent for

model selection in both cases when an oracle penalty function is used. Our proof

allows both p and n go to infinity. The second BIC criterion is used when β

and Ω are jointly estimated, as in the two-stage procedure. Simulation results

show that the second BIC performs well, and outperforms the tuning parameter

selection procedure using an external data set. Future research is needed for

theoretical results for this BIC, and for p > n.

Our primary focus in this paper is on variable selection for regression coeffi-

cients. The optimal regression coefficient estimator that is consistent for model

selection and has the oracle properties only requires a consistent estimator of

the precision matrix, e.g., using GLASSO. Future research is needed to develop

a more efficient estimator of the precision matrix. In the non-regression setting

assuming y has mean 0, log(m)/n → 0, and sub-gaussian errors, Lam and Fan

(2009) provided the rate of convergence for the Ω estimator for Lasso and oracle

penalized estimators. Their results could be extended to regression settings in

the presence of covariates X for p0/n → 0. When p0 ≫ n, say log(p0)/n → 0,

additional assumptions are needed on the design matrix and the sparsity of β.

This is a topic for future research.
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