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Abstract: We propose to use a constrained local polynomial regression to esti-

mate the unknown parameters in ordinary differential equation models with a goal

of improving the smoothing-based two-stage pseudo-least squares estimate. The

equation constraints are derived from the differential equation model and are in-

corporated into the local polynomial regression in order to estimate the unknown

parameters in the differential equation model. We also derive the asymptotic bias

and variance of the proposed estimator. Our simulation studies show that our

estimator is clearly better than the pseudo-least squares estimator in estimation

accuracy with a small price of computational cost. An application to immune cell

kinetics and trafficking for influenza infection further illustrates the benefits of the

proposed method.
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1. Introduction

Differential equations are widely used to describe and quantify dynamic sys-

tems in many scientific fields. The so-called inverse problem of differential equa-

tion models, i.e., the estimation of unknown parameters based on experimen-

tal data of state variables, is quite challenging because the standard nonlinear

least squares method may fail due to convergence problems, local minima, and

high computational cost. Recently, alternative methods based on nonparametric

smoothing have been proposed and investigated by Poyton et al. (2006), Ramsay

et al. (2007), Chen and Wu (2008), Liang and Wu (2008), Brunel (2008). They

intend to improve the computational efficiency and stability of the nonlinear least

squares method at a cost of reduced estimation accuracy.

A general nonlinear ordinary differential equation model can be written as

dX(t)

dt
= F{X(t); θ}, (1.1)

whereX(t)={X1(t), . . . , Xd(t)}T is a d-dimensional state vector, θ=(θ1, . . . , θq)
T

is a q-dimensional vector of unknown parameters, and F (·)={F1(·), . . . , Fd(·)}T
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is a known nonlinear function vector. The proposed methodology with minor

modifications is also applicable to more general differential equations with input

variables. The process X(t) is usually measured with noise, say

Y (t) = X(t) + e(t), (1.2)

where the measurement error e(t) is independent of X(t) with mean zero and a

covariance matrix Σe.

Denote the solution to the differential equation (1.1) as X(t; θ). Generally

X(t; θ) does not have an analytic solution and needs to be obtained by solving

the differential equations numerically. This results in computationally intensive

and often numerically unstable estimation for θ. To avoid numerically solving

the differential equations, nonparametric smoothing techniques were applied to

the observed process to estimate the parameters θ via multiple-stage procedures

in Poyton et al. (2006), Ramsay et al. (2007), Chen and Wu (2008), Liang and

Wu (2008) and Brunel (2008). Particularly, Liang and Wu (2008) proposed using

local polynomial estimation as the smoothing technique in the first stage, and

obtained the pseudo-least square estimator for θ in the second estimation stage.

There, (1.1) was only used in the second estimation stage, which results in a

significant reduction of estimation efficiency of the pseudo-least squares estimator

compared to the nonlinear least squares estimator. We propose a new approach

to improve the Liang and Wu’s pseudo-least squares estimator by combining the

local polynomial smoothing and differential equation information. We expect the

new method to gain more in estimation accuracy at a small computational cost.

2. Differential Equation-Constrained Local Polynomial Regression

2.1. Notation and method

Suppose the process Y (t) is observed at time points t1, t2, . . . , tn, so (1.2)

becomes

Yi = Y (ti) = X(ti) + e(ti), i = 1, . . . , n. (2.1)

For notational simplicity, we present our model and method in the univariate

case. However, the proposed methodologies and theoretical results can be easily

extended to d > 1. In particular, we illustrate this point in our simulation

studies and data analysis by applying the proposed method to multivariate cases

in Section 3.

We can estimateX(t) and its derivative at any time point t by nonparametric

local polynomial smoothing of observed Yis, i = 1, . . . , n. Thus, we obtain the

smoothing estimates for the process X̂(t∗k) and its derivative X̂ ′(t∗k) over a grid of

time points t = t∗1, t
∗
2, . . . , t

∗
m. Liang and Wu (2008) proposed to: (1) use the local

polynomial smoothing over the grid of observed time points ti to yield estimates
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for X̂(ti) and X̂ ′(ti), i = 1, 2, . . . , n, and (2) estimate θ using the pseudo-least

squares estimator

θ̂PLS = argmin
θ

n∑
i=1

[X̂ ′(ti)− F{X̂(ti); θ}]2ω(ti),

with ω(ti) an appropriate weight function. In general, we can extend Liang and

Wu’s procedure over a time grid of size m which can be larger than the number

of original measurements n, with

θ̂PLS = argmin
θ

m∑
k=1

[X̂ ′(t∗k)− F{X̂(t∗k); θ}]2ω(t∗k).

This modified pseudo-least squares estimator converges at the n−1/2 rate (Liang

and Wu (2008, 2010); Fang, Wu and Zhu (2011)).

Notice that Liang and Wu (2008)’s first stage smoothing was done without

using the differential equation information. The differential equation was only

used in the second stage to estimate θ based on the first stage smoothing results.

The separation of these two stages results in a significant reduction in estima-

tion accuracy of the differential equation parameters. Poyton et al. (2006) and

Ramsay et al. (2007) used a spline approach to combine the smoothing stage

with the differential equation information, which produced a more accurate and

stable estimate. They minimize a criterion combining the residuals in smoothing

fits to observations Yi’s and deviation of the smoothing fits from the differential

equation model. Motivated by these ideas, we propose to estimate the differ-

ential equation parameters θ jointly with the state variable X̂(t∗k) and X̂ ′(t∗k),

k = 1, 2, . . . ,m, and expect to improve on the Liang-Wu’s pseudo-least squares

estimator in estimation accuracy at a small computational cost.

The standard local pth-order polynomial regression estimates X(t) and its

derivative up to order p at time t can be obtained by minimizing
n∑

i=1

{Yi − (α+

p∑
j=1

βj(ti − t)j)}2Kh(ti − t), (2.2)

where K(·) is a symmetric kernel function, Kh(·) = K(·/h)/h, and h is the band-

width. Then X(t) can be estimated with that of α and the derivatives X(j)(t)/j!

can be estimated with those of βj , j = 1, 2, . . . , p (Fan and Gijbels (1996)). In

(1.1), (α, β1) in (2.2) should satisfy β1 = F (α; θ). The higher derivatives X(j)(t)

can similarly be expressed as functions of X(t) through (1.1). For example, if

DX(X; θ) = ∂F (X; θ)/∂X, then

d2X(t)

dt2
=

∂

∂X
F{X(t); θ}dX(t)

dt
= DX{X(t); θ}F{X(t); θ}.
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With F (1)(X; θ) = DX(X; θ)F (X; θ), (1.1) implies that we should restrict β2 =

F (1)(α; θ)/2. Similarly, let D
(j)
X (X; θ) = ∂F (j)(X; θ)/∂X, and F (j)(X; θ) =

D
(j−1)
X (X; θ)F (X; θ) with F (0)(X; θ) = F (X; θ) and D

(0)
X (X; θ) = DX(X; θ).

Then we have

X(j)(t) =
djX(t)

dtj
= F (j−1){X(t); θ}.

Thus, we have the general differential equation constraints

βj =
X(j)(t)

j!
=

F (j−1){X(t); θ}
j!

=
F (j−1){α; θ}

j!
, j = 1, . . . , p. (2.3)

After plugging in the constraints, the objective function of the local polynomial

regression (2.2) can be reformulated as
n∑

i=1

[Yi − {α+

p∑
j=1

F (j−1)(α; θ)

j!
(ti − t)j}]2Kh(ti − t). (2.4)

The optimization of (2.4) jointly over α and θ provides estimates α̂ = X̂(t) and

θ̂ simultaneously.

The optimization of (2.4) is unlikely to provide a good estimate for θ̂ since it

only uses the differential equation constraint of X(t) at one time point t. Follow-

ing Liang and Wu (2008) and Brunel (2008), we could estimate θ by integrating

the objective function over the grid of time points t = t∗1, t
∗
2, . . . , t

∗
m, to minimize

m∑
k=1

n∑
i=1

[Yi − {αk +

p∑
j=1

F (j−1)(αk; θ)

j!
(ti − t∗k)

j}]2Kh(ti − t∗k)ω(t
∗
k), (2.5)

with respect to ξ = (α1, . . . , αm, θ)T , where ω(t∗k) are nonnegative weights over

the time grid, as suggested by Brunel (2008), and the bandwidth h can be de-

termined by cross-validation approach or the plug-in method suggested by Liang

and Wu (2008). The ξ̂ that minimizes (2.5) is called the differential equation

constrained local polynomial estimator.

For a general nonlinear function F of the differential equation model, the

optimization of (2.5) becomes a nonlinear minimization problem, and we may lose

the computational efficiency of the original local polynomial fitting. For this, we

consider a linear estimator that results from one iteration of the Gauss-Newton

optimization of (2.5) at a previous estimate ξ∗ = (α∗
1, . . . , α

∗
m, θ∗)T . In matrix

notation, the objective function (2.5) is [Y − G(ξ)]TW [Y − G(ξ)], where Y =

(Y1, . . . , Yn, . . . , Y1, . . . , Yn)
T is a (nm)-dimensional vector with the observations

Yi’s repeated m times, G = (G1,1, . . . , Gn,1, . . . , G1,m, . . . , Gn,m)T with

Gi,k(ξ) = Gi,k(αk, θ) = {αk +

p∑
j=1

F (j−1)(αk; θ)

j!
(ti − t∗k)

j}
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and W is the nm× nm diagonal weight matrix

Diag{ω(t∗1)Kh(t1 − t∗1), . . . , ω(t
∗
1)Kh(tn − t∗1), . . . , ω(t

∗
m)Kh(t1 − t∗m), . . . ,

ω(t∗m)Kh(tn − t∗m)}.

Let J = (∂G/∂α1, . . . , ∂G/∂αm, ∂G/∂θ1, . . . , ∂G/∂θq)ξ=ξ∗ denote the nm×(m+
q) Jacobian matrix evaluated at ξ = ξ∗. Then a Gauss-Newton iteration min-
imizes (2.5) with G(ξ) replaced by its linear approximation G(ξ∗) + J(ξ − ξ∗).
This results in the weighted linear least squares estimator

ξ̂ = (JTWJ)−1JTWỸ , (2.6)

where Ỹ = Y −G(ξ∗) + Jξ∗ is a (nm)-dimensional vector.
The selection of bandwidth h and m is an important issue for practice. We

suggest selecting the bandwidth h using the plug-in method according to the
recommendations of Liang and Wu (2008). This works very well in our numerical
simulations and data analysis in Section 3. Selection of m for data-augmentation
is less critical based on our simulation results. In theory, larger m is better if
the computational cost does not increase too much. Thus, we can select m as
large as can be afforded. Our method can also be adapted to handle the case
with partially observed state variables or observed functions of state variables in
principle, but it may be difficult to find initial values for the unobserved state
variables.

2.2. Asymptotic property for θ̂

We need the following technical conditions.

(1) (1.1) holds over a time interval [a0, b0] and has a bounded solution X(t).
We observe Yi(t) as (2.1) for t = ti ∈ [a0, b0], i = 1, . . . , n. The differential
equation parameters θ are jointly estimated with αi = X(t∗i ) over a time grid
t∗i ∈ [a0, b0], i = 1, . . . ,m. The resulting estimator ξ̂ is given by (2.6) with
the linearization at a starting value ξ∗ = (α∗

1, . . . , α
∗
m, θ∗)T .

(2) The starting value is an estimator ξ∗ such that |ξ∗ − ξ| = Op(n
−δ) for some

δ > 1/4, | · | the L∞ norm.

(3) The function F (x) as (1.1) has a bounded pth order derivative.

(4) n → ∞, h → 0, nh → ∞ and m → ∞.

(5) The kernel function K ≥ 0 is compactly supported and bounded, with
µj(K) =

∫
K(u)ujdu, µ0(K) =

∫
K(u)du = 1, and all odd-order moments

µj(K) = 0.

(6) The observation time points t1, . . . , tn and fitted time points t∗1, . . . , t
∗
m follow

distributions with densities f(t) and fg(t), t ∈ [a0, b0], respectively. Over the
time interval t ∈ [a0, b0], f(t) > 0 and fg(t) > 0 are bounded with continuous
derivatives f ′(t) and f ′

g(t).
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(7) The weight function ω(t) ≥ 0 is bounded over the time interval t ∈ [a0, b0].

Theorem 1. Under (1)−(7), conditional on the observation time points t1, . . .,

tn, fitted time points t∗1, . . . , t
∗
m and ξ∗, the differential equation parameter esti-

mator θ̂ has conditional bias

Bias(θ̂) = op(n
−1/2) +Op(h

p+1) p odd, Bias(θ̂) = op(n
−1/2) +Op(h

p) p even,

and conditional variance var(θ̂) = Op((nmh3)−1 + (nh)−1) if ω(a0) ̸= 0 or

ω(b0) ̸= 0, var(θ̂) = Op((nmh3)−1 + n−1) if ω(a0) = ω(b0) = 0.

If ω(a0) = ω(b0) = 0 and mh3 → ∞,

var(θ̂) =
σ2

n
A−1

F [BF − (CF + CT
F )]A

−1
F , (2.7)

with AF =
∫
[Fθ ∗FθT ∗ω∗f ∗fg](t)dt, BF =

∫
[(ω∗fg ∗Fθ)

′∗(ω∗fg ∗FθT )
′∗f ](t)dt

and CF =
∫
[(f ′ + f ∗ FX) ∗ ω ∗ fg ∗ Fθ ∗ {ω ∗ fg ∗ FθT }′](t)dt.

We use the shorthand notations [f∗g](t)=f(t)g(t), FX(t)=[ ∂
∂XF (X; θ)](t) =

∂
∂XF (X; θ)|X=X(t)=DX(X; θ)|X=X(t),Fθ(t)= [ ∂∂θF (X; θ)](t)= ∂

∂θF (X; θ)|X=X(t),

and FθT (t) = [Fθ(t)]
T . The proof outline of Theorem 1 is given in the Appendix

and details are provided in the online supplementary materials.

We have used the random design of time points t1, . . . , tn and t∗1, . . . , t
∗
m in

Theorem 1. We can also consider a fixed design with
∫ ti
t0
f(t)dt = (i− 1)/(n− 1)

and
∫ t∗k
t0

fg(t)dt = (k−1)/(m−1) for i = 1, . . . , n and k = 1, . . . ,m. The proof for

the fixed design case is similar, but more tedious. For local polynomial regression

for p odd, the asymptotic bias and variance are the same under random design

and fixed design (Fan and Gijbels (1996, p.68)). We expect this is true under

our model setting. But, in any case, θ̂ converges at the parametric n−1/2 rate

when h = o(n−1/2p) and m−1h−3 = o(1). The function α̂k is still estimated at a

nonparametric rate which is slower than n−1/2, a result similar to those in Brunel

(2008), Liang and Wu (2008, 2010), and Fang, Wu and Zhu (2011).

The result of this theorem is also similar to the one-step maximum likelihood

approximation (Theorem 4.3 of Lehmann and Casella (1998)) in some sense.

The one-step Newton-Raphson iteration of the likelihood equation starting at a

n−1/2-consistent estimator results in a more efficient estimator. Here our one-

step Gauss-Newton iteration for maximizing (2.5) starting at n−δ rate estimator

(δ > 1/4) result in a new n−1/2 rate estimator for θ. Our one-iteration estimator

(2.6) is a linear estimator that improves Liang-Wu’s pseudo-least squares (PsLS)

estimator (Liang and Wu (2008, 2010)). The initial estimator for the αk’s can

be taken as the smoothing estimator without using the differential equation in-

formation. This one iteration starting from the Liang-Wu’s PsLS estimator θ̂

and a local polynomial estimator for the αk’s results in a linear estimator with a
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n−1/2 rate for θ. The linearity may also be useful for extension of our method to
mixed-effects differential equation models for longitudinal data (Fang, Wu and
Zhu (2011)).

Remark 1. From the theorem, for a small enough h = o(n−1/(2p)), the bias for
the PsLS estimator and the proposed estimator are of order op(n

−1/2), so the
variance dominates the mean squared error of the two estimators. For ω(a0) =
ω(b0) = 0, and if m is chosen to be large enough so that mh3 → ∞, then we have
an explicit expression (2.7) for the variance of our proposed estimator. Consider
the case of uniformly distributed tis and t∗ks on [0, 1]. Here f(t) = fg(t) = 1, and
var(θ̂) is

σ2

n
A−1

F

(∫
[(ω ∗ Fθ)

′ ∗ (ω ∗ FθT )
′ − FX ∗ ω ∗ {Fθ ∗ (ω ∗ FθT )

′

+(ω ∗ Fθ)
′ ∗ FθT }](t)dt

)
A−1

F ,

where AF is now
∫
[Fθ ∗FθT ∗ω](t)dt. The variance of Liang-Wu PsLS estimator

has the extra term (σ2/n)A−1
F

∫
[(ω∗FX ∗Fθ)

′∗(ω∗FX ∗FθT )
′](t)dtA−1

F , a positive
semi-definite matrix.

Remark 2. As long as hp is of smaller order than n−1/2, the order p of the
polynomial is not important. As p increases, there are more terms in (2.5) and
the computational burden increases. A value of p = 1 or p = 2 would be preferred
in practice. In numerical studies we used p = 2, the same as that in Liang-Wu’s
method (2008) for the sake of comparison.

3. Numerical Studies

We compared the performance of the proposed method with Liang-Wu’s
method (2008), the method of Ramsay et al. (2007), and the nonlinear least
squares estimator via Monte Carlo simulations. In addition, we applied the
proposed method to a data set on immune cell trafficking for influenza infection
to illustrate the usefulness of the proposed method. We measure performance of
estimators by their average relative error

ARE =
r∑

i=1

| θ̂i
θ
− 1|,

with θ̂i as the estimate for θ in the ith simulation runs with i = 1, 2, . . . , r. Com-
putational cost and convergence were also considered in evaluating the methods.

Since Liang-Wu’s pseudo-least squares estimator and our estimator are com-
putationally efficient, they can be used as the starting point for the nonlinear
least squares estimator. This hybrid strategy may enjoy both the computational
efficiency of the former and the high estimation accuracy of the latter. We also
evaluated the performance of the hybrid approaches in our simulation studies.
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Example 1. We simulated the data from the FitzHugh-Nagumo system of dif-

ferential equations that were originally used to model the behavior of spike po-

tentials in the giant axon of squid neurons, in FitzHugh (1961) and Nagumo,

Arimoto, and Yoshizawa (1962). This model was also used for simulation stud-

ies by Ramsay et al. (2007) and Liang and Wu (2008). The FitzHugh-Nagumo

system can be written as

d

dt
X1 = (X1 +X2 −

X3
1

3
)c,

(3.1)
d

dt
X2 = −X1 − a+ bX2

c
,

with true parameter values θ = (a, b, c) = (0.34, 0.2, 3) in our simulations. We as-

sumed that X1 and X2 were measured over a grid of n = 51 equally-spaced time

points in [0, 20] with measurement errors as in (2.1), with (σ1, σ2) being (0.1, 0.1),

(0.1, 0.3), (0.3, 0.1) or (0.3, 0.3) for the measurement standard errors for X1 and

X2 respectively. Thus, we obtained n = 51 data points. For each data set, we ap-

plied the proposed method and other existing methods to obtain: the nonlinear

least squares estimator θ̂NLS , Ramsay et al. (2007)’s collocation estimator θ̂col,

Liang-Wu’s pseudo-least squares estimators θ̂PLS with m = n grid points. The

estimators used a common starting value of θ that was uniformly distributed on

a cube centered at true value (0.34, 0.2, 3) with one corner at (0, 0, 0). The pro-

posed new estimator θ̂new with m = n was calculated by (2.6) starting at θ̂PLS .

For the hybrid approach, we found the nonlinear least squares estimator θ̂NLS
PLS ,

θ̂NLS
new , and θ̂NLS

col using respectively, θ̂PLS , θ̂new and θ̂col as the starting points.

For the Liang-Wu pseudo-least squares estimator and the proposed estimator,

local quadratic polynomial smoothing was used and the piecewise linear weight

function suggested in Brunel (2008) was used: w(t) = 1 for 1 ≤ t ≤ 19; w(t) = t

for 0 ≤ t ≤ 1; w(t) = 20− t for 19 ≤ t ≤ 20. The collocation estimator θ̂col was

implemented using the R package CollocInfer (Hooker, Xiao and Ramsay (2010))

with 51 equally-spaced knots between t = 0 and t = 20. The smoothing parame-

ter for the collocation estimator was chosen as in the FitzHugh-Nagumo system

demo example in the package. Otherwise we used the bandwidth recommended

by Liang and Wu (2008): ĥopt × n−3/35(log n)−1/16. Here ĥopt is the optimal

bandwidth for the local polynomial fitting without the differential equation con-

straints, and we calculated it from the R package ‘lokern’ (Maechler (2010)). The

methods were coded in R and run on the same computer.

Table 1 summarizes the average relative errors and computing times of the

various estimators based on r = 400 simulation runs. Liang-Wu’s pseudo-least

squares estimator is always most computationally efficient and always converges,

but its estimation accuracy in the sense of average relative errors is relatively
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Table 1. Performance (ARE) of the estimators for Example 1 with n =

51 observations: θ̂NLS=nonlinear least squares estimate using a random
starting point; The collocation estimate θ̂col using the same starting point;
The pseudo-least squares estimate θ̂PLS using the same starting point; Our
estimate θ̂new started from θ̂PLS ; The nonlinear least squares estimate θ̂NLS

PLS

started from θ̂PLS ; The nonlinear least squares estimate θNLS
new started from

θ̂new; The nonlinear least squares estimate θNLS
col started from θ̂col.

(σ1, σ2) parameter
Estimators

θ̂NLS θ̂col θ̂PLS θ̂new θ̂NLS
PLS θ̂NLS

new θ̂NLS
col

(0.1,0.1) ARE a 2.58 7.70 4.26 5.42 1.96 1.75 1.75
b 14.1 58.2 19.64 20.71 12.5 11.95 11.89
c 2.32 6.07 26.82 21.16 0.69 0.37 0.37

diverge 36.75 6.00 0 0 4.25 0.50 1.75
time 11.59 12.07 0.17 0.24 8.17 7.01 20.12

(0.1,0.3) ARE a 6.73 10.34 6.85 8.06 3.72 2.49 2.49
b 42.1 69.7 52.78 49.28 33.6 28.9 29.0
c 9.08 7.73 33.95 22.31 2.44 0.55 0.56

diverge 39.75 5.25 0 0 14.75 1.25 3.75
time 10.93 12.89 0.18 0.25 9.11 8.14 21.01

(0.3,0.1) ARE a 5.21 13.61 10.30 8.60 5.26 4.97 5.03
b 22.9 73.0 29.49 27.43 24.4 23.18 23.53
c 1.91 7.71 34.08 21.70 1.42 1.05 1.06

diverge 34.50 5.75 0 0 8.75 2.00 3.75
time 13.08 14.00 0.18 0.25 12.62 11.66 25.11

(0.3,0.3) ARE a 6.12 13.58 11.44 10.73 5.68 5.44 5.49
b 35.0 82.6 55.02 53.28 35.8 36.1 35.8
c 4.21 9.04 43.33 24.44 2.44 1.41 1.49

diverge 39.75 6.25 0 0 20.00 7.00 6.50
time 12.75 14.73 0.18 0.25 12.06 10.99 26.18

poor. Our estimator, in comparison, improves the average relative errors for

most cases at a small cost of computation. When used to initiate the nonlinear

least squares estimate, it produces the best estimate in terms of the average

relative errors in all the cases. The standard nonlinear least squares estimator

with random starting points within the twice of the magnitudes of true parameter

values is unstable, and has convergence problems. It can be significantly improved

in computational cost and estimation accuracy if our estimator is used as the

initial estimate. The collocation estimator has poor estimation accuracy and

its computational cost is highest, in most cases, among all the methods. The

comparison of computational cost here may need to be taken with a grain of

salt as it is affected by the actual implementation procedure, in particular the

selection of the penalty parameter. Additional simulation results from another

nonlinear differential equation model are included in the online supplementary
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materials; they show similar results. In the supplementary Table 3, we also

reported the standard deviation (STD) of the estimators in Table 1. The trend

and conclusions for the STD are similar to those for the AREs. Also included in

the online supplementary materials are simulation results for evaluating the data

augmentation size m. While our estimator’s performance remains similar for

larger m in most cases, increasing m does lead to improvement of the AREs in a

few cases. However, for the NLS estimator θNLS
new using the proposed estimator as

a starting point, the performance improvement is not significant. We recommend

using m = n when the proposed estimator is the starting point for the NLS

estimator.

Example 2. We applied the method to a differential equation model for the

growth and migration of influenza virus-specific effector CD8+ T cells among

lymph node (Tm
E ), spleen (T s

E), and lung (T l
E) of mice. The mechanistic differ-

ential equation model can be written as (Wu et al. (2011)),

d

dt
Tm
E = [ρmDm(t− τ)− δm]Tm

E − (γms + γml)T
m
E ,

d

dt
T s
E = [ρsD

s(t− τ)− δs]T
s
E − γslT

s
E + γmsT

m
E , (3.2)

d

dt
T l
E = γmlT

m
E + γslT

s
E − δlT

l
E ,

where Dm denotes the number of mature dendritic cells in the mediastinal lymph

node (MLN), Ds the number of mature dendritic cells in spleen; τ is the time

delay of the effects of dendritic cells on CD8+ T cell proliferation; ρm and ρs are

the proliferation rates of CD8+ T cells stimulated by per dendritic cell in MLN

and spleen, respectively; δm , δs, and δl are the disappearance rates in MLN,

spleen, and lung, respectively; γms is the migration rate from MLN to spleen,

γml the migration rate from MLN to lung, and γsl the migration rate from spleen

to lung. For this system, a total of n = 77 data points at 9 distinct time points

for each of the three state variables, (Tm
E , T s

E , T
l
E), are available (see Figure 1).

The data for Dm are also available. In the analysis, the data of Ds are not

available and are assumed to follow a similar pattern as Dm, see Wu et al. (2011)

in this connection. The smoothed estimates of Dm were used in the analysis.

More details can be found in Wu et al. (2011).

To stabilize the measurement error variance, a logarithm transformation is

applied. If X = (X1, X2, X3)
τ = (log(Tm

E ), log(T s
E), log(T

l
E))

τ , the differential

equations can be re-expressed as
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Figure 1. Data of influenza-specific CD8+ T cells in MLN, spleen, and lung
and the corresponding fitted curves.

d

dt
X1 = ρmDm(t− τ)− δm − γms − γml,

d

dt
X2 = ρsD

s(t− τ)− δs − γsl + γms exp(X1 −X2), (3.3)

d

dt
X3 = γml exp(X1 −X3) + γsl exp(X2 −X3)− δl.

Model (3.3) was fitted to data from day 5 to day 14 since the influenza-specific

CD8+ T cells are not yet produced in Days 0-5. The time delay was set to

τ = 3.08 days, and parameters δm, δs and γml were set to zero in Wu et al.

(2011).

We applied our estimation method with a piece-wise linear weight function:

w(t) = 1 for 6 ≤ t ≤ 13; w(t) = t− 5 for 5 ≤ t ≤ 6; w(t) = 14− t for 13 ≤ t ≤ 14,

as suggested by Brunel (2008). For comparisons, we also obtained Liang-Wu’s
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Table 2. The estimated parameter values by different procedures for CD8+
T cells data analysis. PsLS denotes the pseudo-least squares estimate; DCLP
denotes the proposed differential equation constrained local polynomial esti-
mate; NLS denotes the nonlinear least squares estimate; DCLP-NLS denotes
the nonlinear least squares estimate started from the proposed estimate.

Parameters
Estimation Methods
PsLS DCLP NLS DCLP-NLS

Tm
E (5) 4.23E + 3 4.23E + 3 3.96E + 3 3.96E + 3

T s
E(5) 3.33E + 3 3.33E + 3 3.64E + 3 3.66E + 3

T l
E(5) 13.1E + 3 13.1E + 3 13.1E + 3 13.1E + 3

ρm 1.95E − 5 1.46E − 5 1.66E − 5 1.66E − 5
ρs 2.18E − 5 4.78E − 5 4.48E − 5 4.47E − 5
δl 1.53E − 29 3.96 3.96 3.97
γms 1.41E − 1 1.38E − 1 1.57E − 1 1.57E − 1
γms 4.17E − 5 6.11E − 1 4.95E − 1 4.96E − 1
residual sum of squares 112.4 18.48 15.77 15.77
average time 0.32 0.78 10.81 5.52

pseudo-least squares estimates and the nonlinear least squares estimates. A grid

search was used to obtain the proposed differential equation constrained local

polynomial estimates and the nonlinear least squares estimates. We report the

results of parameter estimates for these estimation methods in Table 2 and fitted

curves in Figure 1.

Our differential equation constrained local polynomial estimates of kinetic

parameters are much closer to the nonlinear least squares estimates than the

Liang-Wu’s pseudo-least squares estimates, while both save computation. With

our estimate as the starting point for the nonlinear least squares estimate, we

achieved the convergence in approximately half the time that the original non-

linear least squares algorithm took, another benefit of the proposed differential

equation constrained local polynomial approach.

4. Concluding Remarks

We propose a new estimation method for differential equation parameters

based on the differential equation constraint local polynomial regression with

a goal for improving the Liang-Wu’s pseudo-least squares estimate. We inves-

tigated the asymptotic properties and finite-sample behaviors of the proposed

method. Our simulation studies and data analysis showed that the proposed new

estimator is clearly better than the Liang-Wu’s pseudo-least squares estimator

in estimation accuracy at a small cost of computation. Due to their computa-

tional efficiency, the pseudo-least squares estimator and the new estimator can be

used as the starting point for the more refined nonlinear least squares estimate,

and the new estimator is better for this purpose. Our simulation results also
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demonstrate that the Ramsay et al. (2007)’s collocation method is more stable

and can improve the estimation accuracy of the nonlinear least squares estimate

significantly, but it cannot achieve the estimation accuracy of the nonlinear least

squares estimate without using our proposed estimator as the starting point, and

its computational cost is highest among all the methods in our simulation studies.

Lu, Liang, Li and Wu (2011) show that computationally efficient methods

such as the pseudo-least squares estimate are useful in high-dimensional differen-

tial equation models where nonlinear least squares often fails. We expect that our

approach can also improve the performance of the pseudo-least squares estimates

in high-dimensional cases. This is a future research topic.

The accuracy of our estimate is not up to that of the nonlinear least squares

estimate, and it requires the measurement of all state variables. It can be adapted

to deal with latent state variables at the cost of computation; Careful investiga-

tions are needed to evaluate the trade-off between additional cost and benefits.

The selection of the optimal bandwidth (h) and the data augmentation size (m)

remains an open question. We followed the recommendations in Liang and Wu

(2008) for bandwidth selection and this worked well in our numerical studies.

The selection of m for data-augmentation is apparently not very critical. In the-

ory, we can select m as large as possible, subject to the additional computational

cost.

Ours is a linearized estimator in contrast to a nonlinear estimator such as

Liang-Wu’s pseudo-least squares estimator. Hence it is possible to extend the ap-

proach to population differential equation models (ODE). Longitudinal dynamic

(random coefficient) ODE models have been suggested by Putter et al. (2002),

Huang and Wu (2006), and Huang, Liu, and Wu (2006), in which the hierar-

chical Bayesian approach is used to estimate population dynamic parameters in

HIV dynamic models from longitudinal clinical data. Li et al. (2002) proposed

a spline-enhanced population model to study pharmacokinetics using a random

time-varying coefficient ODE model. Guedj, Thiébaut, and Commenges (2007)

used the maximum likelihood approach to directly estimate unknown parame-

ters in random coefficient ODE models. Fang, Wu and Zhu (2011) extended the

two-stage estimation method to random coefficient ODE models for longitudinal

data. However, the extension of the differential equation constrained local poly-

nomial estimator to the population mixed-effects ODE model is not trivial and

remains an open research topic.
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Appendix

Proof of Theorem 1. We analyze the order of estimation errors similar to the

usual derivations of local polynomial regression; For example, see section 3.7 in

Fan and Gijbels (1996). Let Sk,j =
∑n

i=1Kh(ti − t∗k)(ti − t∗k)
j . Then

Sk,j = nhjf(t∗k)µj(K)[1 + op(1)] j even,
(A.1)

Sk,j = nhj+1f ′(t∗k)µj+1(K)[1 + op(1)] j odd,

where f(t) is the density at t and µj(K) =
∫
K(u)ujdu.

We consider properties of the estimator ξ̂ = (JTWJ)−1JTWỸ in (2.6). Since

Gi,k(ξ) only depends on (αk, θ), the Jacobian matrix J is sparse with many zero

elements:

J =



D̃X1,1 . . . 0 D̃θ1,1
... . . .

...
...

D̃Xn,1 . . . 0 D̃θn,1
...

. . .
...

...

0 . . . D̃X1,m D̃θ1,m
... . . .

...
...

0 . . . D̃Xn,m D̃θn,m


,

where D̃Xi,k=1+
∑p

j=1((ti−t∗k)
j/j!)D

(j−1)
X,k and D̃θi,k=

∑p
j=1((ti−t∗k)

j/j!)D
(j−1)

θT ,k
with

D
(j)
X,k =D

(j)
X (α∗

k; θ
∗),

D
(j)

θT ,k
=D

(j)

θT
(α∗

k; θ
∗) =

(
∂

∂θ1
F (j)(α; θ), . . . ,

∂

∂θq
F (j)(α; θ)

)
α=α∗

k,θ=θ∗
.

Since p is fixed, D̃X i,k and D̃θi,k are sums of fixed numbers of terms. Since

by (A.1), the kernel sums of (ti − t∗k)
j is at most of order Op(nh

j), the error

analysis often focuses only on the lowest power term in D̃X i,k and D̃θi,k, 1 and

(ti − t∗k)D
(0)

θT ,k
respectively.

Direct calculation shows that

JTWJ =

(
Dm×m Lm×q

LT
q×m Cq×q

)
. (A.2)

The matrix D is a m×m diagonal matrix with entries

Dk =
n∑

i=1

Kh(ti − t∗k)ω(t
∗
k)(D̃Xi,k)

2, k = 1, . . . ,m. (A.3)

The kth row of the L matrix is
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Lk =

n∑
i=1

Kh(ti − t∗k)ω(t
∗
k)D̃X i,kD̃θi,k, (A.4)

and

C =

m∑
k=1

n∑
i=1

Kh(ti − t∗k)ω(t
∗
k)D̃θ

T

i,kD̃θi,k. (A.5)

Lemma 1. Dk = nω(t∗k)f(t
∗
k) + op(n),

Lk = nh2µ2(K)ω(t∗k)[f
′(t∗k)D

(0)

θT ,k
+ f(t∗k)D

(0)
X,kD

(0)

θT ,k
] + op(nh

2),

and C = nmh2µ2(K)AF + op(nmh2).

The definition of AF is given under (2.7).

Proof of Lemma 1. The proof follows direct calculations using D̃Xi,k = 1 +∑p
j=1(ti−t∗k)

jD
(j−1)
X,k /j!, D̃θi,k =

∑p
j=1(ti−t∗k)

jD
(j−1)

θT ,k
/j!, and (A.1). Here D̃X i,k

has p + 1 terms, each of the form of powers (ti − t∗k)
j , multiplied by a bounded

quantity. So Dk by (A.3) is the sum of (p + 1)2 terms, each of the form Sk,j =∑n
i=1Kh(ti − t∗k)(ti − t∗k)

j , multiplied by a bounded quantity. Thus

Dk = [Sk,0 +

p∑
j=1

Sk,j(
D

(j−1)
X,k

j!
) +

p∑
l=1

(
D

(l−1)
X,k

l!
)(Sk,l +

p∑
j=1

Sk,l+j

D
(j−1)
X,k

j!
)]ω(t∗k).

For fixed p,m → ∞ and n → ∞, asymptoticallyDk is the term with highest order

among the (p + 1)2 terms. The leading term is Sk,0ω(t
∗
k) = nω(t∗k)f(t

∗
k) + op(n)

by (A.1). The rest of terms are of order Sk,j for some j ≥ 1, so are of order

Op(nh
j) or Op(nh

j+1), and at most of order Op(nh
2) = op(n). Hence the sum

Dk = nω(t∗k)f(t
∗
k) + op(n) is of order Op(n).

Similarly, the leading terms in D̃X i,kD̃θi,k and D̃θ
T

i,kD̃θi,k give the results

for Lk and C. More detailed analysis can be found in the online supplemental

materials. This finishes the proof of Lemma 1.

It is easy to check that

(JTWJ)−1 =

(
Dm×m Lm×q

LT
q×m Cq×q

)−1

=

(
D−1 +D−1LV −1LTD−1 −D−1LV −1

−V −1LTD−1 V −1

)
(A.6)

with V = C − LTD−1L. The order of quantities in (A.6) is given in a lemma

whose proof is provided in the online supplemental materials.

Lemma 2. LTD−1L = Op(mnh4), V −1 = C−1[1 + Op(h
2)] = Op(1/nmh2),

D−1LV −1 = Op(1/mn) and D−1LV −1LTD−1 = Op(h
2/n).
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Using the results in Lemma 1 and 2,

(JTWJ)−1 =

(
D−1

m×m + op(
1
n) Op(

1
mn)m×q

Op(
1

mn)q×m C−1
q×q + op(

1
mnh2 )

)
, (A.7)

where a matrix is of an order, such as O((mn)−1)m×q, when all its elements are

of that order.

Remark 3. For a d-dimensional X, the order analysis of the matrices remains

the same. The Dm×m matrix is then Dmd×md with diagonal block matrices Dk of

size d× d, and the Lk are matrices of size d× q. As d is fixed, the multiplication

of matrices with dimension d instead of 1 does not change the order, and the

proof extends to d-dimensional X.

A.1. Asymptotic bias

The bias of ξ̂ given t1, . . . , tn, t
∗
1, . . . , t

∗
m, ξ∗ is

Bias(ξ̂) = (JTWJ)−1JTWE(Ỹ )− ξ0

= (JTWJ)−1JTW{E(Y −G(ξ∗) + Jξ∗)− Jξ0}
= (JTWJ)−1JTW{E(Y )−G(ξ∗)− J(ξ0 − ξ∗)}.

Let J = (JT
1,1, J

T
2,1, . . . , J

T
n,1, J

T
1,2, . . . , J

T
n,m)T . The elements in E(Y ) − G(ξ∗) −

J(ξ0 − ξ∗) are those E(Yi)−Gi,k(ξ
∗)− Ji,k(ξ0 − ξ∗)’s. With a Taylor expansion

of E(Yi) = X(ti) at time point t = t∗k, we have

X(ti) =X(t∗k) +

p∑
j=1

(ti − t∗k)
j

j!
X(j)(t∗k) + (ti − t∗k)

p+1X
(p+1)(t̃i,k)

(p+ 1)!

= Gi,k(ξ0) + (ti − t∗k)
p+1X

(p+1)(t̃i,k)

(p+ 1)!
,

where t̃i,k is a point between t∗k and ti. Since Gi,k(ξ0)−Gi,k(ξ
∗)−Ji,k(ξ0− ξ∗) =

Op(|ξ0 − ξ∗|2) = Op(n
−2δ), we have

E(Yi)−Gi,k(ξ
∗)− Ji,k(ξ0 − ξ∗) = (ti − t∗k)

p+1X
(p+1)(t̃i,k)

(p+ 1)!
+Op(n

−2δ). (A.8)

Let Tj = ((t1 − t∗1)
j , . . . , (tn − t∗1)

j , (t1 − t∗2)
j , . . . , (tn − t∗m)j)T . As in the proof

of Lemma 1, we evaluate the order of JTWTj by focusing on the term with

the lowest power of (ti − t∗k). The first m elements in JTWTj are of the form∑n
i=1Kh(ti − t∗k)(ti − t∗k)

jω(t∗k)D̃Xi,k, k = 1, . . . ,m. The lowest power term in

D̃Xi,k is 1 so that the m elements are of the same order as Sk,j =
∑n

i=1Kh(ti −
t∗k)(ti − t∗k)

j , which is Op(nh
j) for p even, and Op(nh

j+1) for p odd, by (A.1).
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The last q elements in JTWTj are
∑m

k=1[
∑n

i=1Kh(ti − t∗k)(ti − t∗k)
jω(t∗k)D̃θi,k].

Again, the lowest power term in D̃θi,k is (ti − t∗k) so that the last q elements are

of the same order as
∑m

k=1[
∑n

i=1Kh(ti− t∗k)(ti− t∗k)
j+1] =

∑m
k=1 Sk,j+1: of order

Op(mnhj+2) for p even, and Op(mnhj+1) for p odd by (A.1). We have

JTWTj =

(
Op(nh

j)m×1

Op(mnhj+2)q×1

)
for j even,

(
Op(nh

j+1)m×1

Op(mnhj+1)q×1

)
for j odd.

From (A.8), E(Y )−G(ξ∗)− J(ξ0 − ξ∗) = Tp+1Op(1) + T0Op(n
−2δ). Plug-in the

orders of JTWTp+1 and JTWT0, we have that J
TW{E(Y )−G(ξ∗)−J(ξ0−ξ∗)} is(

Op(n(h
p+1 + n−2δ))m×1

Op(mnh2(hp+1+n−2δ))q×1

)
for p odd;

(
Op(n(h

p+2 + n−2δ))m×1

Op(mnh2(hp+n−2δ))q×1

)
for p even.

Combining this with (A.6) and Lemma 2, the bias in estimating θ is

Bias(θ̂) = Op(n
−2δ) +Op(h

p+1) p odd,

Bias(θ̂) = Op(n
−2δ) +Op(h

p) p even.

Since δ > −1/4, Bias(θ̂) = op(n
−1/2) for h = o(n−1/2p).

A.2. Asymptotic variance

For the variance of ξ̂ given t1, . . . , tn, t
∗
1, . . . , t

∗
m, ξ∗, notice that var(ξ̂) =

(JTWJ)−1JTWvar(Ỹ )WJ(JTWJ)−1. Let Σ = var((Y1, . . . , Yn)
T ) =

diag{σ2, . . . , σ2︸ ︷︷ ︸
n

}, ΣY = var(Ỹ ) = var(Y ) are simply m×m blocks of Σ. Thus,

JTWvar(Ỹ )WJ =

(
D∗

m×m L∗
m×q

(L∗)Tq×m C∗
q×q

)
, (A.9)

where the (k, j)th element in D∗ is

D∗
k,j = σ2ω(t∗k)ω(t

∗
j )[

n∑
i=1

Kh(ti − t∗k)Kh(ti − t∗j )D̃X i,kD̃X i,j ], for k, j = 1, . . . ,m,

(A.10)

the kth row in L∗ is

L∗
k = σ2ω(t∗k)[

m∑
j=1

ω(t∗j )
n∑

i=1

Kh(ti − t∗k)Kh(ti − t∗j )D̃Xi,kD̃θi,j ], for k = 1, . . . ,m,

(A.11)
and

C∗ =

m∑
k=1

m∑
j=1

σ2ω(t∗k)ω(t
∗
j )[

n∑
i=1

Kh(ti − t∗k)Kh(ti − t∗j )D̃θ
T

i,kD̃θi,j ]. (A.12)
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Lemma 3.

D∗
k,k = Op(nh

−1), D∗
k,j = op(n) for k ̸= j. (A.13)

L∗
k = nmh2σ2µ2(K)[ω ∗ f ∗ {ω ∗ fg ∗ FθT }′](t∗k) + op(nmh2). (A.14)

When ω(a0) ̸= 0 or ω(b0) ̸= 0, C∗ = Op(nmh+nm2h3), when ω(a0) = ω(b0) = 0,

C∗ = Op(nmh+ nm2h4), and when ω(a0) = ω(b0) = 0 and mh3 → ∞,

C∗ = nm2h4σ2[µ2(K)]2BF + op(nm
2h4). (A.15)

The proof of Lemma 3 is given in the online supplemental materials. Using

(A.6), we find var(θ̂) as

V −1LTD−1D∗D−1LV −1−V −1(L∗)TD−1LV −1−V −1LTD−1L∗V −1+V −1C∗V −1.

(A.16)

The order can be calculated using the results in Lemmas 1, 2, and 3. When

ω(a0) = ω(b0) = 0, the first term in (A.16) is of smaller order O(1/nmh) and

ignored. When mh3 → ∞, we see from the other three terms that var(θ̂) =

Op(1/n). Using Lemma 3, the last term in (A.16) is V −1C∗V −1 = (σ2/n)

A−1
F BFA

−1
F + o(1/n), and using Lemmas 1 and 2, the third term is −V −1

LTD−1L∗V −1 = −(σ2/n)A−1
F CFA

−1
F +op(1/n). The second term in (A.16) is the

transpose of the third term. Combining, we have

var(θ̂) =
σ2

n
A−1

F [BF − (CF + CT
F )]A

−1
F + op(

1

n
).

If ω(a0) ̸= 0 or ω(b0) ̸= 0, similar calculation using Lemma 3 shows that the

variance of θ̂ is of order Op(1/nmh3 + 1/nh).

More details are provided in the online supplemental materials.
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